
Intracellular compartment-specific proteasome dysfunction in 
postmortem cortex in schizophrenia subjects

Madeline R. Scott, B.S.1James H. Meador-Woodruff, M.D.1

1Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, 
Birmingham, AL 35294, USA

Abstract

Protein homeostasis is an emerging component of schizophrenia (SZ) pathophysiology. Proteomic 

alterations in SZ are well-documented and changes in transcript expression are frequently not 

associated with changes in protein expression in SZ brain. The underlying mechanism driving 

these changes remains unknown, though altered expression of ubiquitin proteasome system (UPS) 

components have implicated protein degradation. Previous studies have been limited to protein and 

transcript expression, however, and do not directly test the function of the proteasome. To address 

this gap in knowledge, we measured enzymatic activity associated with the proteasome 

(chymotrypsin-, trypsin-, and caspase-like) in the superior temporal gyrus (STG) of 25 SZ and 25 

comparison subjects using flourogenic substrates. As localization regulates which cellular 

processes the proteasome contributes to, we measured proteasome activity and subunit expression 

in fractions enriched for nucleus, cytosolic, and membrane compartments. SZ subjects had 

decreased trypsin-like activity in total homogenate. This finding was specific to the nucleus-

enriched fraction and was not associated with changes in proteasome subunit expression. 

Interestingly, both chymotrypsin-like activity and protein expression of 19S RP subunits, which 

facilitate ubiquitin-dependent degradation, were decreased in the cytosol-enriched fraction of SZ 

subjects. Intracellular compartment-specific proteasome dysfunction implicates dysregulation of 

protein expression both through altered ubiquitin-dependent degradation of cytosolic proteins and 

regulation of protein synthesis due to degradation of transcription factors and transcription 

machinery in the nucleus. Together, these findings implicate proteasome dysfunction in SZ, which 

likely has a broad impact on the proteomic landscape and cellular function in the pathophysiology 

of this illness.

Introduction

Abnormal protein homeostasis, collectively called proteostasis, is an emerging component of 

schizophrenia (SZ) pathophysiology. Proteomics, together with studies on individual 

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
*Corresponding author: Madeline R. Scott, 1719 6th Avenue South, CIRC 589A, Birmingham, AL 35294-0021, USA, Tel: +1 205 996 
6229, Fax +1 205 975 4879, scomr@uab.edu. 

Supplementary information is available at Molecular Psychiatry’s website.

CONFLICT OF INTEREST
The authors have no conflicts of interest to disclose.

HHS Public Access
Author manuscript
Mol Psychiatry. Author manuscript; available in PMC 2019 July 26.A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript



proteins, provide a growing body of evidence for proteostasis dysregulation in SZ1. 

Intriguingly, analyses examining both transcript and protein expression in postmortem brain 

within the same subjects repeatedly demonstrate that changes in transcript expression are not 

predictive of protein expression and vice versa2–34. Why this occurs is unknown, but 

proteostasis regulatory mechanisms including epigenetics, non-coding RNA, and altered 

protein translation are increasingly investigated to address this gap in knowledge35–37. These 

pathways focus on regulation of protein synthesis, but overlook the crucial role of protein 

degradation. The proteasome, a complex that regulates the proteome through protein 

degradation, is well-placed to impact abnormalities in SZ.

The ubiquitin proteasome system (UPS) facilitates proteostasis maintenance. It is initiated 

upon ubiquitin attachment, as either a monomer or polymeric chain, to substrate proteins38. 

Ubiquitination effects substrate localization and/or function, but is best known for targeting 

substrates to proteasomes39. The proteasome is a large, multicatalytic complex responsible 

for the majority of intracellular protein degradation38, 40. It is comprised of a core particle 

(CP), which performs proteolytic activity, and regulatory particles (RP) that facilitate access 

to the core and determine substrate specificity38(Fig.1). Distinct proteasome populations 

interact with different cellular processes including protein quality control, cellular 

bioenergetics, and cellular stress responses in the cytosol, and regulation of transcription in 

the nucleus39(Fig.1). Proteasomes, therefore, have not only an essential role in protein 

degradation but also in protein synthesis. Additionally, recent work has identified a novel 

neuron-specific population of proteasomes localized to extracellular membranes which 

degrade intracellular proteins and release peptides that appear to modulate 

neurotransmission in the extracellular space41(Fig.1). As such, both localization and 

complex expression are critical components to understanding proteasome function and 

impact on the cell.

Proteasomes contribute to aspects of neural function known to be abnormal in SZ, including 

neurodevelopmental processes, dendritic morphology and maintenance, and bioenergetic 

homeostasis42–48. Additionally, NMDA receptor activity and dopaminergic signaling, 

pathways known to be dysregulated in SZ, influence proteasome activity, expression and 

localization49–51. As a cellular process connected to all of these systems, the proteasome is 

well-placed to both be impacted by and contribute to dysfunction in SZ.

Abnormal UPS expression in SZ supports a role for UPS dysregulation in this illness. A 

pathway-wide association study on single-nucleotide polymorphisms that increase risk of SZ 

identified ubiquitin-mediated proteolysis as a top pathway52. cDNA microarrays 

demonstrate abnormal transcript expression of enzymes that facilitate ubiquitin addition and 

removal, and proteasome subunits, in multiple brain regions53–57. UPS expression in blood 

is correlated with severity of positive symptoms in SZ patients58, 59. Neocortical protein 

expression of enzymes responsible for adding and removing ubiquitin is abnormal in SZ and 

in a neurodevelopmental phencyclidine mouse model of SZ at multiple developmental time 

points60, 61. Additionally, we have observed decreased protein expression of free ubiquitin 

and ubiquitinated proteins, as well as reduced expression of RP proteasome subunits, 

including the 19S AAA-ATPases Rpt1, Rpt3, Rpt6 and 11S RP α, in the superior temporal 

gyrus (STG) of SZ subjects60, 62. The STG is a brain region associated with SZ, and 
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especially auditory hallucinations. Imaging studies have demonstrated that the STG is active 

during auditory hallucinations, and stimulation of the STG, either directly or in epilepsy, is 

sufficient to induce auditory hallucinations63–70. Reduced STG volume is frequently 

observed in SZ subjects, and has been repeatedly inversely associated with severity of 

auditory hallucinations71. Cortical volume reductions in SZ are believed to be due to 

reduced neuropil, including decreased soma size, dendritic arborization, and dendritic spine 

density72, however further characterization of molecular abnormalities in this region is 

necessary to understand the mechanisms underlying STG dysfunction in SZ. These previous 

studies suggest reduced utilization of ubiquitin to target proteins to the proteasome and 

expression of proteasome complexes that mediate ubiquitin- and ATP-dependent 

degradation. Therefore, we hypothesized that proteasome activity is decreased in the STG of 

SZ subjects. As localization of proteasomes determines function, we predicted changes in 

proteasome activity and expression may be specific to intracellular compartments. We 

sought to directly test these predictions by measuring proteasome activity and expression in 

tissue homogenate from the STG of subjects with SZ, and in subcellular fractions enriched 

for cytosol-, nucleus-, and membrane-associated markers.

MATERIALS AND METHODS

Subjects

Postmortem brain tissue from 25 subjects diagnosed with schizophrenia based on DSM-III-

R criteria and 25 comparison subjects was obtained from the Mount Sinai/Bronx Veterans 

Administration (VA) Medical Center Department of Psychiatry Brain Collection through the 

NIH Neurobiobank (Supplemental Table 1). Assessment, consent, and postmortem 

procedures were performed for all subjects as has been previously described73, 74. 

Neurodegenerative disorders were ruled out by pathologic examination, and subjects had no 

history of alcoholism and/or substance abuse. We performed a power analysis, based on our 

previous experience with protein measures in postmortem tissue in SZ and a pilot study on 

activity assays in mice, to determine the sample size necessary to detect an effect size of ≥ 

0.4 (α = 0.05, β = 0.02). As the number of subjects between groups was equal we performed 

data analyses assuming equal variance. Samples were coded to allow for experimenter 

blinding until data analysis. Randomization is not applicable in our design.

Tissue Preparation

Samples were obtained at autopsy, sliced into 0.8–1.0 cm slabs in the coronal plane, 

dissected into 1-cm3 cubes, and stored at −80°C until use73, 74. The samples used in this 

study were specifically dissected from the full thickness of gray matter of the left STG 

(BA22). Samples were manually homogenized using a glass tissue grinder in 6 µL/mg of 

Proteasome Homogenization Buffer (PHB; Proteasome Buffer (50 mM Tris-HCl (pH 7.5), 

150 mM NaCl, 250 µM DTT, 5 mM MgCl2, 2 mM ATP) containing 10% glycerol and 

phosphatase inhibitors (PhosSTOP, Roche Diagnostics, Manheim, Germany). Samples were 

then incubated on ice for 20 min, vortexing every 5 min. Following homogenization, 

samples were either stored at −80°C (Total homogenate) or fractionated into Nucleus-, 

Cytosol-, and Membrane-Enriched fractions. Optimization experiments and control studies 
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used neocortical tissue from healthy control brains from the Alabama Brain Collection 

(ABC)75.

Intracellular Compartment Fractionation

Sequential centrifugation steps were used to create fractions enriched for specific 

intracellular compartments. An initial low speed spin (510xg, 5 min) was performed directly 

after tissue was homogenized. The supernatant (S1) was transferred to 11×35 mm Konical 

polypropylene centrifuge tubes (Beckman Coulter, Brea, CA, USA) for further processing, 

while the pellet (P1) was solubilized in 5 µL/mg of PHB to create a Nucleus-Enriched 

Fraction (NEF) and stored at −80°C until use. S1 was ultracentrifugated at 100,000xg 

(27,300 rpm; SW-60Ti rotor) for 1 h at 4°C, after which the resulting supernatant (S2) was 

removed and retained as a Cytosol-Enriched Fraction (CEF), and the pellet (P2) was 

solubilized in 2.5 µL/mg of PHB to create a Membrane-Enriched Fraction (MEF). Protein 

concentration of Total Homogenate and all fraction samples were assessed using a BCA 

assay kit (Thermo Fisher Scientific). Homogenization and fractionation of cortical tissue 

from an ABC subject was performed alongside the STG samples and was used as a control 

for intra-assay variation between separate plates and/or gels throughout the study.

Rodent Studies

We modeled PMI conditions typically seen at the time of death in humans in female 3–7 

week old C57BL/6 mice. After decapitation, brains were either immediately frozen in dry 

ice (Hour 0, n = 3), or held at 4⁰C for progressively longer times (1, 4, 10 hours, n = 4), and 

then transferred to −80⁰C for storage.

Seven of the 25 subjects with SZ were off antipsychotic medication for at least 6 weeks 

(Median = 23.9 weeks, SD = 55.9 weeks), and the remaining subjects were on typical 

antipsychotics (Supplemental Table 1). Testing for the effect of antipsychotic treatment 

within this cohort is therefore underpowered, so we chose to model chronic antipsychotic 

treatment using a rodent model. Male Sprague-Dawley rats (250 g) were housed in pairs for 

9 months, during which they were treated with either haloperidol decanoate (28.5 mg/kg, n = 

10) or vehicle (sesame oil, n = 10) every 3 weeks, for a total of 12 intramuscular injections. 

The dose/duration of haloperidol treatment was chosen based on previous analysis of 

antipsychotic treatment in rats76, 77. The animals were killed by decapitation and the brains 

immediately removed, dissected on wet ice, snap frozen on dry ice, and stored at −80° C. All 

rodent tissue was homogenized as described above. These studies were approved by the 

University of Alabama at Birmingham Institutional Animal Care and Use Committee. 

Sample sizes for these studies were based on power analysis from previous experiments, 

samples were coded for experimenter blinding until data analysis, and treatment group was 

randomized.

Proteasome Activity Assays

For all proteasome activity assays, 20 µg of sample was loaded in triplicate into Costar® 

polysterene non-treated black 96-well assay plates (Corning Incorporated, Kennebunk, ME, 

USA) followed by 100 µL/well of assays for chymotrypsin-like activity (CTLA; 100 µM 

Leu-Leu-Val-Tyr-7-Amino-4-methylcoumarin (LLVY-AMC), Sigma-Aldrich, St. Louis, 
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MO, USA, Cat# S6510), trypsin-like activity (TLA; 100 µM Arg-Leu-Arg-AMC (RLR-

AMC), EnzoLifesciences, Farmingdale, NY, USA; Cat# BML-AW9785–0005), or caspase-

like activity (CLA; 200 µM Leu-Leu-Glu-AMC (LLE-AMC), EnzoLifesciences, 

Farmingdale, NY, USA; Cat# BML-ZW9345–0005). A Synergy HT plate reader (BioTek, 

Winooski, VT, USA) was used to measure fluorescence (Emission - Center Wavelength 

(CW): 360 nm, Full Width at Half Maximum (FWHM): 40 nm; Excitation – CW: 460 nm, 

FWHM: 40 nm) every 10 minutes for 4 hours while plates were kept at 37°C. Each plate 

contained a fraction-matched ABC subject for inter-plate normalization when measuring 

proteolytic activity in the SZ and comparison subjects.

To confirm these assays measured proteasome-specific enzymatic activity, control 

experiments were performed with ABC tissue that tested assay sensitivity to denaturing 

conditions (2% SDS, 8 h incubation at 100°C) and the proteasome-specific inhibitor 

Lactacystin (120 µM) (Figure 2A, 3C-F). After plating, samples were incubated at room 

temperature (RT) for 1 h before measuring proteolytic activity (Fig.2A, Fig.3C). An 

additional control experiment was performed in compartment-enriched fractions to assess 

the density at which proteolytic activity was enriched. To do this, we prepared an 8–32% 

continuous gradient by layering 1.5 mL of 8% glycerol on top of 1.5 mL of 32% glycerol in 

a 14 × 89 mm Beckman polyammor ultracentrifuge tube. The tubes were then covered in 

parafilm, set on their side, and incubated at RT for 2.5 h. 500 µg of tissue was layered on top 

of the gradient and samples underwent ultracentfiguation at 130,000xg (31,000 rpm; 

SW-60Ti rotor) for 22 h at 4°C. After ultracentrifugation, 200 µL of each sample was 

sequentially removed to make glycerol gradient fractions. Activity assays were then 

performed on all fractions, using a fixed volume of tissue proportional to a total of either 20 

µg (CEF, MEF) or 30 µg (Total Homogenate, NEF) of initial input (Fig.3D-F).

Western Blot Analysis

Reducing buffer (6X: 170 mM Tris (pH 6.8), 4.5% SDS, 36% glycerol, 0.0018% 

bromephenol blue, 2% βME) was added to each sample, followed by a 10 min incubation at 

70 °C. 10 µg of each sample was then loaded into Bolt™ 4–12% Bis-Tris Plus Gels 

(Invitrogen, Carlsbad, CA, USA), with fraction-matched ABC control tissue loaded on every 

gel. Gels underwent electrophoresis at 150 V for ~1 h, or until loading dye ran off the gel, 

using a Mini Gel Tank (Invitrogen, Carlsbad, CA, USA), then transferred to nitrocellulose 

membrane using a BioRad semi-dry transblotter (Hercules, CA). After transfer, blots were 

incubated in Ponceau (5% Acetic Acid, 0.1% Ponceau) for 5 min, followed by two one 

minute washes with tris-buffered saline (TBS) and an image was digitally acquired. 

Membranes were then incubated with TBS containing either 50% Li-Cor blocking buffer or 

5% BSA for 1 h at RT. After blocking, blots were incubated overnight at 4°C in primary 

antisera diluted in TBS containing 0.1% Tween-20 (TBST) with either 50% Li-Cor buffer or 

5% BSA (Supplemental Table 2). Blots were then washed with 1X TBST, incubated with 

secondary antibody, and washed again before being scanned on an Odyssey Infrared 

Imaging System (Li-Cor Biosciences) at a resolution of 169 µm and intensity level of 5.
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Data Analysis

Image Studio Lite Version 5.2.5 was used to determine relative expression of each protein. 

Integrated signal values of proteins of interest (POI) were normalized to total protein 

expression as measured by the full lane value of Ponceau. Values were normalized to the 

expression of ABC subject POI to control for inter-blot variability and duplicate values 

averaged for each subject.

Activity assay flourescence values were obtained using Gen 5 (Version 1.02.8, BioTek 

Instruments) and plotted as a function of time to determine initial velocity. Signal intensity 

varied depending on flourogenic substrate and compartment, so initial velocity was 

determined during the period in which we consistently saw a linear slope (10–40 min: Total 

and CEF CTLA and TLA; 10–60 min: NEF CTLA and TLA, Total and CEF CLA; 10–90 

min: NEF CLA, All MEF assays). Baseline activity, as measured by a condition containing 

no tissue, was subtracted from each value, followed by normalization to ABC subject 

activity to control for inter-plate variability. Triplicate values were then averaged for each 

subject.

Data were considered normally distributed if at least two tests of normality (D’Agnostino-

Perason omnibus normality test, Shapiro-Wilk normality test, and Kolmogorov-Smirnov 

test) were not significant. Log transformation and/or the statistical removal of outliers were 

performed when necessary to handle non-normally distributed data; however, if these steps 

were not sufficient, we used comparable non-parametric tests on the original data. We used 

either two-tailed unpaired Student’s t-tests or Mann-Whitney U analyses to determine the 

effect of diagnosis, except for 19S Rpt subunits, where instead of 6 distinct bivariate 

analyses we performed a two-way ANOVA with diagnosis and subunit as factors. Pearson 

correlation coefficients were used to determine associations between protein expression and 

subject age, tissue pH, and PMI. When associations were found, a follow-up ANCOVA was 

performed to control for these covariates. All data analysis was performed using GraphPad 

Prism version 7.00 for Windows (GraphPad Software, La Jolla, California, USA) and 

STATISTICA version 7 (StatSoft, Inc, Tulsa, Oklahoma, USA). For all tests we used an 

initial α = 0.05 followed by the Benjamini-Hochberg method to reduce risk of type I 

statistical errors associated with multiple comparisons78. Briefly, p-values are ranked and 

used to calculate the Benjamini-Hochberg critical value q = ([(individual p-value rank)/(total 

number of tests)]/false discover rate (FDR)). In this study, we used an FDR value of 0.20. 

Tests where the original p-value was less than the associated q-value were considered 

significant.

RESULTS

TLA is decreased in SZ

We used denaturing conditions and the proteasome-specific inhibitor lactacystin to confirm 

that the fluorogenic substrates for CTLA (LLVY-AMC), TLA (RLR-AMC), and CLA (LLE-

AMC), measure proteasome-specific enzymatic activity in human cortex (Fig.2A). As PMI 

can impact protein stability and function79, 80, we tested the effect of a range of PMIs (0, 1, 

4, 10 h) on proteolytic activity in mouse brain and observed no difference [CTLA, 
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F(3,11)=0.73; TLA, F(3,11)=1.50, CLA, F(3,11)=1.48]. We then used these assays to 

measure proteasome activity in STG homogenates of SZ and comparison subjects, 

normalizing activity for each subject to expression of 20S α6, a component of all 

proteasome complexes and therefore a measure of total proteasome content. 20S α6 

expression was not changed in SZ [t(48)=0.71] (Figure 2B). We observed decreased TLA in 

subjects with SZ [t(47)=2.63, p=0.01, q = 0.03], but no change in CTLA [t(48)=1.05] or 

CLA [t(48)=0.78] (Fig.2C).

Active proteasomes in intracellular compartment-enriched fractions from human cortex

Intracellular fractions enriched for biochemical markers of the nucleus (H3), cytosol 

(ERK1), and cellular membranes (GluR1) were produced by differential centrifugation 

(Figure 3A-B). CTLA (LLVY-AMC), TLA (RLR-AMC), and CLA (LLE-AMC) assays 

were sensitive to denaturing conditions and lactacystin in all fractions (Fig.3C). 

Furthermore, we prepared 8–32% continuous glycerol gradients to separate large complexes 

from small proteases and demonstrated enrichment of CTLA and TLA in low-glycerol 

concentration fractions, where large complexes like the proteasome are predicted to be (Fig.

3D-E). CLA exhibited the same pattern in the CEF, where activity is the highest, but no 

distinguishable pattern was observed in either the NEF or MEF (Fig.3F). This is likely due 

to lower sensitivity of the LLE-AMC assay.

Intracellular compartment-specific abnormalities in proteasome activity in SZ

We measured proteolytic activity in the NEF, CEF, and MEF from the STG of SZ and 

comparison subjects. No changes in 20S α6 protein expression were observed [NEF, 

t(48)=0.75; CEF, t(47)=0.42; MEF, t(48)=0.46] (Fig.4A-C). The NEF demonstrated the 

same pattern of activity as we observed in total homogenates, with decreased TLA (U=166, 

p=0.02, q = 0.04), and no change in either CTLA [t(47)=0.97) or CLA (t(48)=0.47] in SZ 

(Fig.4A). TLA in total homogenate and the NEF were positively correlated for all subjects 

[r=0.41, p=0.004] (Figure 4D). In the CEF we observed decreased CTLA activity 

[t(47)=2.74, p=0.009, q = 0.02], but no change in TLA [t(48)=0.10] or CLA [t(48)=0.14] in 

SZ (Fig.4B). In the MEF we observed decreased CLA [t(48)=2.63, p=0.01, q = 0.04], but no 

change in CTLA [t(48)=1.37] or TLA [t(48)=1.78] (Fig.4C).

Associations with potential covariates were assessed for all activity measures, and CTLA 

from the CEF was positively associated with age [r=0.30, p=0.04, q = 0.006] and negatively 

correlated with PMI [r=−0.31, p=0.03, q = 0.006] (Fig.4E). However, neither of these 

findings survived Benjamini-Hochberg FDR analysis and an ANCOVA demonstrated that 

the effect of diagnosis on CTLA in the CEF remained when controlling for both age and 

PMI [ANCOVA, FDX(1,45)=7.09, p=0.01].

Intracellular compartment-specific expression of proteasome subunits

Proteasome subunit expression was measured in both the NEF and CEF (Fig.5). In the NEF, 

the constitutive (20S β2) and inducible (20S β2i) catalytic subunits associated with TLA 

were not differentially expression between comparison and SZ subjects [β2, t(48)=1.07; β2i, 

t(47)=0.27]. Additionally, there was no effect of diagnosis on 19S Rpt expression 

[FDX(1,287)=0.08, Fsubunit(5,287)=3.79, p=0.002, q = 0.007, FDX x subunit(5,287)=0.26]. 
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Protein expression was, however, negatively correlated with TLA for several proteasome 

subunits, including 20S β2 [r=−0.31, p=0.03, q = 0.06], 20S β2i [r=−0.36, p=0.02, q = 0.03], 

19S Rpt1 [r=−0.42, p=0.003, q =0.01] and Rpt2 [r=−0.39, p=0.007, q = 0.02] (Fig.5C-D).

In the CEF, the constitutive (20S β5) and inducible (20S β5i) catalytic subunits associated 

with CTLA were measured, along with subunits from the 19S (Rpt1–6) and 11S (α, β) RPs. 

No change in protein expression was observed for the catalytic subunits [β5, t(48) 0.51; β5i, 

t(48)=0.62] or the 11S RP subunits [11S α, t(48)=0.26; 11S β, t(47)=0.12]. However, there 

was a significant main effect of diagnosis on 19S Rpt expression [FDX(1,288)=8.12, 

p=0.005, q = 0.01] (Fig.5B). As no interaction between diagnosis and subunit was observed 

[FDX x subunit(5,288)=0.06], this does not appear to be driven by a single subunit, but instead 

reflects decreased expression of all 19S AAA-ATPases. Several subunits were positively 

associated with brain pH [Rpt1, r=0.42, p=0.002, q = 0.006; Rpt2, r=0.42, p=0.003, q =0.01; 

Rpt4, r=0.36, p=0.01, q = 0.02], however an ANCOVA demonstrated that the effect of 

diagnosis on 19S Rpt expression remained significant when controlling for this covariate 

[FDX(1,287)=4.87, p=0.03]. Independent of diagnosis, expression of several 19S RP 

subunits was positively correlated with CTLA [Rpt3, r=0.33, p=0.02, q = 0.04; Rpt6, r=0.30, 

p=0.04, q = 0.07], further implicating this RP complex in CTLA abnormalities.

Chronic antipsychotic treatment does not change proteasome activity in rat brain

Proteolytic activities found to be abnormal in SZ were measured in aged rats chronically 

treated with haloperidol decanoate. No changes due to antipsychotic treatment were 

observed in TLA in either total homogenate [t(18)=1.31] or the NEF [t(18)=0.54], or in 

CTLA in the CEF [t(16)=0.13] (Fig.6).

DISCUSSION

In this study, we measured proteasome activity from the left STG in SZ and comparison 

subjects and observed decreased TLA in SZ in tissue homogenates. To further characterize 

this deficit in proteasome activity, we prepared fractions enriched for nuclei, cytosol, and 

extracellular membranes and found decreased TLA in the NEF and CTLA in the CEF in SZ, 

suggesting intracellular compartment-specific proteasome dysfunction. TLA from total 

tissue homogenates and the NEF were positively associated, regardless of diagnosis, 

suggesting that the changes we found in total tissue homogenates may be driven by nucleus-

localized proteasomes. Changes in activity were not accompanied by abnormal expression of 

catalytic subunits, but we did observe decreased 19S Rpt expression in the CEF. These 

findings suggest cell compartment-specific proteasome dysfunction in SZ.

The proteasome is responsible for the majority of intracellular protein degradation40, 

therefore the observed deficits in proteolytic activity likely result in abnormal protein 

expression. Supporting this prediction, evidence for abnormal protein expression in SZ is 

well-documented, through both large-scale proteomic studies and analyses demonstrating 

changes in individual proteins1. Our intracellular compartment-specific abnormalities 

suggest that proteasome regulation of protein synthesis in the nucleus in addition to the 

proteasome’s traditional role in degradation39. Global proteasome impairment typically 

leads to accumulation of misfolded proteins and cell apoptosis, as is seen in 
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neurodegenerative disorders like Alzheimer’s Diseases, Parkinson’s Disease, and Amyloid 

Lateral Sclerosis81. However, there is little evidence of neurodegeneration and accumulation 

of misfolded proteins, suggesting that the proteasomal protein degradation is not completely 

impaired82, 83. This is consistent with work describing consequences of inhibiting only a 

single type of proteasome activity. Kisselev et al.84 demonstrated that inhibition of one 

activity type only moderately reduced total protein degradation. However, when looking at 

known proteasome substrates they observed substrate-specific decreased degradation 

capacity unique to each activity type84. While further work characterizing the consequences 

of changing a single type of proteasome activity on the proteome are necessary to fully 

understand the potential role of proteasome dysfunction in SZ, we propose that our findings 

represent substrate-specific alterations in protein degradation that are distinct depending on 

subcellular localization.

Changes in proteasome activity are often accompanied by alterations in proteasome complex 

dynamics. Decreased 19S RP expression is associated with reduced proteolytic activity, 

while abnormal immunoproteasome subunit expression impacts each type of activity 

differently depending on the subunit85. In the current study, we did not observe differences 

in total proteasome content, as measured by 20S α6 expression, or catalytic subunit 

expression regardless of fraction. We did observe, however, decreased 19S Rpt expression in 

the CEF. This is consistent with previous work from our lab that reported decreased 

expression of 19S Rpt1, Rpt3, and Rpt662, and supports a theory of UPS dysfunction in SZ. 

While decreased proteasome activity is generally associated with ubiquitinated protein 

accumulation, the opposite is found in the STG of SZ subjects60. Abnormal transcript and 

protein expression of UPS elements have been repeatedly observed in SZ, including reduced 

expression of ubiquitin, ubiquitinated proteins, and enzymes associated with both ubiquitin 

attachment and removal53–61. These studies suggest reduced utilization of ubiquitin-

dependent degradation by the proteasome, rather than a proteasome-dependent accumulation 

of ubiquitinated proteins. This may underlie cellular recruitment of alternative protein 

degradation methods, such as lysosomal or ubiquitin-independent proteasome degradation. 

Immunoproteasomes and uncapped CP complexes are recruited in response to oxidative 

stress as they are more effective at degrading oxidatively damaged proteins than 26S 

complexes86. While markers of oxidative stress, such as reduced expression of antioxidants, 

increased lipid peroxidation, and reactive oxygen species have been found in SZ 

brain47, 87, 88, there is little evidence in SZ of apoptosis or neurodegeneration, processes that 

result from increased oxidative stress81-83. Why there is increased oxidative stress but not 

apoptosis is currently a gap in knowledge in SZ. We propose that our findings are consistent 

with abnormal prioritization of ubiquitin-independent over ubiquitin-dependent degradation 

in SZ, and that this results in resilience to oxidative stress and prevents cell death.

While these changes in proteasome activity and expression may be beneficial to cell 

survival, they are also likely to disrupt other cellular processes. Neurotransmission may be 

particularly sensitive to proteasome dysfunction as it is dependent on coordinated regulation 

of multiple components including receptors, transporters, and auxiliary proteins, many of 

which are known proteasome substrates89. Additionally, neurotransmission is facilitated by 

the development, maintenance, and plasticity of dendrites, dendritic spines, and synapses90. 

The proteasome is known to degrade cytoskeletal elements, and studies have demonstrated 

Scott and Meador-Woodruff Page 9

Mol Psychiatry. Author manuscript; available in PMC 2019 July 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that proteasomes regulate dendritic spine morphogenesis, maintenance and capacity for 

plasticity42–48, 90. As such, the proteasome dysfunction we observed may lead to deficits in 

the capacity of cells to build and regulate the structural connections necessary to receive 

information, to recognize input and integrate it through intracellular signaling, and to 

develop appropriate intercellular responses. Supporting this prediction, evidence for reduced 

dendritic spine density, abnormal expression of synaptic proteins, and disrupted synaptic 

plasticity has been repeatedly observed in multiple brain regions of SZ subjects72. 

Microstructural deficits including reduced soma size, decreased dendritic arborization, and 

reduced dendritic spine density have been observed and are proposed to underlie decreased 

cortical volume72. Specifically, reduced STG volume is one of the most consistent findings 

in SZ literature71, 91, and as such we propose a model in which proteasome dysfunction 

leads to disruption of STG circuit function through the destabilization of cytoarchitecture 

and neuronal capacity for synaptic plasticity.

The STG has long been associated with SZ and auditory hallucinations. Temporal lobe 

dysfunction and damage is associated with SZ-like symptoms92, 93 and stimulation of the 

temporal lobe induces hallucinations in both epileptic and SZ patients69, 70. Additionally, 

patients with epilepsy localized to the STG report similar auditory hallucinations to patients 

with SZ64–68, and STG volume is associated with severity of auditory hallucinations71, 91. 

Typically, the STG is thought to integrate information from multiple modalities to 

contextualize auditory information91. The theoretical role of sensory integration in 

differentiating between internal and external stimuli, assigning appropriate valence to 

stimuli, and filtering sensations to allow for focusing attention, may explain how STG 

dysfunction could lead to auditory hallucinations and contribute to executive function 

deficits. Integrating sensory information relies on the capacity of the STG to receive input 

from many other brain regions and coordinate information through intracortical 

connections91. We speculate that disrupting the capacity of cells in this region to receive, 

process, and respond to intercellular input due to proteasome dysfunction leads to behavioral 

symptoms through destabilization of the circuit underlying STG-related sensory and 

cognitive function. Further work characterizing how the abnormalities we observed in 

proteasome expression and activity impact neural function, intercellular communication, and 

circuit function are needed to determine the viability of our predictions.

Intriguingly, the impact of altered proteasome activity may not be limited to changes in 

protein expression. The proteasome degrades proteins through a series of cleavages, 

resulting in the production of small peptides85. While these peptides are often further 

degraded by other proteases, some associate with the major histocompatibility complex 

(MHC)85. The MHC is eventually shuttled to the cell surface where T-cells can recognize 

non-self antigens and instigate an immune response85. Constitutive and immunoproteasomes 

produce distinct populations of peptides, as do proteasomes capped by various RPs85. 

Peptide production depends on a balance between multiple cleavage events, and therefore 

the effect of proteasome inhibitors appears to have both substrate-specific impacts on 

peptide production and a widespread effect on the population of peptides85. The alteration in 

a single type of proteolytic activity in SZ may, therefore, result in differential production of 

peptides. This is a particularly interesting possibility as SZ has been associated with altered 
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immune responses, increased production of autoantibodies to neural-associated proteins, and 

abnormalities in the MHC94.

Mechanisms known to alter proteasome complex expression overlap with processes though 

to be regulated by the proteasome, implicating a bidirectional association of proteasome 

activity and expression with these cellular processes. Specifically, NMDA receptor and 

dopaminergic activity induce 19S RP dissociation, while immunoproteasomes and uncapped 

CP complexes are recruited in response to oxidative stress and inflammation49–51, 86. The 

bidirectional connection of the proteasome to these cellular processes suggests that the 

proteasome may act as a central hub of dysfunction in SZ. Specifically, proteasomes may 

have the capacity to sense dysfunction of initial causative elements such as genetic 

dysregulation of NMDA receptor and dopaminergic activity and inflammation due to 

maternal immune activation49–51, 86, as well as contribute to pathophysiology through 

dysregulation of energy homeostasis, immune function and neurotransmission42–48, 85.

There are several limitations to consider in interpretation of this study, including potential 

confounding effects of aging, PMI, and treatment with antipsychotic medications on 

proteasomes. Proteasome function is implicated as a component of aging95. Decreased 

proteasome activity due to aging has been observed in a large variety of rodent and non-

neural human tissues/cell types, and proteasome inhibition leads to age-related phenotypes 

in mice and induced senescence of human fibroblasts95–97. However, the only measure of 

proteolytic activity we observed associated with aging was CTLA in the CEF. Specifically, 

CTLA and aging were positively correlated independent of diagnosis, suggesting that 

activity increases with age unlike previous reports. As such, our finding may represent 

human brain-specific age-associated regulation of proteasomes. Alternatively, longevity is 

associated with higher or maintained proteasome activity in human centerrian fibroblasts and 

long-living queen bees98, 99. As our population is primarily elderly subjects, our sample may 

be biased for long-lived individuals who have increased proteasome activity as a component 

of increased resiliency to aging. Additionally, the advanced age of our subjects limits the 

conclusions that can be made from this study. SZ develops over the lifespan, and molecular 

changes at onset are likely not the same as those found at late stages of the illness. Further 

work defining how proteasomes are regulated throughout development and aging in the 

human brain, and how this is disrupted in SZ, is necessary to fully understand the 

proteasomes role in SZ pathophysiology.

There are inherent concerns with postmortem studies in SZ that include both the 

confounding factors of PMI and antipsychotic treatment. PMI can impact measures of 

protein expression and activity79, 80, and the majority of SZ subjects in this cohort were 

chronically treated with antipsychotics, which are known to impact cellular function in a 

variety of ways. We demonstrated that PMI up to 10 h does not affect proteolytic activity 

measures prior to examining activity in this cohort. Additionally, we found that chronic 

antipsychotic treatment in rats was not sufficient to reproduce abnormalities in proteolytic 

activity. This is consistent with previous work demonstrating no effect of chronic 

haloperidol treatment on expression of 19S Rpt subunits in rats62.
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In summary, we examined intracellular compartment-specific proteasome activity in the 

STG of SZ and comparison subjects. We found decreased TLA in tissue homogenate as well 

as in the NEF, and reduced CTLA and 19S Rpt expression in the CEF, in SZ. These findings 

are consistent with abnormal regulation of proteasome function in SZ, which likely has a 

broad effect on the proteomic landscape and cellular function in the pathophysiology of this 

illness.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Proteasome Function and Regulation in Schizophrenia
Structure and function of proteasome complexes are described, including the (A) 20S CP, 

(E) 19S RP, (F) Immunoproteasome, and (G) 11S αβ RP. (A) In the CP, three β subunits 

have proteolytic activity that facilitates protein degradation through a series of cleavage 

events, resulting in the production of peptides38. (B-D) The proteasome interacts with 

various cellular processes depending on where it is in the cell. (B) In the cytosol, the 

proteasome regulates protein quality control, bioenergetics, cell structure and synaptic 

plasticity through degradation of key proteins39. (C) In the nucleus, the proteasome degrades 

transcription factors, removes stalled transcription machinery, and clears misfolded/damaged 

histones39. (D) In neurons, the proteasome associates with the membrane through 

interactions with transmembrane proteins41. This allows it to degrade intracellular proteins 

and export peptides into the extracellular space where they can interact with 

neurotransmitter receptors and modulate neurotransmission41. (F-G) Cellular stress is known 

to recruit both (F) inducible catalytic subunits that replace constituitive catalytic subunits to 

create the immunoproteasome and (G) the cytosolic 11S αβ RP86. (H) Abnormalities in 

proteasome expression and activity observed in the STG of subjects with schizophrenia. 
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Previously, decreased expression of 19S RP subunits (Rpt1, Rpt3, and Rpt6) has been 

observed62 and in the current study we detected decreased trypsin-like activity in total 

homogenate. In fractions enriched for markers of the nucleus, cytosol, and cellular 

membranes we observed distinct proteasome expression and activity. Specifically, we 

observed decreased trypsin-like activity in the nucleus-enriched fraction, decreased 

chymotrypsin-like activity and 19S RP AAA-ATPase expression in the cytosol-enriched 

fraction, and decreased caspase-like activity in the cellular membrane-enriched fraction.
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Figure 2. Trypsin-like activity is decreased in schizophrenia
Proteasome activity in the STG of comparison and SZ subjects. (A) Flourogenic substrates 

specific to chymotrypsin- (LLVY-AMC), trypsin- (RLR-AMC), and caspase-like (LLE-

AMC) activity were used to measure proteasome activity in human cortex. These assays 

were sensitive to denaturing conditions (“Boiled Cortex” – 8 h incubation at 100 °C; “+ 

SDS” - addition of 2% SDS, a strong detergent) and lactacystin (“+ Lac”), a proteasome-

specific inhibitor, confirming that these assays reflect proteasome-specific activity. (B) 

Protein expression of the 20S CP α6 subunit determined from western blot analysis was 

unchanged in comparison and schizophrenia subjects. As this subunit is present in all 

proteasomes this measure reflected total proteasome content and was used to normalize 

subsequent activity assay data. (C) Chymotrypsin-, trypsin-, and caspase-like activity was 

measured in the STG of comparison and schizophrenia subjects. Proteolytic activity was 

determined by measuring change in fluorescence over time and normalizing that 
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measurement to 20S α6 expression. Trypsin-like activity was decreased in schizophrenia 

subjects, while chymotrypsin- and caspase-like activity were unchanged. Center lines are 

Means ± S.E.M., ** p < 0.01
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Figure 3. Active proteasome populations in intracellular compartment-enriched fractions from 
human cortex
(A) Human cortex was separated into nucleus- (P1), membrane- (P2), and cytosol-enriched 

(S2) fractions using differential centrifugation. (B) The first spin (510 x g, 5 min) resulted in 

isolation of all H3 (Histone 3), a marker for the nucleus, while the second spin (100,000 x g, 

1 h) separated membrane (GluR1) and cytosol (ERK1) associated markers. (C) Flourogenic 

substrates (LLVY-AMC, RLR-AMC, LLE-AMC) were sensitive to denaturing conditions 

and lactacystin in all three fractions. (D-F) 8–32% continuous glycerol gradients were used 

to separate proteins and complexes based on density. In all three compartment-enriched 

fractions, (D) chymotrypsin- (LLVY-AMC) and (E) trypsin-like activity (RLR-AMC) is 

enriched in low-glycerol percentage fractions, where large complexes are predicted to be. 

This suggests these assays measure proteolytic activity specific to proteasome complexes. 

(F) Caspase-like activity (LLE-AMC) is also enriched in low-glycerol fractions in the 
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cytosol-enriched fraction, but there is no consistent pattern of enrichment in either the 

nucleus- or membrane-enriched fractions. Center lines are Means ± S.E.M.
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Figure 4. Intracellular compartment-specific deficits in proteolytic activity
Proteolytic activity was measured in SZ and comparison subjects using fluorogenic 

substrates for chymotrypsin- (LLVY-AMC), trypsin- (RLR-AMC), and caspase-like (LLE-

AMC) activity. (A-C) No differences in 20S α6 expression, an index of total proteasome 

content, were observed. In SZ subjects, (A) trypsin-like activity was decreased in the 

nucleus-enriched fraction, (B) chymotrypsin-like activity was decreased in the cytosol-

enriched fraction, and (C) caspase-like activity was decreased in the membrane enriched 

fraction. (D) Regardless of diagnosis, trypsin-like activity in the nucleus-enriched fraction 

was positively correlated with total trypsin-like activity, while (E) chymotrypsin-like activity 
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in the cytosol-enriched fraction was significantly correlated with both age and PMI. Center 

lines are Means ± S.E.M., *p < 0.05, **p < 0.01.

Scott and Meador-Woodruff Page 25

Mol Psychiatry. Author manuscript; available in PMC 2019 July 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Intracellular compartment-specific protein expression of proteasome subunits
(A). Protein expression of proteasome subunits was measured in both the nucleus- and 

cytosol-enriched fractions using western immunoblotting. (B) In the cytosol-enriched 

fraction, 19S AAA-ATPase expression was decreased in SZ. (C) In the nucleus-enriched 

fraction, trypsin-like activity was negatively correlated with both the constitutive and 

inducible catalytic subunits, (D) as well as the 19S RP subunits Rpt1 and Rpt2. (E) The 19S 

RP subunits Rpt3 and Rpt6 were positively correlated with chymotrypsin-like activity in the 

cytosol-enriched fraction. Center lines are Means ± S.E.M., *p < 0.05, **p < 0.01
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Figure 6. Proteolytic activity after chronic antipsychotic treatment in aged rats
Chronic (9 month) treatment with haloperidol decanoate did not lead to changes in total 

trypsin-like activity (RLR-AMC), trypsin-like activity in the nucleus-enriched fraction, or 

chymotrypsin-like activity (LLVY-AMC) in the cytosol-enriched fraction from rat brain 

tissue. Center lines are Means ± S.E.M.
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