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Abstract 

Background:  The Asian tiger mosquito Aedes albopictus is a competent vector of several viral arboviruses including 
yellow fever, dengue fever, and chikungunya. Several vital mosquito behaviors (e.g., feeding, host-seeking, mating, 
and oviposition) are primarily dependent on the olfactory system for semiochemicals detection and discrimination. 
However, the limited number of studies hampers our understanding of the relationships between the Ae. albopictus 
olfactory system and the complex chemical world.

Methods:  We performed RT-qPCR assay on antennae of Ae. albopictus mosquitoes of different sexes, ages and 
physiological states, and found odorant receptor 11 (AalbOr11) enriched in non-blood-fed female mosquitoes. Then, 
we examined the odorant preference with a panel of physiologically and behaviorally relevant odorants in Xenopus 
oocytes.

Results:  The results indicated that AalbOr11 could be activated by ten aromatics, seven terpenes, six heterocyclics, 
and three alcohols. Furthermore, using post-RNA interference (RNAi) hand-in-cage assay, we found that reducing 
the transcript level of AalbOr11 affected the repellency activity mediated by (+)-fenchone at a lower concentration 
(0.01% v/v).

Conclusions:  Using in vitro functional characterization, we found that AalbOr11 was a broadly tuned receptor. More-
over, we found that AalbOr11 shared a conserved odorant reception profile with homologous Anopheles gambiae 
Or11. In addition, RNAi and bioassay suggested that AablOr11 might be one of the receptors mediating (+)-fenchone 
repellency activity. Our study attempted to link odor-induced behaviors to odorant reception and may lay the founda-
tion for identifying active semiochemicals for monitoring or controlling mosquito populations.
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Background
Female Aedes albopictus is a vector for viral pathogens 
causing human diseases including yellow fever, dengue 
fever, and chikungunya. Due to strong ecological plas-
ticity and a wide range of biting hosts, it is implicated in 
outbreaks of these diseases in areas where their primary 
vector, Aedes aegypti, is absent or outnumbered by Ae. 
albopictus [3, 6, 11, 15, 16, 35, 41]. These arboviral dis-
eases carried by Ae. albopictus are increasingly becoming 
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a global health concern [21, 29]. Many interventions 
against these vector-borne diseases have long relied on 
reducing mosquito populations. Besides insecticides, 
odor-baited traps which depend on the mosquito olfac-
tory system are a major strategy [26, 31, 32]. Therefore, a 
better understanding of the relationships between the Ae. 
albopictus olfactory system and odorants might provide 
important information for developing active semiochem-
icals for monitoring or controlling populations.

The olfactory system is essential for mosquitoes, since 
vital behaviors such as finding carbohydrate sources, 
hosts for blood meals, and oviposition sites and avoid-
ing predators are dependent primarily on its detection 
of blends of volatile molecules from the complex chemi-
cal world [12]. As two major olfactory organs, antennae 
and maxillary palps both contain many hair-like sen-
silla, which house olfactory sensory neurons (OSNs) for 
detecting odorants. In most instances, two (up to four) 
OSNs coexist in one sensillum, and each OSN expresses 
one odorant receptor protein [10]. The function of odor-
ant receptors (Ors) requires co-expression with a highly 
conserved receptor (known as Orco). The Or-Orco com-
plex that is formed is a ligand-gated heterodimeric cat-
ion channel that can open directly upon activation by an 
appropriate ligand [10, 20].

Mosquitoes possess various numbers of the Or fam-
ily, varying from 18 (Anopheles darlingi) to 180 (Culex 
quinquefasciatus) [1, 2, 9, 18, 23]. As one model for 
studying olfactory chemosensing, all Ors of Anopheles 
gambiae have been identified and the majority has been 
deorphanized, which means that corresponding ligands 
of Ors have been found [42]. In comparison to An. gam-
biae, Ae. albopictus has extremely different behaviors, 
such as daytime biting and oviposition sites in containers 
[8, 14, 27, 36], which may explain the difference in their 
odorant reception to different chemical stimuli. However, 
only several Ors of Aedes have been defined; for example, 
AaegOr4 is considered to be the key receptor for distin-
guishing humans from other animals [25], and AalbOr2 
and AalbOr10 respond strongly to indole and skatole 
from oviposition sites [22, 39]. Due to the low homology 
of odorant receptors among different insect species [6], 
most odorant receptors in Aedes are still "orphan recep-
tors" (no corresponding ligands have been found), which 
hampers our understanding of its olfactory system.

According to previous RNA sequencing (RNA-seq) 
data, we found that non-blood-fed (NBF) female mos-
quitoes possessed higher transcript levels of AalbOr11 
than males (unpublished). In addition, the alignment 
of amino acid sequences indicated that Or11 was con-
served among three major disease-transmitting vectors: 
Anopheles, Culex, and Aedes (Additional file  1: Figure 
S1). Such conserved and female-biased odorant receptors 

as Or11 should be significant for the olfactory system in 
mosquitoes; thus, we deorphanized AalbOr11 in Xeno-
pus oocytes by a panel of odorants with physiologically 
and behaviorally relevant compounds, including human-
related odorants, oviposition attractants, and plant repel-
lents [13, 28, 42]. The expression profiles of AalbOr11 
among different sexes, ages, and physiological states were 
investigated. The expression and functional profiles sug-
gested that AalbOr11 might be involved in mosquito 
host-seeking. Furthermore, we used a strong ligand of 
AalbOr11, (+)-fenchone, as the subject to explain the 
mechanism of odorant-induced behavior.

Methods
Mosquito strains
The colony of Ae. albopictus used in this study was kindly 
provided by Zhejiang Provincial Center for Disease Con-
trol and Prevention, China. The colony was originated 
from a population collected from Sichuan, China, and 
has been maintained in insectary for 15  years without 
exposure to any insecticides. Mosquitoes were main-
tained at 27 ± 1 °C, 70 ± 10% relative humidity (RH), with 
a photoperiod of 14:10 (light/dark).

RNA isolation and cDNA synthesis
To assess the relative transcript abundance of AalbOr11 
in different sexes and ages, gene expression assays were 
conducted using the antennae of male and non blood-fed 
female mosquitoes at 1, 3, and 5 days post-eclosion (dpe). 
In addition, the mosquitoes were collected at 1 h, 48 h, 
and 96 h after blood-feeding to identify the effects of the 
blood-feeding behavior on relative transcript abundance 
of AalbOr11. After the mosquitoes were cold-anesthe-
tized, their antennae were cut off with dissecting scis-
sors and immediately placed in RNAlater-ICE (Ambion, 
Austin, TX) on ice prior to RNA extraction. The total 
RNA was extracted using TRIzol reagent (TaKaRa, 
Tokyo, Japan) and isolated according to the manufac-
turer’s instructions. Then, 1 μg of total RNA was used as 
template for complementary DNA (cDNA) synthesis by 
reverse transcription using a PrimeScript™ RT Reagent 
Kit with gDNA Eraser (TaKaRa Bio, Otsu, Japan) follow-
ing the manufacturer’s instructions.

Quantitative analysis of transcription levels
The expression profile of AalbOr11 was determined 
using reverse transcriptase quantitative polymerase chain 
reaction (RT-qPCR). β-actin was used as the housekeep-
ing gene (primer sequence: Actin-qF:GCT​ACG​TCG​CCC​
TGC​ACT​T; Actin-qR: AGG​AAC​GAC​GGC​TGG​AAG​
A), and qPCR was performed using a TB Green Premix 
Ex Taq II Kit (TaKaRa, Tokyo, Japan). Each 20 μL qPCR 
reaction mixture consisted of 10 μL 2× TB Green Premix 
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Ex Taq II mix (Tli RNase H Plus), 0.8 μL of each primer 
(10 μM), 2 μL diluted cDNA template, 0.4 μL ROX Ref-
erence Dye II (50X) [36], and 6 μL sterilized deionized 
water. The primers were as follows: AalbOr11-qF: 5′-ATG​
CAG​CTC​AAA​GAC​GAA​T-3′; AalbOr11-qR: 5′-AGC​
AGA​ATC​CAT​AGT​ACT​ -3′. The qPCR was conducted 
on a QuantStudio 3 Real-Time PCR Detection System 
(Applied Biosystems) under the following conditions: 
95 °C for 30 s, followed by 40 cycles of 95 °C for 5 s, 60 °C 
for 34  s. The reproducibility was validated by including 
three technical replicates and three biological replicates 
for each reaction. Acquisitive data were analyzed with 
the 2−ΔΔCt method.

In vitro functional characterization of Ors
Gene-specific primers were designed based on coding 
sequences of putative AalbOr11 (XM_029861619.1) and 
identified AalbOrco (AALF000221/XM_029877254.1). 
PCR was performed using the following gene-specific 
primers containing Kozak motif (GCC​ACC​): AalbOr11 F: 
GCC​ACC​ATG​CAG​CTC​AAA​GAC​GAA​TGGAT; AalbOr 
11R: TTA​GCC​GGC​AGC​TTG​CTT​CAGGA; AalbOrco 
F: GCC​ACC​ATG​AAC​GTC​CAG​CCG​ACA​AAGTA; Aal-
bOrco R: TTA​TTT​CAA​CTG​CAC​CAA​CACCA. Sub-
sequently, PCR products through sequencing validation 
were subcloned into pT7TS vector with the In-Fusion 
HD cloning kit (TaKaRa Bio, Otsu, Japan). The capped 
RNA (cRNA) was prepared from linearized vectors and 
purified by mMESSAGE mMACHINE T7 kit (Ambion, 
Austin, TX) according to the manufacturer’s instructions. 
Mature healthy oocytes (stage V–VII) were isolated from 
female Xenopus laevis frog ovarian lobes using standard 
procedures as described previously [4]. Oocytes treat-
ment and purified cRNA microinjection were consistent 
with those described previously [42]. Each oocyte was 
injected with 27.6 nL of AalbOr11 and AalbOrco cRNA 
at a 1:1 ratio. Post-injection, oocytes were kept at 18  °C 
for 3–7  days in incubation buffer (1× Ringer’s solution 
supplemented with 5% dialyzed horse serum, 50  μg/mL 
tetracycline, 100  μg/ml streptomycin, and 550  μg/mL 
sodium pyruvate).

Odorant stock solutions were prepared at 10–1 M with 
DMSO. Odorant-induced current at a holding poten-
tial of –80 mV was recorded from the injected Xenopus 
oocytes using a two-electrode voltage-clamp setup (RC-
3Z/OC-725D, Warner Instruments). Data acquisition 
and analysis were carried out with an Axon Digidata 
1550B and pCLAMP 10 software (Molecular Devices, 
LLC, Sunnyvale, CA). Information regarding odorants 
used in electrophysiological recordings is provided in 
Additional file 2: Table S1.

Double‑stranded RNA (dsRNA) synthesis 
and microinjection
The genes of interest (GOI) were amplified using gene-
specific primers that included T7 promoter sequences 
(underlined), AalbOr11-F: TAA​TAC​GAC​TCA​CTA​TAG​
GGACG​ACG​TTT​ACG​ACA​ATC​CG, AalbOr11-R: TAA​
TAC​GAC​TCA​CTA​TAG​GGATC​CCA​GAA​AAT​CGC​
CTT​CT; EGFP-F: TAA​TAC​GAC​TCA​CTA​TAG​GGCCA​
CAA​GTT​CAG​CGT​GTC​CG, EGFP-R: TAA​TAC​G. ACT​
CAC​TAT​AGG​GAAG​TTC​ACC​TTG​ATG​CCG​TTC. 
PCR products were amplified with Phusion High-Fidelity 
DNA Polymerase (NEB, Ipswich, MA), and the PCR pro-
cedure was conducted with the following settings: 98 °C 
for 30 s, 35 cycles of 98  °C for 15 s, 60  °C for 30 s, and 
72 °C for 10 s, followed by a final 10 min extension step at 
72  °C. The purified and sequenced PCR fragments were 
used as the template for synthesizing dsRNA of AalbO11 
and EGFP. The dsRNA molecules were synthesized 
using the TranscriptAid T7 High Yield Transcription Kit 
(Ambion, Austin, TX) according to the manufacturer’s 
protocol.

Three-day-old female mosquitoes were collected 
and placed on a clean CO2 pad to be anesthetized. The 
anesthetized mosquitoes were lined up on the side for 
injection, and 1000 ng of dsRNAs in 0.5 μL volume was 
injected into one side of the thorax with a PLI-100 injec-
tor (World Precision Instruments). Post-injection, mos-
quitoes were put in new cages and supplied with sugar 
water (10% wt/vol). Males (ratio 1:1) were released into 
the cage for mating.

Hand‑in‑cage assay
The hand-in-cage assay method used was identical to 
that described previously [44]. Forty 4- to 9-day-old 
females (mated, non blood-fed) were transferred to a 
30  cm × 30  cm × 30  cm mosquito cage for 24  h prior 
to assay and were provided only with water in a cotton 
ball. Each compound dissolved in 500 µL acetone was 
evenly applied to a piece of nylon netting (mesh size 
0.5 mm, 7 cm × 6 cm) and dried in air for 5 min. A win-
dow (6  cm × 5  cm) was cut out in a nitrile glove, and a 
set of magnetic window frames was assembled and put 
on a modified glove. The magnetic window frames con-
tained one piece of magnetic frame, one treated net, 
three magnetic frames, one untreated net, and one mag-
netic frame from bottom to top. In this case, mosquitoes 
were attracted to skin emanations from the hand through 
the open window but were unable to contact treated 
nets with tarsi. The assay was performed at a tempera-
ture of around 28 °C and around 50% RH. The assay was 
video-recorded for 5 min, and the number landing on the 
test window and trying to pierce the skin was counted 
from the second to fifth minutes. For each cage, control 
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(acetone) was tested before treatment, and the control 
with a high landing number was used to test compounds 
after 1 h to allow mosquitoes to fully recover and residual 
vapors from experiments to dissipate. Percentage repel-
lency was determined using the following equation: 
Percentage repellency = [1 − (cumulative number of mos-
quitoes on the window of treatment from 2 to 5  min / 
cumulative number of mosquitoes on the window of sol-
vent treatment for from 2 to 5 min)] × 100 [5].

Results
Transcript level of female‑biased AalbOr11 decreased 
significantly after a blood meal
We performed RT-qPCR assay on Ae. albopictus to iden-
tify the transcript level of AalbOr11 in mosquitoes of 
different sexes, ages, and physiological states. The tran-
scription level of AalbOr11 in females was significantly 
higher than that in males among 1  dpe (P = 0.0021), 
3  dpe (P = 0.0000001), and 5  dpe (P = 0.00005) mos-
quitoes (Fig.  1a). The expression level of AalbOr11 in 
female mosquitoes exhibited a stark change between 1 
and 5 dpe (P = 0.0059; Fig. 1b), as well as between 3 and 
5 dpe (P = 0.0012; Fig.  1b). To further define the func-
tion of AalbOr11 in odor-induced behavior, we analyzed 
the dynamic changes in different physiological states in 
female mosquitoes, including non blood-fed mosquitoes 
at 1 dpe, 3 dpe, and 5 dpe (termed NBF-1, NBF-3, NBF-5) 
and blood-fed mosquitoes at 1 h, 48 h, and 96 h (termed 
BF-1, BF-48, BF-96). The transcript level of AalbOr11 in 
BF-1 or BF-48 mosquitoes was significantly lower than 
that in NBF-5 samples (PBF-1 = 0.0038; PBF-48 = 0.0033, 
Fig. 1b). However, there was no significant difference in 
AalbOr11 abundance between NBF and BF-96 mosqui-
toes (P = 0.1252, Fig. 1b).

AalbOr11 appeared to be a wide‑tuned receptor
We co-expressed AalbOr11 along with AalbOrco in Xen-
opus oocytes for deorphanization. A panel of odorants 
including human-related odorants, oviposition attract-
ants, and plant repellents was used to identify the ligands 
of AalbOr11. According to chemical structures, 126 
odorants were classified into 11 major chemical catego-
ries: terpenes, alcohols, esters, aromatics, heterocyclics, 
acids, aldehydes, ketones, amines, lactones, and com-
pounds from pyrethrum. A high dosage (10–4  M), was 
used as the preliminary screening concentration. A total 
of 26 odorants elicited currents on AalbOr11/AalbOrco, 
of which the currents induced by seven odorants were 
greater than 300 nA. The seven strong ligands comprised 
two terpenes (+)-fenchone and (−)-fenchone, and five 
aromatics 3-methylindole, 2-ethyltoluene, indole, aceto-
phenone, and 2-ethylphenol (Fig. 2a, b). In order to iden-
tify whether AalbOr11 was a specialist or a generalist, 

Or tuning curves [17] were generated (Fig. 2c). As shown 
in Fig. 2c, AalbOr11 responded to 26 chemically diverse 
odorants, and could be classified as a generalist.

Subsequently, we performed dose–response analyses 
for the best ligands to obtain more information about the 
sensitivity of the AalbOr11 receptor. In consideration of 
the similar structure of indole and 3-methylindole, indole 
was replaced with 2-acetylthiophene to conduct concen-
tration gradient assay. Since these six ligands could elicit 
greater current at 10–3  M doses, we conducted concen-
tration–response analyses in a range from 10–3 to 10–6 M. 
The strongest ligand, (+)-fenchone, elicited robust mean 
current (~ up to 1500 nA) at a dose of 10–3 M, whereas 
at a dose of 5 × 10–6 M, (+)-fenchone only induced cur-
rent to 10 nA, which activated AalbOr11/AalbOrco at 
half-maximal effective concentration (EC50) of 139.5 μM. 
Another compound, 2-ethyltoluene, which belongs to the 
aromatics, elicited lower responses at a dose of 10–3 M; 
however, its EC50 was 62.19  μM, thus representing the 
most sensitive ligand (Fig. 3).

Repellent activity of (+)‑fenchone might be linked 
to odorant reception of AalbOr11
To further link odorant, behavior with the receptor, we 
used a strong ligand of AalbOr11, (+)-fenchone, as the 
subject to investigate odorant-induced behavior. Our 
hand-in-cage assay showed that (+)-fenchone elicited 
repellency in Ae. albopictus which was comparable to 
that of positive control DEET when at the 10–2 dilution 
(Fig. 4b). We conducted RNA interference (RNAi) exper-
iments to assess whether reducing the transcript level 
of AalbOr11 would affect repellent activity. AalbOr11-
dsRNA-treated mosquitoes had a lower abundance of 
AalbOr11 than mosquitoes injected with EGFP-dsRNA 
(P = 0.000012, Student’s unpaired two-tailed t-test), and 
the knockdown effect of AalbOr11 was maintained for 
at least 5  days (Fig.  4a). Then 2-day mosquitoes after 
dsRNA injection were used to compare repellent activity 
with hand-in-cage assay. We used three doses of (+)-fen-
chone (0.01%, 0.1%, 1%) to examine repellency, and used 
1% doses of DEET as the positive control. At lower doses 
(0.01%), protection elicited by (+)-fenchone decreased 
significantly (n = 8, P = 0.0273) (Fig.  4b). Moreover, at a 
higher dose (0.1%), (+)-fenchone-induced protection 
was lower in AalbOr11-dsRNA-treated than in EGFP-
dsRNA-treated mosquitoes, but the difference was not 
significant (n = 6–7, Student’s unpaired t-test, P = 0.1300) 
(Fig.  4b). By contrast, repellency elicited by the highest 
dose (1%) of (+)-fenchone was not significantly different 
between AalbOr11-dsRNA-treated and EGFP-dsRNA-
treated mosquitoes, which was consistent with DEET 
repellency (n = 4, Student’s unpaired t-test, P > 0.999) 
(Fig. 4b).
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Fig. 1  Transcript levels of AalbOr11 in Ae. albopictus antennae. a AalbOr11 transcript levels in antennae of male and female mosquitoes at 1, 3, and 
5 day post-eclosion. b AalbOr11 transcript levels in antennae of non-blood-fed (NBF, 1, 3, and 5 days post-eclosion) and blood-fed (BF, 1 h, 48 h, and 
96 h after blood-feeding) female mosquitoes. Data are plotted as mean ± SEM, n = 4. Statistical analysis was conducted using Student’s unpaired 
t-test (ns, not significant, P > 0.05; *, P < 0.05)

Fig. 2  Current response and tuning curves of AalbOr11. a Current response recorded from oocytes expressing AalbOr11/AalbOrco (mean ± SEM, 
n = 8). The columns with different colors are classified into four catalogs according to chemical structure. b Each catalog displays the active 
compounds. c Tuning curves of AalbOr11. The 125 odorants are displayed along the x-axis, with those eliciting the strongest response placed near 
the center, and those eliciting the weaker responses placed near the edges. The kurtosis value is indicated in the graph
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Discussion
Age-, sex-, and feeding state-dependent transcript level 
changes in odorant receptors have been found in other 
mosquitoes, such as Ae. aegypti, Anopheles coluzzii, and 
An. gambiae [33, 37, 40], which might result from their 
olfactory system modulation, so that mosquitoes can rap-
idly respond to chemical stimuli at the right moment. In 
this study, we found that female mosquitoes possessed 
higher transcript levels of AalbOr11 than males. Further-
more, the abundance of AalbOr11 in female mosquitoes 
reached its peak at 5 days post-emergence, and decreased 
significantly after blood-feeding. The phenomenon of 
blood meal-induced reduction in transcript levels of 
Ors has also been found in other mosquitoes, such as 
AgamOr46/47/48 [37] and AaegOr116 [24]. Our results 
indicate that AalbOr11 may be involved in blood-meal-
seeking behavior. A previous study revealed that Or gene 
expression in Ae. aegypti antennae might contribute to 
human preference, and the differentially expressed Or4 
responded to sulcatone, a human odorant, to discrimi-
nate human and non-human animals [25]. Our electro-
physiological results also indicated that AalbOr11 was 
sensitive to human odor, such as indole, 3-methylindole, 
and methyl-2-methylbenzoate, which suggests that pref-
erence for human odor in mosquitoes is tightly linked to 
increases in expression.

In the ongoing evolution of mosquito species, Or11 
is conserved among three major disease-transmitting 
vectors: Anopheles, Culex, and Aedes. AalbOr11 shared 
58.39%, 58.49%, and 69.5% overall sequence identity with 

Or11 of An. gambiae, An. coluzzii, and Cx. quinquefas-
ciatus, respectively. Or11 of Ae. aegypti, another mos-
quito species belonging to the subfamily Aedes, was up 
to 93.57% identical to AalbOr11 (Additional file 1: Figure 
S1). The high homology of Or11 among three major dis-
ease-transmitting mosquito genera suggests it may play a 
crucial role in many behavioral contexts. We wondered 
whether its odorant reception profile was consistent 
with OR11 of An. gambiae [42]. According to deorpha-
nized results, we found that AalbOr11 was a broad-tuned 
receptor, which could be activated by ten aromatics, 
seven terpenes, six heterocyclics, and three alcohols. All 
ligands were consistent with AgOr11 except eugenol, 
which could activate AalbOr11 but could not activate 
AgOr11 [42]. Thus, Or11 homology was functionally 
conserved in different mosquito species, which was simi-
lar to that described previously in Or2 homology in Ae. 
albopictus [39], Cx. quinquefasciatus [34], and An. gam-
biae [7, 42]. In addition, the EC50 of the strongest ligand 
was 62.19 μM, far from nanomolar or picomolar concen-
tration [38], suggesting that the truly strongest ligand of 
AalbOr11 was not found or that it is a broad-tuned but 
not sensitive receptor.

The strong ligand of AalbOr11, (+)-fenchone, has 
been found to confer repellency to several insects, 
including Aedes aegypti [19], Drosophila melanogaster, 
Drosophila suzukii [43], and Prostephanus truncates 
[30]. Similarly, repellent activity of (+)-fenchone 
against Ae. albopictus was found in this study. Hence 
we performed RNAi experiments to attempt to link 

Fig. 3  Concentration–response relationships of AalbOr11/AalbOrco to test compounds. a Traces obtained with a single oocyte challenged with a 
range of six ligand concentrations. b Concentration-dependent relationships between AalbOr11 and its strongest ligands. Mean ± SEM, n = 4–6 for 
each point. Data obtained with different oocytes were not normalized
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odorant reception with repellent activity. The results 
showed that reducing the transcript level of AalbOr11 
affected the repellent activity mediated by a lower con-
centration of (+)-fenchone (0.01% v/v). In addition, 
reduced protection was observed with knockdown 
mosquitoes at a higher concentration (0.1%), although 
it was not statistically significant. On one hand, 
(+)-fenchone-elicited repellency might involve mul-
tiple Ors of Ae. albopictus. On the other hand, RNAi 
treatment reduced transcript levels by only c. 80%, 
and the remaining AalbOr11 still played a significant 
role in (+)-fenchone-mediated repellent activity. The 
possible link between reception and behavior has also 
been found in Cx. quinquefasciatus [45]. The significant 
reduction in protection in CquiOr4-dsRNA-treated 
mosquitoes suggests it may play a significant part in 
2-phenylethanol-mediated repellent activity [45]. RNAi 
and bioassay suggested that AablOr11 may be one of 
the receptors mediating (+)-fenchone repellency.

Conclusion
We found that AalbOr11 was highly conserved among 
three major disease-transmitting vectors and was 
enriched in non blood-fed female mosquitoes. Accord-
ing to in vitro functional characterization, AalbOr11 was 
a broadly tuned receptor. In addition, RNAi and bioas-
say suggested that AablOr11 may be one of the receptors 
mediating (+)-fenchone repellent activity. Our study pro-
vides further information regarding the mechanisms of 
olfactory-mediated mosquito behavior (e.g., host-seeking 

and repellent activity), and also provides new insight into 
active semiochemical identification for monitoring or 
controlling mosquito populations.
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