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Introduction
Structural changes to cancer genomes have important effects 
such as oncogene amplification, tumor suppressor gene disrup-
tion, and chimeric fusion gene formation.1 Structural changes 
from each of these categories contribute important neoplastic 
events such as amplification of HER2 in breast cancer,2 dele-
tion of CDKN2A in a number of different cancers,3 and for-
mation of fusion genes such as BCR-ABL in chronic myeloid 
and other leukemias.4 Identifying such structural changes is 

a crucial part of most diagnostic workups as the presence or 
absence of certain genome rearrangements can allow for risk 
stratification and targeted therapy.

Recent array CGH and whole-genome sequencing stud-
ies have shown that cancer genomes are often highly rear-
ranged. For example, array CGH copy number profiles often 
contain tens to hundreds of discrete copy number changes.5–7 
Such complexity has been difficult to define using conventional 
cytogenetics, and many clinical and research laboratories 
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now rely on array CGH as a first-line assay for structural and 
numerical changes to chromosomes.

However, array CGH only detects copy number 
changes and no structural information is implicit in this 
methodology. Nevertheless, cytogeneticists and research-
ers now face a new challenge: to make clinical sense of a 
complex array CGH profile. To do this, they must assign 
each separate copy number imbalance to one of the two  
categories: pathogenic or benign. Although some copy num-
ber changes such as amplification of HER2 or homozygous 
deletion of CDKN2A are clearly pathogenic and copy num-
ber changes in regions such as the Yq heterochromatin are 
probably benign, the majority of copy number changes are 
of uncertain significance.

When structural information is available in conjunction 
with copy number data, variants of uncertain significance 
can often be classified as pathogenic or benign. For exam-
ple, a 500-kb duplication containing only one gene would 
likely be classed as uncertain significance so long as the gene 
had no known role in cancer. If, however, we knew that this 
500-kb region had inserted itself into the CDKN2A locus 
and disrupted one copy of the gene, we could now class the 
duplication as pathogenic. Knowing how individual copy 
number gains and losses relate to one another within the 
rearranged genome is potentially of great clinical utility.

The necessary structural information can come from 
whole-genome paired-end (PE) or mate-pair (MP) sequencing. 
These next-generation sequencing methodologies provide 
information about the genes disrupted at chromosome break-
points. Although many tools are available to detect structural 
changes and their genetic consequences from whole genome 
and transcriptome,7–18 all are stand alone tools that are rela-
tively difficult for a non-specialist to integrate into their clini-
cal analysis workflow.

Here, we describe structural variation (SV) finder a fast, 
lightweight, and easy to use tool that identifies structural rear-
rangements in cancer genomes and outputs data that can be inte-
grated into downstream analysis or viewed in a genome browser 
with other type data. We show the utility of this approach using 
integrated genomic data from three highly rearranged multiple 
myeloma cell lines.

Results
Whole genome PE and MP sequencing data. From 

Illumina PE and MP sequencing of three multiple myeloma 
cell lines (KMS11, MM.1S, and RPMI8226), we obtained 
around 15× PE and 5× MP sequence-level coverage (Table 1). 
The MP reads differ from PE reads, by having a larger insert 
size (approximately 3  kb) and an outward facing (reverse–
forward) read pairs orientation due to a circularization proce-
dure used in MP preparation. The average sequencing quality 
of MP and PE reads are satisfactory (over 30) as shown in 
Table  1. Therefore, read trimming is not carried out prior 
to mapping. We reverse-complemented all MP reads and 
aligned the PE and preprocessed MP reads with the Burrows-
Wheeler Aligner (BWA) algorithm.19 Over 90% of PE and 
50% of MP reads were mapped to human reference genome 
GRCh37 (hg19).

SV identification with SVfinder. To detect chromo-
somal rearrangements, we developed the SVfinder pipeline 
(Fig. 1). The first step of the algorithm involves classifying 
mapped read pairs into two groups: concordant and dis-
cordant pairs based on the bitwise flag component of the 
sequence alignment/map (SAM) file. Concordant pairs  
are defined as read pairs that mapped to the reference 
genome with the expected orientation and insert size. For 
PE reads, the SAM file bitwise flag 0×2 indicates that the 
reads are mapped properly, meaning that the reads are cor-
rectly oriented with respect to one another, ie, that one of 
the MPs maps to the forward strand and the other maps 
to the reverse strand and both the ends were mapped 
within a reasonable distance given the expected distance 
(and standard deviation) that the aligner inferred. In 
this study, BWA is used for mapping, but the SV detec-
tion pipeline can accept SAM format output files from  
other aligners as well, for example Novoalign (http://www.
novocraft.com).

Next, SVfinder estimates the normal insert size range 
by calculating the mean and standard deviation of insert 
sizes of concordant reads. In parallel, the discordant pairs 
are grouped into interconnected clusters, which are hypoth-
esized to originate from the same SV. The clustering pro-
cedure is performed by extending each seed pair 1 kb from 

Table 1. Summary of sequencing data.

Type Cell line Read length (bp),  
Depth, Quality Score

No. of Total  
reads

No. of mapped  
reads

Fragment length  
mean ± SD (bp)

Pair-end KMS11 2 × 100, 12X, 35 374,274,810 347,448,960 301 ± 75

MM.1S 2 × 100, 14X, 34 429,622,446 394,631,072 296 ± 78

RPMI8226 2 × 100, 13X, 34 394,471,850 366,210,450 291 ± 81

Mate-pair KMS11 2 × 100, 7X, 31 221,885,782 48,782,044 3,268 ± 496

MM.1S 2 × 100, 3X, 35 86,871,758 43,464,282 3,646 ± 244

RPMI8226 2 × 100, 4X, 36 114,486,206 59,310,148 3,501 ± 340
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each end and merging any read pair with overlapping of the 
extended genomic interval. In the third step, six types of 
SV are determined, including deletion, insertion, inversion, 
tandem duplication, inter-chromosomal translocations, and 
complex events, based on the insert size and read-pair orien-
tation as shown in Figure 1. A novel feature of the SVfinder 
pipeline is to add the genomic annotation information in 

the identified SV list at the final step. In this way, possible 
gene fusions caused by genomic structural variation (SV) 
are predicted if both sides of the SV breakpoint reside in 
coding regions. Moreover, SVfinder provides BED format 
output for identified SVs, which can be easily imported 
into a genome browser for visualization, such as Integrative 
Genome Viewer (IGV).20

Paired-end/mate-pair mapped reads
(SAM file format)

Flag number

Concordant pairs

Mean (µ), Variation (σ2)

Discordant pairs

Normal insert sizeLong insert sizeShort insert size

Insertion Complex Deletion Inversion Inter-chromosome
translocation

Tandem
duplication

List of SVs with gene fusion prediction
(TXT and BED format output)

No insert size

Interconnected clusters

Clustering by position

Pair orientationPair orientation

+− +− +−, /<0−+/   ++/−−

Genomic annotation

Insert size (/) estimation

Classifying discordant clusters (# of pairs ≥2)

(/) < µ−3σ (/) > µ+3σ (/) ∈[µ-3σ, µ+3σ] (/) = ∞

−+/++/ −− −+/++/  − −

 

Figure 1. An overview of the SVfinder pipeline. SVfinder takes a SAM file as input and divides the mapped reads into concordant and discordant group. 
The normal insert size range is estimated from reads in concordant group. The discordant reads are clustered and classified into different types of 
variation subgroup according to their insert size and read pairs orientation. Identified SVs are annotated and output in BED format, allowing for easy 
downstream analysis or viewing in a genome browser.

Table 2. Known and novel SVs associated with genes identified by SVfinder.

Gene A Gene B Position A Position B Chr A Chr B KMS11 MM.1S RPMI8226 Type Reference

WHSC1 IGH intron upstream chr4 chr14 PE Translocation 20

MAF IGH intron downstream chr16 chr14 PE Translocation 20

CDKN2A CDKN2B coding intron chr9 chr9 PE Deletion 21

TRAF3 CDC42BPB coding intron chr14 chr14 MP/PE Deletion 22

SPI1 ZNF287 coding coding chr11 chr17 MP/PE Translocation Novel

KDM6A KDM6A intron intron chrX chrX MP/PE Deletion Novel

KCTD8 KCTD8 intron intron chr4 chr4 MP/PE Deletion Novel

ABHD17B C9orf85 coding intron chr9 chr9 MP/PE Deletion Novel
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Application of SVfinder to whole-genome sequencing 
data in multiple myeloma. We applied SVfinder to whole-
genome PE and MP sequencing data for the three mul-
tiple myeloma cell lines. These cell lines have several 
well-characterized mutations and SVs, allowing us to validate 
SVfinder. In our identified SVs list, three known variations 
were recovered from PE sequencing data (Table 2): the t(4;14) 
translocation that fuses the IGH locus with MMSET identi-
fied in KMS11 cells, the t(14;16) translocation involving the 
IgH and MAF genes,21 and CDKN2A deletion22 found in 
MM.1S. Additionally, the known TRAF3 deletion23 was 
found in both MP and PE data in RPMI8226.

We next searched for high-confidence, novel SVs 
– those that were predicted in both MP and PE data. 
Second, we filtered out possible artifactual SV predictions 
that resided within repetitive regions. We identified four 
novel SV candidates, a SPI1-ZNF287 fusion caused by an 
inter-chromosomal rearrangement (Fig. 2A), and deletions 
of KDM6A, KCTD8, and ABHD17B (Table 2). All these 
variations were identified in RPMI8226. We selected the 
SPI1-ZNF287 rearrangement for further experimental vali-
dation. PCR primers designed to span the rearrangement 
were used to amplify genomic DNA from RPMI8226 cells 
and the product subjected to Sanger sequencing. The results 
confirmed that the exon 4 of SPI1 is rearranged with 
ZNF287 intron region (Fig. 2B).

Conclusions
We present a tool – SVfinder to detect SV from whole-genome 
PE or MP sequencing data. Compared with other existing 
SV detection methods, SVfinder is easy to use and integrates 
the genomic annotation and repetitive region information to 
filter false positives as well as predicting gene fusions. By 
applying our method to multiple myeloma whole-genome 
sequencing data, we were able to recover known recurrent 
translocations and deletions in multiple myeloma as well as 
identify several novel SVs. SVs predicted by SVfinder could 
be experimentally validated. Our pipeline outputs an SV 
list in BED format, which provides a convenient gateway 
for downstream analysis by integrating with other software 
workflows and allowing direct visualization of the results in 
any genome browser.

Methods
Sample preparation and data processing. MP and PE 

libraries were constructed according to standard protocols 
using Mate Pair Library Prep Kit v2 Genomic DNA sample 
prep kits. Sequencing for each sample and library was over a 
single lane of an Illumina HiSeq 2000 instrument. Raw data 
in Fastq format were aligned to the hg19 human reference 
genome using the BWA version 0.5.8a. The raw sequencing 
data have been achieved at the Sequence Read Archive (SRA) 
with accession number SRP039529.

A

Mate-pair RPMI8226

Pair-end RPMI8226

Discordant reads

Discordant reads

RefSeq genes

SPI1 (chr11) ZNF287 (chr17)

B

SPI1

chr11

chr11:47,376,668-47,381,755 chr17:16,466,849-16,471,936

chr17

chr11:47,380,528 (SPI1 Exon 4) chr17:16469289 (ZNF287 Intron)

ZNF287

Figure 2. Discovery of novel SPI1 and ZNF287 t(11;17) inter-chromosomal rearrangement in RPMI8226 multiple myeloma cell line. (A) Mapped discordant 
read pairs in mate pair (upper panel) and paired end (lower panel) sequencing shown in integrative genome viewer (IGV). (B) Identification of t(11;17) 
translocation and breakpoint using Sanger sequencing.

http://www.la-press.com


Integrated structural variation detection

53Cancer Informatics 2014:13(S2)

SV annotation, filtering, and validation. Each SV is 
annotated based on the positions of breakpoints and their 
overlap with gene regions. Gene annotation files were down-
loaded from UCSC genome browser with the track “UCSC 
genes” from human reference genome GRCh37 (hg19). The 
genomic zone of SVs included 5′ distal, 5′ proximal, 5′ UTR, 
coding, 3′ UTR, 3′ proximal, 3′ distal, intergenic. Identified 
SVs were excluded if they reside in repetitive regions. Genomic 
repeat information was obtained from UCSC genome browser 
RepeatMasker track. Of the novel SV candidates, the SPI1 
and ZNF297 rearrangement was PCR amplified from 
genomic DNA isolated from RPMI8226 and the product 
was subject to Sanger sequencing. The primers used for PCR 
amplification and sequencing were 5′-CTCGCCCTCCTC-
CTCATCTGAGCT (SPI1) and 3′-AAGGCCATGCAT-
TCTGTCAT (ZNF287).

Software availability. SVfinder is written in Python, 
and the source code and manual are available from: https://
github.com/cauyrd/SVfinder
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