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Circular dichroism and 1H NMR were used to investigate the interactions of a series of synthetic antimicrobial peptides (AMPs)
with lipopolysaccharides (LPS) isolated from Pseudomonas aeruginosa andKlebsiella pneumoniae. Previous CD studies with AMPs
containing only three Tic-Oic dipeptide units do not exhibit helical characteristics upon interacting with small unilamellar vesicles
(SUVs) consisting of LPS. Increasing the number of Tic-Oic dipeptide units to six resulted in five analogues with CD spectra
that exhibited helical characteristics on binding to LPS SUVs. Spectroscopic and in vitro inhibitory data suggest that there are
two possible helical conformations resulting from two different AMP-LPS binding mechanisms. Mechanism one involves a helical
binding conformation where the AMP binds LPS very strongly and is not efficiently transported across the LPS bilayer resulting in
the loss of inhibitory activity. Mechanism two involves a helical binding conformation where the AMP binds LPS very loosely and
is efficiently transported across the LPS bilayer resulting in an increase in inhibitory activity. Mechanism three involves a nonhelical
binding conformation where the AMP binds LPS very loosely and is efficiently transported across the LPS bilayer resulting in an
increase in inhibitory activity.

1. Introduction

Because of their novel mechanisms of antibiotic activity,
which generally involves some type of membrane disruption,
antimicrobial peptides (AMP) have the potential to be devel-
oped into useful antibiotic therapeutic agents. Generally A
MPs are small highly positively charged [1] amphipathic pep-
tides with well-defined hydrophobic and hydrophilic regions
[2–4]. It is generally accepted that the electrostatic interac-
tions that occur between an AMP and the target cell’s mem-
brane are the first step in the binding of anAMP to the surface
of a cell membrane [5–7]. AMPs exhibit a high net positive
charge (+3 to +9) [8] while most bacterial cell membranes
contain a relatively high percentage of negatively charged
phospholipids as compared to mammalian cells [9]. The
resulting difference in the electrostatic nature of the two cell
membranes explains, in part, the inherent selectivity of AMPs
for bacterial membranes over mammalian membranes [10].

AMPs have evolved in almost every class of living
organism, including humans [11], amphibians [12], insects,
mammals, birds, fish, and plants [13], as a host defense
mechanism against invading microorganisms including bac-
teria, fungi, protozoa, and parasites [13–15]; they are also
considered to be key components in the innate immune
response system [16–19]. The antibacterial and anticancer
activity of the antimicrobial peptides LL-37 [20, 21], human
beta-defensin-3 [21, 22], and other AMPs [21] has been exten-
sively investigated and reviewed in the literature. Particularly
beneficial has been the application of solid state NMR meth-
ods which have been extensively employed to investigate the
interactions that occur between peptides and phospholipid
SUVs and LUV phospholipid membrane models [23–29].
Some researchers have suggested that antimicrobial activity
is not the primary function of mammalian AMPs such
as the defensins [20]. Their primary function may involve
immunomodulatory processes in controlling the interaction
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of acquired and innate immunity [30–33]. The research of
Porcelli and coworkers reported the NMR derived structure
of the defensin peptide LL-37 bound to DPC micelles [34].
The results obtained were consistent with previous solid state
NMR studies that supported a nonpore forming carpet-like
mechanism of action for these AMPs [34].

The AMPs developed in our laboratory were designed to
be members of the mechanistic class known as membrane-
disruptors [19, 35, 36]. In our laboratory we developed a
series of AMPs structurally very different from the defensins
by incorporating various unnatural amino acids into the
primary amino acid sequence with the intent to introduce
specific physicochemical properties that will control mem-
brane binding [37]. It is well documented that the selectivity
and potency of an AMP against a particular organism are
defined in large measure by the complementary nature of the
physicochemical surface properties of the AMP and of the
target membrane [10, 13, 35, 38–41]. Unnatural amino acids
provide a “toolbox” of different physicochemical properties
that are not available in peptides composed of the 20 naturally
occurring RNA encoded amino acids [42–46]. We have
employed this “toolbox” to facilitate the development of
peptides with specific physicochemical properties that have
the ability to interact with membranes in novel ways [47,
48]. The work of Gottler and coworkers, who previously
reported the application of fluorinated analogs of protegrin-
1 [49] and other antimicrobial peptides [50] to investigate
the role played by changing hydrophobicity on the physical
and biological properties of the interactions with lipid mem-
branes and improve activity, can be used as an example of the
application of unnatural amino acids tomodify biological and
physical properties of antimicrobial peptides [49].

Gram-negative bacteria such as Pseudomonas aeruginosa
[51–56] and Klebsiella pneumoniae [57] represent major
threats to human health, causing hundreds of thousands of
severe infections each year. Infections associated with Gram-
negative bacteria are difficult to treat in part because the
cell membranes consist of two distinct lipid bilayers of very
different chemical compositions [58, 59]. The surface of the
outer membrane of Gram-negative bacteria is comprised
almost exclusively of negatively charged lipopolysaccharides
(LPS) [60–62]. A molecule of LPS is subdivided into three
major components, the chemical compositions of the two
outer components varying by bacterial strain [63–65]. The
outermost component consists of a polysaccharide known
as the O-antigen, the core oligosaccharide unit constitutes
the middle region, and the innermost portion is the highly
conserved phospholipid known as lipid A [63–65]. One
of the key functions of LPS is to control the transport of
antibiotics, antimicrobial peptides, and host defense proteins
into the cell [63, 66–68]. Because of the reduced transport
of antimicrobial peptides across the outer membrane, often
higher concentrations of the peptide are required to exhibit
antibacterial activity against Gram-negative strains than are
required to obtain the same level of activity against Gram-
positive strains [65]. Therefore, in the case of Gram-negative
bacteria, it is critically important to understand the physico-
chemical interactions that occur between an AMP and LPS

in order to design AMPs with increased antibacterial activity
against Gram-negative bacteria [58, 60, 64].

The first step in the binding of an AMP to themembranes
of Gram-negative bacteria involves the insertion of the AMP
into the outer leaflet [69–71] which causes expansion or
loosening of the lipid bilayer resulting in the depolarization of
the LPS vesicles and allows a transient “self-promoted uptake”
pathway to occur, destabilizing the bilayer [72, 73]. This pro-
cess may be similar to the “carpet-like” mechanism proposed
for the binding ofAMPs to phospholipidmembranes [74–76].

The primary amino acid sequence of the AMPs in this
investigation incorporates six Tic-Oic dipeptide units, as
well as four additional residues (A, B, C, and D) on either
side of the intervening hydrophobic and charged residues as
shown in Figure 1. These residues define the overall confor-
mational mobility of the peptide backbone. A fifth residue,
E, defines the distance between the polypeptide backbone
and the positively charged side chain amine group. We have
previously shown using electrostatic surface calculations that
the distance between the positively charged amino group
and the electronegative carbonyl oxygen of the amide bond
determines the resulting positive charge density of the side
chain [77]. The amino acid residues used for residues A–E
are defined in Table 1.The amino acid sequences of the AMPs
used in this investigation are listed in Table 2.

We previously reported that increasing the number of
Tic-Oic dipeptide units from three to six without the incor-
poration of residues A, B, C, and D in AMPs 70 or 22 resulted
in a dramatic loss in activity against all of the Gram-negative
bacteria tested, compared to the analogues containing three
Tic-Oic dipeptide units (e.g., AMP 23: Ac-GF-Tic-Oic-GK-
Tic-Oic-GF-Tic-Oic-GK-Tic-KKKK-CONH

2
) [78]. (Please

see Table 3 for in vitro inhibitory activity of the AMPs
investigated in this study).

We propose that the observed differences in inhibitory
activity of these AMPs (Table 3) against these two strains
of Gram-negative bacteria largely arise from variations in
how these peptides interact with the LPS components of the
bacteria. To obtain insight into how these AMPs interact with
LPS, 1H NMR and CD investigations were conducted using
SUVs consisting of the LPS isolated from P. aeruginosa and
K. pneumonia.

2. Materials and Methods

2.1. Peptide Synthesis. Peptide synthesis was performed either
manually using t-Boc chemistry or with an automated pep-
tide synthesizer using Fmoc protocols [79, 80] as previously
reported [47, 81, 82]. All peptides were purified by reverse
phase HPLC [47, 81, 82]. Purified peptides were analyzed
again by HPLC and mass spectrometry [47, 82].

2.2. Preparation of LPS Liposomes. A 4mg sample of the
appropriate lipopolysaccharide was hydrated with 4mL of
buffer (40mM sodium phosphate, pH = 6.8) and vortexed
extensively. SUVs were prepared by sonication of the milky
lipid suspension using a titanium tip ultrasonicator for
approximately 10 minutes at a temperature of 40∘C until
the solution became transparent. The titanium debris was
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Figure 1: A representation of the residues used in the amino acid sequence of the AMPs under investigation.

Table 1: Definition of the RESIDUES found in the Six Tic-Oic containing analogs.

AMP number Residue A1 Residue B2 Residue C3 Residue D4 Residue E5

22 None None None None Lys/Arg
70 None None None None Lys
71 None None None None Orn
72 None None None None Dpr
73 None None None None Dab
74 Gly None None None Lys
75 None None Gly None Lys
76 Gly None Gly None Lys
77 None None None Gly Lys
78 None Gly None None Lys
79 None Gly None Gly Lys
80 None 𝛽-Ala None Gly Lys
(1) Residue A is the residue preceding each internal Lys residues (N-terminal side of the Lys).
(2) Residue B is the residue following each internal Lys residues (C-terminal side of the Lys).
(3) Residue C is the residue preceding each internal Phe residue (N-terminal side of the Phe).
(4) Residue D is the residue following each internal Phe residues (C-terminal side of the Phe).
(5) Residue E replaces the charged Lys residues with charged residues with progressively shorter side chains.



4 International Journal of Medicinal Chemistry

Table 2: Amino acid sequence of peptide analogs containing six Tic-Oic dipeptide units.

AMP number Amino acid sequence
22 H2N-KL-Tic-Oic-K-Tic-Oic-F-Tic-Oic-K-Tic-Oic-F-Tic-Oic-K-Tic-Oic-KR-CONH2
70 Ac-KL-Tic-Oic-K-Tic-Oic-F-Tic-Oic-K-Tic-Oic-F-Tic-Oic-K-Tic-Oic-KKKK-CONH2
71 H2N-Orn-L-Tic-Oic-Orn-Tic-Oic-F-Tic-Oic-Orn-Tic-Oic-F-Tic-Oic-Orn-Tic-Oic-Orn-Orn-Orn-Orn-CONH2
72 H2N-Dpr-L-Tic-Oic-Dpr-Tic-Oic-F-Tic-Oic-Dpr-Tic-Oic-F-Tic-Oic-Dpr-Tic-Oic-Dpr-Dpr-Dpr-Dpr-CONH2
73 H2N-Dab-L-Tic-Oic-Dab-Tic-Oic-F-Tic-Oic-Dab-Tic-Oic-F-Tic-Oic-Dab-Tic-Oic-Dab-Dab-Dab-Dab-CONH2
74 H2N-KL-Tic-Oic-GK-Tic-Oic-F-Tic-Oic-GK-Tic-Oic-F-Tic-Oic-GK-Tic-Oic-KKKK-CONH2
75 H2N-KL-Tic-Oic-K-Tic-Oic-GF-Tic-Oic-K-Tic-Oic-GF-Tic-Oic-K-Tic-Oic-KKKK-CONH2
76 H2N-KL-Tic-Oic-GK-Tic-Oic-GF-Tic-Oic-GK-Tic-Oic-GF-Tic-Oic-GK-Tic-Oic-KKKK-CONH2
77 H2N-KL-Tic-Oic-K-Tic-Oic-FG-Tic-Oic-K-Tic-Oic-FG-Tic-Oic-K-Tic-Oic-KKKK-CONH2
78 H2N-KL-Tic-Oic-KG-Tic-Oic-F-Tic-Oic-KG-Tic-Oic-F-Tic-Oic-KG-Tic-Oic-KKKK-CONH2
79 H2N-KL-Tic-Oic-KG-Tic-Oic-FG-Tic-Oic-KG-Tic-Oic-FG-Tic-Oic-KG-Tic-Oic-KKKK-CONH2
80 H2N-KL-Tic-Oic-GK-Tic-Oic-𝛽A-F-Tic-Oic-GK-Tic-Oic-𝛽A-F-Tic-Oic-GK-Tic-Oic-KKKK-CONH2

Table 3: In vitro minimum inhibitory concentration (MIC) and minimum bactericide concentration (MBC) activity against K. pneumonia
and P. aeruginosa.

AMP K. pneumoniae BAMC 07-18 P. aeruginosa PAO1
MIC (𝜇g/mL)/(𝜇M) MBC (𝜇g/mL)/(𝜇M) MIC (𝜇g/mL)/(𝜇M) MBC (𝜇g/mL)/(𝜇M)

22 >100 >100 >100 >100
70 >100 >100 >100 >100
71 100/31.2 >100 100/31.2 >100
72 100/33.6 100/33.6 50/16.8 100/33.6
73 50/16.2 100/32.4 50/16.2 100/32.4
74 >100 100/28.6 >100 >100
75 >100 100/29.2 50/14.6 50/14.6
76 50/13.9 50/13.9 50/13.9 50/13.9
77 50/14.6 100/29.2 50/14.6 50/14.6
78 50/14.3 100/28.6 50/14.3 50/14.3
79 50/13.9 50/13.9 50/13.9 50/13.9
80 50/13.8 50/13.8 25/6.9 50/13.8
Concentration values for MIC and MBC valves shown in light face are given in 𝜇g/mL.
Concentration values for MIC and MBC valves shown in italic font are given in 𝜇M.

removed by centrifugation at 8,800 ppm for 10 minutes using
a table-top centrifuge [6].

2.3. Circular Dichroism. Peptide solutions were prepared by
dissolving approximately 2mg of AMPs 70, 74, 75, 79, or
80 in 1.0mL of phosphate buffer. Due to solubility issues,
the CD spectra of AMPs 22, 76, 77, and 78 were collected
at a concentration approximately 50% lower than the other
AMPs. CD spectra of AMPs 71, 72, and 73 in the presence
of either LPS could not be obtained due to precipitation of
uncharacterized AMP-LPS complexes. For the LPS liposome
studies 350 𝜇L of stock LPS solution was mixed with 50 𝜇L
of stock peptide solution. CD spectroscopy is a sensitive
technique, so it is commonly used to monitor conforma-
tional changes in peptides and proteins [83–85]. However,
as LPS can exhibit strong CD absorption, only after careful
subtraction of the LPS background signal can meaningful
spectra of the AMPs bound to the LPS be obtained [64,
65, 86]. All CD spectra were obtained by acquiring 8 scans
using a 0.1mm cylindrical quartz cell with a spectral range
of 260 to 195 nm (at wavelengths below 195 nm the HTV

exceeded 400, and therefore data collection was terminated
at 195 nm) and a scanning rate of 20 nm/min. Acquisition
parameters were bandwidth 1 nm, data pitch 0.2 nm, response
time 2.0 s, and 5mdeg sensitivity. Spectra were collected at
room temperature (298K). Contributions from LPS were
eliminated by subtracting from the corresponding AMP-LPS
solutions. All analyses of CD spectra were conducted after
smoothing with a means-movement function [47, 87, 88].
CD spectra that exhibited HT values of greater than 500
were not used due to excessive light scattering and/or absorp-
tion.

2.4. NMR. All 1H experiments were conducted at 298K on
a Bruker Avance III 400MHz NMR spectrometer equipped
with a 5mm direct observe Z-gradient broad-band probe.
The spectral width was 4,000Hz, 256 FIDs were collected per
experiment. Data were processed using exponential multi-
plication with a line-broadening function of 5Hz. Samples
contained 1.0mg/mL of the LPS in the presence of 0.1mg of
theAMP in 600 𝜇Lof a 150mMperdeuterated sodiumacetate
buffer at a pH of 5.64 in D

2
O.
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Figure 2: Far-UV circular dichroism spectra of AMPs 70, 74, 75, 79,
and 80 in the presence of the LPS isolated fromP. aeruginosa (dashed
lines) and from K. pneumoniae (solid lines).

3. Results and Discussion

3.1. CD Investigations. TheCD spectra of AMPs 70, 74, 75, 79,
and 80 in the presence of LPS isolated frombothP. aeruginosa
and K. pneumoniae are shown in Figure 2. The CD spectra
of AMPs 22, 76, 77, and 78 in the presence of LPS isolated
from both organisms are shown in Figure 3. As can be seen in
Figures 2 and 3, the CD spectra fall into two different spectral
types. The first exhibited a 𝜆max at approximately 198 nm
and double 𝜆min at approximately 210 and 225 nm. These
CD spectra appear similar to those observed for peptides
comprised of only the 20 naturally occurring amino acids
with predominantly 𝛼-helical secondary structure. In the
case of the peptides under investigation the incorporation
of a high percentage of unnatural amino acids means that
the traditional methods of characterizing peptide secondary
structure by spectral deconvolution are not valid. There-
fore, these CD spectra can only be described qualitatively
as “helical-like.” In the presence of LPS isolated from P.
aeruginosa, the CD spectra of AMPs 22, 70, 74, 75, and 77
exhibit helical-like features, while in the presence of LPS
isolated from K. pneumoniae, the CD spectra of AMPs 22,
70, 75, and 77 (but not 74) exhibit helical-like features. The
second type of CD spectra consisting of AMPs 76, 78, 79,
and 80 exhibits only negative absorptions with double 𝜆min
at approximately 204–210 and 225 nm in the presence of the
LPS isolated from both bacterial strains. In the presence of
LPS isolated from K. pneumoniae the CD spectra of AMP 74
also falls into the latter type. The observation of two different
types of CD spectra implies that these AMPs adopt two very
different sets of conformations on binding to LPS and further

0
0.2
0.4
0.6

260255250245240235230225220215210205200195

CD
 (m

de
g)

Wavelength (nM)

−0.2

−0.4

−0.6

−0.8

−1

22/LPS P. aeruginosa

76/LPS P. aeruginosa

77/LPS P. aeruginosa

78/LPS P. aeruginosa
22/LPS K. pneumoniae

76/LPS K. pneumoniae

77/LPS K. pneumoniae

78/LPS K. pneumoniae

Figure 3: Far-UV circular dichroism spectra of AMPs 22, 76, 77, and
78 in the presence of the LPS isolated from P. aeruginosa (dashed
lines) and from K. pneumoniae (solid lines).

suggests two distinct binding mechanisms for these AMPs.
The different binding conformations and mechanisms may
be explained by the AMPs interacting with different sites or
regions of the LPS.

3.2. NMR Investigations. Bhunia and coworkers [58] have
reported the NMR-derived three dimensional structures of
pardaxins Pa1, Pa2, Pa3, andPa4 bound to LPSmicelles. In the
pardaxin Pa4-LPS complex, the structure of the peptide was
found to be very different from those adopted in the presence
of organic solvents and other micelles [58].These results may
provide insight into the structural requirements for selectivity
for Gram-negative bacteria, but unfortunately two practical
issues prevented us from conducting similar experiments
using LPS SUVs with these AMPs. At the concentrations of
the AMP required to conduct 2D NMR experiments, the
AMP-LPSmixtures precipitated out of solution, and noNMR
signals were detected. In addition, the incorporation of six
Tic-Oic dipeptide units (which, as secondary amides, lack
amide protons) into the sequence of these peptides, coupled
with severe overlap of the side chain protons in the region
2.5–1.0 ppm, makes the application of standard homonuclear
2D experiments such as the TOCSY [89, 90] and NOESY
[91] very problematic. Consequently, our structural analysis
is limited to the use of CD spectroscopy.

However, one-dimensional 1H NMR spectra of AMP-
LPS complexes could be employed to monitor changes in
the local chemical environments of the LPS as a function of
AMP binding. Compared to the 1H NMR spectrum of the
LPS alone, a significant reduction in the peak heights of the
resonances in the region between 1.5 and 0.5 ppm (Figure 4)
was observed in the spectra of a 1.0mg/mL sample of LPS
isolated from P. aeruginosa as a result of the addition of 0.1mg
of AMPs 70, 74, 75, 79, and 80. (At this low concentration
of AMP, no NMR signals corresponding to the AMPs are
observed). The region between 1.5 and 0.5 ppm corresponds
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Figure 4: 1H NMR spectra of (a) LPS isolated from P. aeruginosa; (b) AMP 70 in the presence of LPS isolated from P. aeruginosa; (c) AMP
79 in the presence of LPS isolated from P. aeruginosa.The chemical shift region from 6.0 to 0.0 ppm is shown. Addition of the AMP results
in a reduction in peak intensities in the region 2.0 to 0.7 ppm. This region corresponds to the protons on the alkyl side chains of lipid A.

to the resonances associated with the side chain protons
of the lipid A region of LPS. The reduction in peak area
indicates a strong binding interaction of these AMPs with
this region of lipid A. The region between 4.5 and 3.8 ppm,
which corresponds to the polysaccharide resonances of the
LPS, exhibits a change in peak position but little change in
peak intensity. This indicates a weaker interaction between
the AMP and the polysaccharide region of the LPS.

The 1H NMR spectra of a 1.0mg/mL sample of the LPS
isolated from K. pneumoniae in the presence of 0.1mg of
AMPs 70, 74, 75, 79, and 80 (Figure 5) showed a reduction

in the signal intensity as well as changes in the observed
chemical shifts in the region of 1.8 to 0.7 ppm relative to LPS
alone. The other regions of the NMR spectrum remained
unchanged upon addition of these peptides. Such a decrease
in peak area would arise from complexation between AMPs
and the lipid A region of the LPS isolated from K. pneu-
moniae. These data suggest that the present AMPs exhibit a
higher partition coefficient for the lipid A portion than for
the polysaccharide or core oligosaccharide of the LPS.This is
in accord with the second mechanism of AMP-LPS binding,
which involves hydrophobic interactions between the AMP
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and the hydrocarbon chain region of lipid A [92, 93]. At lower
field, between 4.5 and 3.8 ppm, the polysaccharide resonances
of the LPS exhibit a change in peak position but little change
in peak intensity.This indicates a weaker interaction between
the AMP and the polysaccharide region of the LPS.

3.3. Proposed Binding Site on LPS. LPS is believed to act
as barrier to the transport of material, including drugs,
across the outermembrane ofGram-negative bacteria via two
mechanisms [72]. The first involves hydrophilic interactions
between the substrate to be transported and the densely
packed negatively charged oligosaccharide core of LPS [94].
The second mechanism involves sequestering of lipophilic
moieties within the hydrocarbon chains of lipid A [92, 93].

The transport of hydrophobic molecules from bulk solvent
through the LPS bilayer occurs at a rate that is 98-99%
slower than that observed for the transport of the same
molecule across a phospholipid bilayer [95, 96]. These two
mechanisms indicated that both hydrophobic interactions
and electrostatic attractions between an AMP and LPS are
possible, this is because AMPs are highly amphipathic,
presenting a hydrophobic face and a hydrophilic face to LPS.

Other investigations have been conducted attempting to
link the interactions of AMPs with LPS and the observed
antibacterial activity against Gram-negative bacteria. For
example, the AMP MSI-594 and its mutant analog MSI-
594F5A exhibit very different activity against Gram-negative
bacteria, with MSI-594 exhibiting greater potency, while
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Figure 6: A representation of the proposed AMP-LPS “active site” which is consistent with the AMP adopting a helical conformation upon
binding. Blue semicircles represent anionic sites on LPS. Green semicircles represent hydrophobic binding pockets on LPS.

exhibiting similar activity against Gram-positive bacteria
[65]. Domadia and coworkers reported [65] using NMR that
MSI-594 and MSI-594F5A adopt different helical structures
in the presence of LPS micelles. MSI-594 adopts a hairpin
helical structure, while MSI-594F5A adopts an amphipathic
curved helix without the packing interactions that controlled
the LPS binding of MSI-594. The differences in the helical
conformations adopted by these twoAMPs seem to be related
to the 3D spatial orientation of the Lys residues [65]. The six
Lys residues of MSI-594F5A are on one amphipathic face and
are evenly spaced out at a distance of 25 Å [65]. While the six
Lys residues ofMSI-594 are on one amphipathic face and they
are clustered together over a distance of only 17 Å [65]. Doma-
dia and coworkers [65] proposed that, “the compact structure
and geometrical compatibility of LPS/MSI-594, provided by
the orientation of the side chain of basic residues, could be
related to an efficient permeabilization of an LPS membrane
of Gram-negative bacteria.” It has been shown that helical
content alone does not account for antibacterial activity
against Gram-negative bacteria because increasing the helical
content of an AMP by incorporation of unnatural 𝛽-amino
acids does not necessarily increase antibacterial activity [97].
As we and others have shown that structure alone is not
the defining factor in determining antibacterial activity. It
is the three-dimensional character and complementarity of
the physicochemical properties, such as charge density and
hydrophobicity presented to the cell membranes that define
antibacterial activity.

In an effort to explain how the two different spectral
shapes observed in the CD spectra for these AMPs relate
to inhibitory activity, we propose an LPS-AMP “active site”
binding model. The construction of this model is guided

by the findings of Domadia and coworkers [65] that the
positioning of the Lys residues is critical for transport
of the AMP across LPS. We have also incorporated both
hydrophobic and electrostatic interactions in our model.
A cartoon depiction of a proposed active site that is able
to accommodate the helical conformation of the AMP is
given in Figure 6. Multiple regions of a single LPS molecule,
or multiple LPS molecules, may be required to form the
scaffolding of the site. Five cationic residue groupings are
present in the AMPs under investigation, and it appears that
all five must be paired with negatively charged side chains on
LPS for high-affinity binding. This assumption is based on
the observation that the CD spectra of analogues containing
only three Tic-Oic dipeptide units and three cationic residue
groupings, such as AMP 23 (Ac-GF-Tic-Oic-GK-Tic-Oic-
GF-Tic-Oic-GK-Tic-KKKK-CONH

2
), do not exhibit helical

characteristics in the presence of LPS and exhibit greater in
vitro inhibitory activity compared to the larger AMPs under
investigation in this study.

Based on the amino acid residues incorporated into
these AMPs there may be as many as eight hydrophobic
microenvironments (or four localized ones and a single large
one) included within the active site on LPS, the number and
location of which may vary between bacterial strains. For
both strains of bacteria a hydrophobic pocket likely appears at
some distance before and after each anionic binding pocket.

This model can be used to explain the observed CD
spectra and the inhibitory activity for these AMPs. The CD
spectra of AMPs 22 and 70 exhibit helical characteristics in
the presence of LPS isolated from both strains of bacteria.
K. pneumoniae, AMPs 22, and 70 exhibit very poor in vitro
inhibitory activity (≥100 𝜇g/mL) against P. aeruginosa and K.
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pneumoniae. The combined CD and biological activity data
suggests, based on the work of Domadia and coworkers [65],
that 22 and 70 adopt helical conformations that bind LPS very
strongly and theseAMPs are not efficiently transported across
the LPS bilayer. AMPs 76, 78, 79, and 80 exhibited CD spectra
with nonhelical characteristics as well as an increased in
vitro inhibitory activity of 50 𝜇g/mL. The combined CD and
biological activity data suggests that 74 adopts a nonhelical
conformation that binds LPS very loosely and is efficiently
transported across the LPS bilayer. The CD spectra of AMPs
75 and 77 exhibited helical characteristics in the presence of
LPS isolated from P. aeruginosa; however this is inconsistent
with the observed increased in vitro inhibitory activity of
50𝜇g/mL for these AMPs.

The CD spectra of AMPs 22, 70, and 75 in the pres-
ence of LPS isolated from K. pneumoniae exhibited helical
characteristics of the CD spectra and also exhibited poor in
vitro inhibitory activity of ≥100 𝜇g/mL. The combined CD
and biological activity data suggests, based on the work of
Domadia and coworkers [65], that 22 and 70 adopt helical
conformations that bind LPS very strongly and these AMPs
are not efficiently transported across the LPS bilayer.

Notably, these two AMPs do not contain any of the four
Residues A, B, C, or D. AMP 74 features Gly residues as
residue A, increasing the distance between each Lys residue
and the following Tic residue. For the LPS isolated from
P. aeruginosa, the hydrophobic pocket for the active site
is probably large enough to accommodate this increase in
distance since the CD spectrum of AMP 74 exhibits helical
characteristics.The three additional Gly residueswill increase
the distances between the Lys residues and depending on
the conformation adopted by the AMP dramatically alter
the three-dimensional spatial orientation of these residues,
thus modifying the type of helical structure adopted by 74
on binding to LPS. AMP 74, exhibited very poor in vitro
inhibitory activity (≥100 𝜇g/mL) against P. aeruginosa. The
combined CD and biological activity data suggests, based on
the work of Domadia and coworkers [65], that 74 adopts a
helical conformation that binds LPS very strongly and this
AMP is not efficiently transported across the LPS bilayer.
However, the hydrophobic pocket for the active site for the
LPS isolated from K. pneumoniae appears to be unable to
accommodate the increase in distance since the CD spectrum
of AMP 74 is not helical in nature. AMP 74 exhibits in vitro
inhibitory activity of ≥100 𝜇g/mL against K. pneumonia.The
combined CD and biological activity data suggests that 74
adopts a nonhelical conformation that binds LPS very loosely
and is efficiently transported across the LPS bilayer. AMP
78, contains Gly residues as residue B, resulting in a greater
distance between each Lys residue and the preceding Oic
residue. The active site hydrophobic pockets for LPS isolated
from both P. aeruginosa and K. pneumonia are incompatible
with this increase in distance, as the CD spectra of AMP 78
do not exhibit helical characteristics. AMP 78 exhibits in vitro
inhibitory activity of 50 𝜇g/mL against both P. aeruginosa
and K. pneumonia.The combined CD and biological activity
data suggests that 78 adopts a nonhelical conformation that
binds LPS very loosely and is efficiently transported across
the LPS bilayer. AMPs 75 and 77 contain Gly residues as

residues C andD; residue C increases the distance from a Phe
residue to the following Tic residue and residue D increases
the distance from a Phe residue to the preceding Oic residue.
Either the hydrophobic pocket for both bacteria is very large
and can accommodate the increased molecular bulk of these
twomodifications, or the proposed pocket plays no role in the
binding active site, since the CD spectra of both AMPs in the
presence of both LPSs exhibit helical characteristics. The CD
spectra of AMPs 75 and 77 exhibited helical characteristics in
the presence of LPS isolated from P. aeruginosa; however this
is inconsistent with the observed increased in vitro inhibitory
activity of 50 𝜇g/mL for these AMPs. The two additional Gly
residues will increase the distances between the Lys residues
and depending on the conformation adopted by the AMP
dramatically alter the three-dimensional spatial orientation
of these residues, thusmodifying the type of helical structures
adopted by 75 and 77 on binding to LPS. The combined CD
and biological activity data suggests, based on the work of
Domadia and coworkers [65], that 75 and 77 adopt helical
conformations that bind LPS very strongly and these AMPs
are not efficiently transported across the LPS bilayer. The
argument for this proposed hydrophobic pocket playing a
role in the active site of the LPS isolated from P. aeruginosa is
provided byAMP76,which containsGly residues for residues
A and C. Individually these residues are accommodated by
the active site binding model, as noted above. However,
collectively these residues disfavor binding to the active site
as indicated by the nonhelical character of the observed CD
spectra. AMP 76 exhibits in vitro inhibitory activity against
P. aeruginosa of 50 𝜇g/mL. The combined effect of these two
residues is to change the relative position of the anionic
Lys residues and the hydrophobic Phe residues in three-
dimensional space preventing binding to the active site. The
data indicate that 76 adopts a nonhelical conformation that
binds LPS very loosely and is efficiently transported across
the LPS bilayer. AMPs 79 and 80 also appear not to interact
with the active site of either LPS since their CD spectra do not
exhibit helical characteristics. Both AMPs exhibited in vitro
inhibitory activity of 50 𝜇g/mL against both bacteria strains.
The data indicate that AMPs 79 and 80 adopt nonhelical
conformations that bind LPS very loosely and are efficiently
transported across the LPS bilayer.

4. Conclusions
This investigation has shown that synthetic AMPs with
elongated primary amino acid sequences exhibit helical
characteristics in their CD spectra upon binding to SUVs
comprised of LPS isolated from either P. aeruginosa or K.
pneumoniae.Data indicate that these AMPs interact with LPS
via three differentmechanisms. PeptideswithCD spectra that
exhibit characteristics of helical secondary structure appear
to bind to an “active site” on the LPS. In vitro inhibitory
data suggest that there are two possible helical conformations
resulting from two different AMP-LPS binding mechanisms.
Mechanism one involves a helical binding conformation
where the AMP binds LPS very strongly and is not efficiently
transported across the LPS bilayer resulting in the loss of
inhibitory activity. Mechanism two involves a helical binding
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conformation where the AMP binds LPS very loosely and
is efficiently transported across the LPS bilayer resulting in
an increase in inhibitory activity. Mechanism three involves
a nonhelical binding conformation where the AMP binds
LPS very loosely and is efficiently transported across the LPS
bilayer resulting in an increase in inhibitory activity.
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