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Vaccines represent an important strategy to protect humans against a wide variety of
pathogens and have even led to eradicating some diseases. Although every vaccine is
developed to induce specific protection for a particular pathogen, some vaccine
formulations can also promote trained immunity, which is a non-specific memory-like
feature developed by the innate immune system. It is thought that trained immunity can
protect against a wide variety of pathogens other than those contained in the vaccine
formulation. The non-specific memory of the trained immunity-based vaccines (TIbV)
seems beneficial for the immunized individual, as it may represent a powerful strategy that
contributes to the control of pathogen outbreaks, reducing morbidity and mortality. A wide
variety of respiratory viruses, including respiratory syncytial virus (hRSV) and
metapneumovirus (hMPV), cause serious illness in children under 5 years old and the
elderly. To address this public health problem, we have developed recombinant BCG
vaccines that have shown to be safe and immunogenic against hRSV or hMPV. Besides
the induction of specific adaptive immunity against the viral antigens, these vaccines could
generate trained immunity against other respiratory pathogens. Here, we discuss some of
the features of trained immunity induced by BCG and put forward the notion that
recombinant BCGs expressing hRSV or hMPV antigens have the capacity to
simultaneously induce specific adaptive immunity and non-specific trained immunity.
These recombinant BCG vaccines could be considered as TIbV capable of inducing
simultaneously the development of specific protection against hRSV or hMPV, as well as
non-specific trained-immunity-based protection against other pathogenic viruses.

Keywords: recombinant BCG, trained immunity, unspecific cross-protection, respiratory syncytial
virus, metapneumovirus
INTRODUCTION

Historically, immunological memory development is a characteristic attributed only to the adaptive
immune response in an antigen-specific manner. It was recently shown that the innate immune
system could develop a type of non-specific immune memory known as “trained immunity” (1).
Trained immunity is developed by innate immune cells, such as monocytes, macrophages, and
natural killer (NK) cells, after an infection or vaccination (2, 3). Indeed, the development of trained
org January 2021 | Volume 11 | Article 6119461
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immunity occurs at the hematopoietic stem cells level in the bone
marrow, specifically inducing a trained phenotype in myeloid
progenitors (4, 5). Epithelial cells can develop a trained
phenotype and show an enhanced inflammatory response
when exposed to a secondary pathogen, which has been
proposed to be associated with epigenetic regulation (6, 7).
Trained immunity is induced by b-glucan (8), Candida albicans
(9), and live vaccines like Bacillus Calmette-Guérin (BCG) (10),
among others. The exposure to the infectious agent induces innate
immune cells to undergo epigenetic modifications in certain pro-
inflammatory genes, leading to a “trained” state, which allows the
cell to respond in a faster and stronger way against an infection
(Figure 1) (3, 10).

Trained immunity confers protection against a wide variety of
pathogens, including bacteria (11), fungi (3), viruses (12), and
protozoan (8). After developing trained immunity in mice,
protection is induced against Escherichia coli, Listeria
monocytogenes, Staphylococcus aureus, Citrobacter rodentium,
and Pseudomonas aeruginosa (11). In humans, trained
monocytes secrete higher levels of interleukin (IL)-1b, Tumor
necrosis factor (TNF)-a, and interferon (IFN)-g when stimulated
with Mycobacterium tuberculosis, S. aureus, and C. albicans as
compared to naïve monocytes (3). BCG vaccination before an
experimental viral challenge with yellow fever virus, reduces
viremia levels due to the development of trained immunity, with
a crucial role for IL-1b (12). Moreover, when stimulated with
Leishmania braziliensis, trained human macrophages secrete
higher amounts of pro-inflammatory cytokines compared to
naïve macrophages (8). In mice, the induction of trained
immunity is sufficient to protect against the infection with
L. braziliensis, being IL-1b signaling pathways and IL-32 crucial
for this protection (8).

The unspecific immunological memory developed by trained
innate immune cells can persist at least three months after
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vaccination (3). Such an effect on the innate immune system
persists one year after vaccination, showing IL-1b and TNF-a
production levels significantly higher as compared to non-
trained cells after in vitro stimulation with LPS (13). Also, the
fact that trained immunity is developed at hematopoietic stem
cell level supports the notion that it might last for extended times
in vivo (4, 5). Nevertheless, comprehensive long-term studies are
necessary to elucidate how long the trained state persists.
Importantly, BCG vaccination increases childhood survival
during the first five years of life (14, 15), and the heterologous
protection induced by this vaccine has been suggested to persist
for several years (16).
TRAINED IMMUNITY INDUCED BY BCG

Vaccines are designed to induce adaptive immunological
memory against specific pathogens (17, 18). However, the
recent realization that some vaccines can also induce non-
specific immunological memory via trained immunity suggests
that TIbVs could be considered candidates to protect against
pathogens with no specific vaccine. Nevertheless, under what
circumstances, non-specific TIbVs could be considered a good
strategy for promoting immune protection? A good example are
the seasonal outbreaks caused by respiratory viruses that lack
commercially available effective vaccines. In this scenario, the
ability of some vaccines to promote trained immunity and
protect against unrelated pathogens would be relevant to
induce an innate immune response that readily works in a
regulated manner upon exposure to unrelated pathogens.

The BCG vaccine (an attenuated strain of M. bovis) has been
widely used for over a century to prevent the disease caused by
M. tuberculosis (19). Since the beginning of its administration to
humans, BCG has reduced the mortality of children due to
FIGURE 1 | Induction of trained immunity. Naïve monocytes and macrophages (purple) are activated by Bacillus Calmette-Guérin (BCG) vaccination, inducing tri-
methylation of histones in pro-inflammatory genes and cytokine secretion (yellow). When the infection is resolved, trained cells are maintained in a resting state, with
mono-methylation of histones of pro-inflammatory genes and increased expression of membrane receptors (green). When exposed to reinfection, histones are tri-
methylated, producing stronger and faster activation and increased cytokine secretion (pink).
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causes unrelated to tuberculosis disease. Therefore, it was
proposed that BCG induces the development of a non-specific
immune cross-protection based on the generation of trained
immunity in humans (16, 20–22). To date, it is not clear how
long does the immune protection induced by BCG vaccination
lasts. Some studies suggest that it does not protect longer than
ten years, while others suggest between 15 to 20 years, and even
up 60 years (23–27).

As mentioned above, the first interaction of BCG with the
immune system occurs at site of inoculation (28). This interaction
begins with resident epidermal macrophages and dendritic cells
(DCs) that recognize and phagocyte the bacterium, initiating the
immune response (28, 29). DCs phagocyte bacteria and increase
their surface expression of activation, maturation, migration, and
antigen-presentation molecules (MHC-II, CD40, CD44, CD54,
CD80, CD86) (30). Once stimulated, DCs initiate the immune
response by secretion of immunomodulatory components,
including cytokines and chemokines, such as TNF, IL-1b, IL-6,
IL-4, and IL-10 (31). Bacterium-stimulated DCs express on their
surface MHC-II molecules loaded with antigenic peptides (32).
They migrate from the immunization site through the lymphatic
system to the draining lymph nodes where they present antigens to
naïve T cells (32). Additionally, circulating neutrophils enter the
inoculation site and contribute to the local inflammatory response
(28). The interaction of neutrophils with BCG increases the
expression of adhesion markers, such as CD11b and CD18, and
receptors, including FcgRs II and III and increase the secretion of
cytokines and chemokines (e.g., IL-1a, IL-1b, and TGF-b, IL-8,
CCL2, and CCL3) (33). Altogether, the interactions between BCG
and these immune cells triggers an innate response that will
influence the efficacy of this vaccine. As mentioned above, BCG
vaccination induces the development of trained immunity (28),
which refers to an acquiredphenotypedevelopedby innate immune
cells after the exposure to live vaccines, including BCG (34–36),
measles (35, 37, 38), oral-polio (39, 40), and smallpox (34). This
phenotype is also induced by exposure to other pathogenic stimuli,
such as C. albicans (9), and b-glucan (8). The trained phenotype
allows these cells to have a faster and more effective inflammatory
response than non-trained ones (1). As shown in Figure 1, BCG
vaccination induces in monocytes epigenetic modifications in the
promoters of several pro-inflammatory genes (3, 10). When the
immune system is activated as a consequence of the immunization,
histone H3 is mono- and tri-methylated in lysine 4 (H3K4me and
H3K4me3, respectively) in the promoters of the pro-inflammatory
genes TNFA, IL6, and TLR4, increasing the accessibility to the
transcription machinery and, in consequence, increasing the
expression of these genes (1, 3, 10). When the inflammation is
resolved and the innate immune cells are resting, H3K4me is
conserved in the histones associated with these genes, developing
a “trained” state bywhich the cells canbe activated in a reduced time
andmore efficiently, as compared to naïve or untrained cells (3, 13,
22, 41). When trained cells are re-exposed to an infection,
H3K4me3 increases, augmenting the expression of pro-
inflammatory genes as well, thus generating a faster and more
robust immune response (1, 3, 10). Through the interaction with
hematopoietic stem cells, bacteria induce epigenetic modifications
Frontiers in Immunology | www.frontiersin.org 3
that contribute to the training of the monocyte/macrophage linage
associated with long-term protection against infection (42). These
monocytes and macrophages express higher amounts of PRRs
than non-trained cells and exert an enhanced response when
exposed to secondary infections (22).

It has been shown that BCG vaccination reduces the risk of
developing acute lower respiratory tract infections (ALRI) when
exposed to respiratory pathogens (43). Indeed, this study suggests a
tendency to reduce the risk of respiratory syncytial virus (hRSV)-
associated ALRIs in infants that had received BCG at birth (43).
Furthermore, BCG-vaccinated mice show fewer cellular lung
infiltrates than non-vaccinated animals after a challenge with
either hRSV or metapneumovirus (hMPV) (44, 45). Besides, BCG
vaccination promotes antibody secretion (46), probably due to the
immunogenic capacity of this attenuated bacterium to induce a
strong Th-1 profile (47), promoting the survival and subsequent
maturation of B cells population into effector plasma cells, with the
induction of antibody secretion upon virus exposure (48).
Moreover, BCG vaccination at birth reduces hospitalizations due
to respiratory infections in children up to 14 years old (16).
Importantly, published data suggest that the unspecific protection
induced by BCG vaccination may last for a long time, contrary to
previously proposed in other studies (13). Moreover, BCG
vaccination increases the plasmatic levels of IFN-g and prevents
acute upper respiratory tract infections (AURTI) in the elderly (49).
Indeed, a recently publishedphase III clinical trial showed that BCG
vaccination decreases the prevalence of infections, mostly respiratory,
in the elderly (50). Thus, due to the induction of trained immunity,
BCGmay be an excellent candidate to approach outbreaks caused by
respiratory pathogens without commercial vaccines available, such as
hRSV,hMPV,parainfluenza, adenovirus, rhinovirus, andcoronavirus
(51–56). The world is currently living a pandemic caused by a novel
severe acute respiratory syndrome coronavirus (SARS-CoV-2) that
causesmillionsof coronavirusdisease (COVID-19) cases that can lead
to thedevelopment of pneumonia and evendeath (57, 58).Up todate,
there is no vaccine nor specific treatment for COVID-19, making it
even more difficult to control the spread of this disease (59, 60). As
mentioned above, the BCG vaccine induces unspecific protection
against respiratory infections, suggesting that trained immunity may
represent an interesting strategy to contain the pandemic while
specific vaccines are being developed (16, 28, 43, 49). Interestingly,
those countries where BCG is included in their national vaccination
programs at birth have lowermortality rates than thosewhere it is not
included (61–65). Based on these observations, we and others have
proposed that BCGvaccinationmay induce protection against SARS-
CoV-2 infectiondue to thedevelopment of trained immunity (65, 66).

BCG exerts a wide variety of beneficial non-specific immunological
effects through the induction of trained immunity, ranging from
protection against non-mycobacterial infection, decreased incidence
of allergic diseases, and increased immunity to certain cancers (67).
Because of the ability of BCG to induce an effective immune
response, it is used since 1976 for the treatment of bladder cancer
(68). Several clinical trials have provided support to the notion that
BCG could be a beneficial treatment for this pathology, even though
the precise underlyingmechanism remains to be elucidated (69–72).
Some studies suggest that BCG induces locally a non-specific
January 2021 | Volume 11 | Article 611946
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immune and inflammatory response, contributing to the generation
of a localized anti-tumor immunity in patients (73). In a meta-
analysis of a randomized clinical trial, BCGwas shown to reduce the
risk of bladder cancer progression after transurethral resection (74).
Also, a topical application of BCG is used as a safe alternative for
treating warts in children (75). The immune stimulation in the early
years of life induced by BCG vaccination may have a beneficial
impact against chronic diseases, such as asthma and allergies (76).
Moreover, studies in humans and mice showed that the BCG
vaccine offers protection against various viral infections, including
herpes and influenza viruses (77). Also, neonatal vaccination
protects against sepsis early in life (78). It was recently
demonstrated that this latter effect was due to the induction of
granulopoiesis by the secretion of Granulocyte colony-stimulating
factor (G-CSF), resulting in neutrophil expansion (78). These BCG-
induced neutrophils were shown to be necessary and sufficient to
induce such protection against sepsis (78). Further, it was proposed
that a “trained” innate immune system can direct the adaptive
immune response towards a more effective response against
different pathogens (77, 79). The enhanced activation of the
innate immune system and the secretion of high levels of IL-1b
by these cells, when exposed to an infectious agent, may activate
more effectively the adaptive immune response (80). Besides, the
increased secretion of pro-inflammatory cytokines can accelerate
the maturation of DCs, which represent the direct cross-talk
between the innate and adaptive immune responses (81–83).
Indeed, DCs cooperate with neutrophils after BCG-infection to
stimulate T cell responses against these bacteria (84). On the other
hand, trained immunity generated by BCG induces heterologous
Th1 and Th17 responses, characterized by the secretion of IFN-g
and IL-17, and IL-22, respectively (80). Altogether these
characteristics of a trained innate immune response can induce a
more effective adaptive immune response against the pathogen. In
agreement with this statement, vaccination with BCG before the
administration of a trivalent influenza vaccine improves the specific
antibody response, inducing a faster seroconversion compared to
the administration of the influenza vaccine by itself (85). This
finding further supports the notion that trained innate immune cells
may activate a more effective adaptive immune response.

Although the non-specific immune effects induced by the
BCG vaccine are broadly reported, the molecular mechanisms
involved in this phenomenon are only partially understood.
Unveiling these mechanisms would be important to design
better therapeutic options and vaccination strategies using this
attenuated bacterium.
TRAINED IMMUNITY INDUCED BY
RECOMBINANT VACCINES

Worldwide, hRSV is considered the most important etiologic
agent of acute lower respiratory tract infections (ALRIs) in
children under 5 years and adults over 65 years (86), infecting
100% of children at age two (87). In 2015, hRSV caused 33.1
million episodes of ALRIs (bronchiolitis and pneumonia)
Frontiers in Immunology | www.frontiersin.org 4
worldwide, producing 3.2 million hospitalizations and about
120,000 deaths of children under 5 years old (88).

Vaccines consisting of recombinant strains of BCG
expressing either the nucleoprotein (N) or the M2 protein of
hRSV (rBCG-N-hRSV and rBCG-M2-hRSV, respectively) were
evaluated to induce hRSV specific immunity and prevent disease
(44, 45, 89–92). These formulations were shown to protect
against hRSV in a murine model of infection, reducing the
development of clinical symptoms associated with the viral
challenge in vaccinated mice (44). The rBCG-N-hRSV and
rBCG-M2-hRSV vaccines induce the development of cellular
and humoral responses, generating specific TH1/TH17 memory
cells and antibodies in mice (44, 45, 89, 91). Viral-specific
antibodies have neutralizing activity (45), which correlates with
diminished viral titers in the lungs of immunized animals (89).
rBCG-N-hRSV was developed under cGMP (GoodManufacturing
Practices) conditions, showing the same protection against
hRSV infection mentioned above in animal models (89). Indeed,
this vaccine is the only hRSV-vaccine being developed to be
administered to newborns, who represent the major risk group
for this virus (93). In a phase 1 clinical trial, rBCG-N-hRSV was
shown to induce both cellular and humoral immunity against
hRSV in humans (90).

HMPV also causes ALRIs and death in children under 5 years
old (94). This virus was first described in 2001 by Van Den
Hoogen et al. (95), and its incidence has increased every year
since then (96, 97). In healthy adults, hMPV infection appears
with mild influenza-like symptoms, while in children under 5
years old, elderly, and immunocompromised patients it causes
bronchiolitis, pneumonia, and even death (96).

Based on the previous experience with hRSV, recombinant
BCG vaccines expressing either the phosphoprotein (P) or the
M2.1 protein of hMPV were generated (98). Both, rBCG-P-
hMPV and rBCG-M2.1-hMPV, were shown to efficiently protect
from hMPV in a murine model of infection, with less cellular
infiltrates, lung inflammation, and viral replication in vaccinated
mice (45, 98). Mouse vaccination was also effective in the
induction of humoral responses against hMPV, with virus-
neutralizing antibody production and isotype switching (45).

These recombinant BCG vaccines were based on BCG-
Danish 1331, a vaccine that is known to induce trained
immunity, suggesting that this type of immunity might be a
component of the protection achieved with these vaccines
against these two respiratory viruses. Consistently with this
notion, vaccination of RAG-deficient mice, which lack T and B
cells, with rBCG-N-hRSV induces the secretion of significantly
higher IFN-g levels in bronchioalveolar lavages (BAL) after hRSV
challenge as compared to unimmunized mice (91). Surprisingly,
this induction reached similar levels of IFN-g as BCG-WT,
suggesting that both could induce a trained immunity
phenotype in these immunodeficient mice (91). Furthermore,
immunization with BCG-WT reduced cellular lung infiltration
and inflammation in murine models for both hRSV and hMPV
infections (44). BCG-WT induces specific antibody isotype
switching and the production of neutralizing antibodies after
hRSV and hMPV infections in mice (45). These data suggest that
January 2021 | Volume 11 | Article 611946
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non-specific cross-protection induced by BCG may be effective
in protecting against these viruses.

During viral infections, the immune system activates the
production and secretion of interferons, which mediate
the antiviral response, impairing the viral replication by the
activation of macrophages and DC (99). As mentioned above,
rBCG-N-hRSV and rBCG-P-hMPV vaccination generated an
early IFN production soon after the viral challenge in mice,
suggesting that these vaccines may induce a non-specific cross-
protection against other viral infections (91, 98). The induction
of trained immunity-related cytokines, such as IL-6, TNF, and
IL-1b by these vaccines still has to be elucidated (3). Besides
hRSV and hMPV, there are other important respiratory viruses,
as parainfluenza, adenovirus, rhinovirus, and the newly
identified SARS-CoV-2, among others (51–56, 100). The
unspecific protection mediated by the development of trained
immunity may be a good strategy to protect against a broad
spectrum of viruses, being recombinant BCGs excellent
candidates, since BCG is a safe vaccine used to immunize
infants, which constitute a high-risk population (101). Trained
immunity protects against yellow fever virus infection in humans
(12). In an experimental infection challenge of healthy volunteers,
BCG vaccination reduced the viremia after infection compared to
non-vaccinated volunteers (12).

Based on the studies mentioned above, vaccination of the risk
population with either rBCG-N-hRSV or rBCG-P-hMPV,
besides inducing specific protection against the virus for which
they are developed, may induce non-specific cross-protection
mediated by a trained innate immune system against other
viruses to which there is no specific vaccine available (Figure 2).
Frontiers in Immunology | www.frontiersin.org 5
In the context of the pandemic that the world is currently
facing, it has been proposed that SARS-CoV-2 exposure in the
presence of a trained innate immune system may induce a more
robust and effective immune response and, in consequence, a
milder manifestation of the disease (65, 102–106). Indeed, those
countries where BCG is included in their national vaccination
programs at birth showed lower mortality rates due to SARS-
CoV-2 infection as compared that do not include it (61, 62, 65,
107, 108), probably by the development of trained immunity.
Based on this hypothesis, several clinical trials are being
performed in different countries, including Netherlands, South
Africa, Australia, United States, Colombia, Egypt, Brazil,
Denmark, and France (Clinicaltrials.gov) (104). Interestingly, a
recombinant BCG vaccine, VPM1002, is also being tested in a
clinical trial to determine the cross-protection against COVID-
19 (Clinicaltrials.gov ID: NCT04387409) (104). This
recombinant BCG has a Listeria monocytogenes gene encoded
for listeriolysin instead of the urease C gene (109). This
modification increases apoptosis and autophagy, promotes
phagolysosome fusion, and improves vaccine efficacy (109).

Even though the induction of trained immunity has not yet
been demonstrated for recombinant BCG vaccines, some studies
support this notion and suggest an advantageous scenario for the
prevention of several infections (28). Positive results deriving
from the VPM1002 clinical trial, will suggest a cross-protection
due to the induction of trained immunity.

Besides the intramuscular administration of live-attenuated
BCG to induce protection against tuberculosis, this bacterium
can be inactivated and used as an adjuvant based on its strong
immunogenicity (110–112). Also, inactivated BCG induces the
FIGURE 2 | Proposed immune response to respiratory syncytial virus (hRSV) or metapneumovirus (hMPV) and non-specific viruses after rBCG-N-hRSV or rBCG-P-
hMPV vaccination, respectively. Immunization with rBCG-N-hRSV or rBCG-P-hMPV induces a specific adaptive immune response against hRSV or hMPV,
respectively, that will resolve the infection. Trained immunity induction generates a more robust response against other viruses and orchestrates adaptive immune
memory against the virus. CD8, CD8+ T cell; CD4, CD4+ T cell; B, B cell; Mo, monocyte; Mj, macrophage; NK, natural killer.
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development of trained immunity in innate immune cells in vitro
(10). Based on these findings, a vaccine formulation containing
inactivated BCG as an adjuvant could promote the development of
a strong specific immune response and induce the development of
trained immunity. On the other hand, to prevent and treat
respiratory infections, a sublingual vaccine was designed
consisting of heat-inactivated bacterial components, called
MV130 (113). This vaccine was shown to trigger TLR and NLR
signaling pathways on DCs, inducing the production and secretion
of trained immunity-related cytokines, such as TNF-a, IL-6, and
IL-1b (113). These bacterial preparations could also be considered
as good adjuvants for the development of novel vaccines with the
capacity to induce trained immunity.
CONCLUDING REMARKS

Vaccines have been used since 1798 to control infections that are
potentially harmful to humans (17). A very important feature of
vaccines is the specificity of the immunological memory that they
induce against a unique pathogen (114). However, what happens
when there are no efficient vaccines to protect us against a
particular infectious agent? Trained immunity is a non-specific
immunological memory mediated by the innate immune system
(1). This type of immunological memory protects against a wide
variety of pathogens, suggesting that it could be considered an
alternative for developing unspecific vaccines (3, 8, 11, 12).

As mentioned above, BCG protects against some respiratory
affections, including asthma and upper and lower respiratory
tract infections non-related toM. tuberculosis (12, 43, 48, 49, 77).
These characteristics of BCG are attributed to the induction of
trained immunity (1, 28). Similar to BCG, recombinant BCG
formulations are expected to induce trained immunity (28). We
have developed effective, immunogenic rBCG vaccines against
hRSV and hMPV, two common respiratory viruses that can
Frontiers in Immunology | www.frontiersin.org 6
cause serious illness, even death (44, 45, 89, 91, 98). We are
exposed to a wide variety of viruses, many of them with no
specific vaccine or antiviral drugs available to treat them (100).
As proposed in Figure 2, an immunogenic vaccine with the
ability to induce specific immunity against two of the most
relevant respiratory viruses (hRSV or hMPV) and trained
immunity to other seasonal respiratory viruses could be an
approach to be evaluated for controlling outbreaks and reduce
the morbidity and mortality associated to other respiratory viral
infections. Up to date, the induction of trained immunity by
recombinant BCGs has not been demonstrated. Even
though some studies suggest that these vaccines have the same
capacity as the parental BCG strain to induce this non-
specific innate memory, a formal demonstration would require
additional research.
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