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Abstract
Socioeconomic resources (SER) calibrate the developing brain to the current context, which can confer or attenuate risk for 
psychopathology across the lifespan. Recent multivariate work indicates that SER levels powerfully relate to intrinsic functional 
connectivity patterns across the entire brain. Nevertheless, the neuroscientific meaning of these widespread neural differences 
remains poorly understood, despite its translational promise for early risk identification, targeted intervention, and policy reform. In 
the present study, we leverage graph theory to precisely characterize multivariate and univariate associations between SER across 
household and neighborhood contexts and the intrinsic functional architecture of brain regions in 5,821 youth (9–10 years) from the 
Adolescent Brain Cognitive Development Study. First, we establish that decomposing the brain into profiles of integration and 
segregation captures more than half of the multivariate association between SER and functional connectivity with greater parsimony 
(100-fold reduction in number of features) and interpretability. Second, we show that the topological effects of SER are not uniform 
across the brain; rather, higher SER levels are associated with greater integration of somatomotor and subcortical systems, but 
greater segregation of default mode, orbitofrontal, and cerebellar systems. Finally, we demonstrate that topological associations with 
SER are spatially patterned along the unimodal–transmodal gradient of brain organization. These findings provide critical interpretive 
context for the established and widespread associations between SER and brain organization. This study highlights both higher-order 
and somatomotor networks that are differentially implicated in environmental stress, disadvantage, and opportunity in youth.
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Significance Statement

Brain development is not identical across individuals but is rather powerfully influenced by experience. Socioeconomic resource (SER) 
levels vary widely across households and exert widespread effects on the developing brain. Here, we implement graph theory and 
multivariate predictive modeling in youth (9–10 years) to characterize how SER levels are related to the organization of the entire brain 
with parsimony and interpretability. We demonstrate that associations with SER are not uniform across the brain but are spatially 
patterned along an evolutionary hierarchy of brain organization. Specifically, higher SER levels were associated with more integrated 
sensorimotor, but more segregated association, networks. These nuanced effects reveal spatially constrained neural signatures as-
sociated with exposure to environmental disadvantage (or opportunity) during development.

Competing Interest: The authors declare no competing interests. 
Received: February 7, 2024. Accepted: August 7, 2024 
© The Author(s) 2024. Published by Oxford University Press on behalf of National Academy of Sciences. This is an Open Access article 
distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by- 
nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly 
cited. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions 
can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please 
contact journals.permissions@oup.com.

Introduction
Socioeconomic resources (SER) powerfully influence concurrent 
and lifelong outcomes, especially during childhood and adoles-
cence when environmental experiences have particularly strong 
and cascading effects on health and functioning (1–3). For ex-
ample, SER in youth, typically measured through household in-
come, parental education, and neighborhood resources, have 

been associated with disparities in educational and occupational 
attainment, cognitive and socioemotional functioning, and phys-
ical (e.g. cardiovascular disease and cancer) and mental health 
(e.g. anxiety, depression, suicide, criminality, and substance use) 
(4–6). Technological and computational advancements in non-
invasive neuroimaging methods have allowed researchers to 
demonstrate that SER may influence behavior through their 
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effects on brain development (7, 8). Elucidating how SER levels im-
pact the developing brain, especially during early adolescence 
when many psychosocial challenges emerge (9), can inform early 
risk identification, facilitate targeted intervention, and inform 
public policies related to socioeconomic and health inequities.

With growing recognition that brain regions exhibit coordi-
nated activity (10), empirical studies probing associations be-
tween SER and neurodevelopment have increasingly leveraged 
task-free “resting-state” functional magnetic resonance imaging 
(fMRI). This technique uses coherence in spontaneous neural ac-
tivity to map the strength of communication between brain re-
gions (i.e. functional connectivity) (10, 11). To date, these studies 
have predominantly relied on individual, region-specific connec-
tions to delineate how SER may calibrate communication within 
selected brain circuits of interest (e.g. prefrontal–amygdala con-
nectivity) (12).

There is, however, convergent evidence demonstrating that the 
brain is organized into large-scale intrinsic connectivity networks 
(ICNs), such that coordinated activity within and between ICNs 
gives rise to diverse cognitive and socioemotional processes (11, 
13–16). Against this backdrop, studies are now indicating that 
neurodevelopmental associations with SER are not localized to 
specific circuits but are instead distributed across ICNs through-
out the entire brain (12, 17–19).

To expand on these univariate network-level studies, our 
group has recently conducted a multivariate predictive modeling 
study interrogating brain-wide connectivity differences associ-
ated with SER (20) in the Adolescent Brain Cognitive 
Development (ABCD) Study, the largest neuroimaging study of 
youth to date (21, 22). We identified robust and generalizable asso-
ciations between SER and resting-state functional connectivity, 
with connectivity changes explaining 9% of the variance in SER 
out-of-sample—a relatively large effect size in the social sciences. 
These connectivity changes were widespread across most ICNs 
(72 out of 110 network pairs). A key limitation of this work, how-
ever, is in terms of interpretation. While this study comprehen-
sively described the magnitude of the multivariate association 
between SER and over 80,000 connections, it did not identify 
ways to meaningfully reduce these data to afford clear interpreta-
tions of what these neural alterations mean and how they are or-
ganized in the brain.

In the present study, we address this knowledge gap by lever-
aging graph theory, a mathematical technique that can quantify 
parsimonious and interpretable properties of the overall organ-
ization of the brain (23). Prior work has focused on network segre-
gation (i.e. neural communication within distinct ICNs) and 
network integration (i.e. neural communication across different 
ICNs), given their relevance for neurodevelopment, cognition, 
and mental health (24, 25). Segregation gives rise to differentiated 
networks that execute specialized cognitive functions, whereas 
integration efficiently coordinates these processing streams 
across the brain (26, 27). A combination of high segregation and 
high integration represents an “optimized” small-world architec-
ture that rapidly integrates specialized, multimodal information 
at low wiring and energy costs (26, 27). Segregation and integra-
tion are reflected in two graph theoretic metrics that capture 
within-network connectivity (within-module degree) and between- 
network connectivity (participation coefficient) (28). Profiles of 
higher within-module degree and lower participation coefficient 
result in more clearly defined and separable ICNs that reflect seg-
regation. In contrast, profiles of lower within-module degree and 
higher participation coefficient result in greater functional com-
munication between ICNs that reflect integration.

ICNs exhibit developmental refinements in segregation and in-
tegration during sensitive developmental windows (24, 29–31), 
though recent work indicates that the segregation and integration 
of ICNs may be influenced by SER levels. Socioeconomic disadvan-
tage has been associated with weaker age-related variation in the 
segregation and integration of ICNs across adolescence, suggest-
ing accelerated network development in low-SER contexts (18, 
32, 33), although the reverse pattern of potentially delayed net-
work development has also been found (19). Environmental expe-
riences shaped by SER levels, such as household instability and 
parenting, have similarly been linked to alterations in graph the-
oretic indicators of network integration, such as the efficiency of 
information flow, in youth (34, 35).

ICNs are organized along a unimodal–transmodal gradient, 
which represents the degree to which networks are specialized 
for encoding specific sensory features versus integrating represen-
tations across modalities (36–38). Motor and sensory processing 
networks (e.g. visual and somatomotor) anchor the unimodal 
end, and association networks (e.g. default mode) anchor the 
transmodal end. Across development, unimodal networks become 
more integrated and transmodal networks become more segre-
gated (30, 31). As different ICNs exhibit unique developmental re-
finements based on their rank on the unimodal–transmodal 
gradient, the topological effects of SER may differ along the trans-
modal axis. This possibility currently remains unexplored but 
would provide a parsimonious and developmentally informed 
contextualization of how SER levels influence the architecture of 
maturing ICNs.

Accordingly, in the present study, we quantify multivariate and 
univariate associations between SER and the segregation (within- 
module degree) and integration (participation coefficient) of ma-
jor ICNs across the brain. Further, we assess whether SER levels 
are differentially related to the segregation and integration of dif-
ferent ICNs (e.g. greater segregation and lower integration in cer-
tain networks; the reverse in others). Finally, to understand 
whether the network-specific effects of SER are random or sys-
tematic, we interrogate whether associations between SER and 
brain architecture are spatially patterned along the sensorimotor- 
association axis.

We performed our analyses in the ABCD Study, a population- 
based consortium study of 11,875 9- and 10-year-olds with sub-
stantial sociodemographic diversity (39). As in our prior report 
(20), we constructed a latent factor of SER across household and 
neighborhood contexts. We establish that SER has robust multi-
variate links with network integration/segregation. Moreover, 
we delineate network-specific effects, with higher SER related 
to greater integration of sensorimotor networks but greater segre-
gation of association networks. Lastly, we demonstrate that 
associations with SER strongly relate to the transmodal axis. 
These findings add valuable interpretive information by establish-
ing that associations between SER and functional connectivity 
spatially conform to the sensorimotor-association axis during 
development.

Materials and methods
Sample and data
The ABCD Study is a multisite longitudinal study with 11,875 chil-
dren between 9 and 10 years of age from 22 sites across the United 
States. The study conforms to the rules and procedures of each 
site’s Institutional Review Board, and all participants provide in-
formed consent (parents) or assent (children). Data for this study 
are from ABCD Release 3.0.
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Data acquisition, fMRI preprocessing, and 
connectome generation
High spatial (2.4 mm isotropic) and temporal resolution (800 ms) 
resting-state fMRI was acquired in four separate runs (5 min per 
run, 20 min total). Preprocessing was performed using fMRIPrep 
v1.5.0 (40). Briefly, T1-weighted (T1w) and T2-weighted images 
were run through recon-all using FreeSurfer v6.0.1, spatially nor-
malized, rigidly coregistered to the T1, motion corrected, normal-
ized to standard space, and transformed to CIFTI space.

Connectomes were generated for each functional run using the 
Gordon-333 atlas (13), augmented with parcels from high- 
resolution subcortical (41) and cerebellar (42) atlases. Volumes ex-
ceeding a framewise displacement (FD) threshold of 0.5 mm were 
marked to be censored. Covariates were regressed out of the time 
series in a single step, including linear trend, 24 motion parame-
ters (original translations/rotations, derivatives, and quadratics), 
aCompCorr 5 cerebrospinal fluid (CSF) and 5 white matter 
(WM) components and ICA-AROMA aggressive components, 
high-pass filtering at 0.008 Hz, and censored volumes. Next, cor-
relation matrices were calculated. See Supplementary material
and fMRIPrep Supplementary material for full processing details.

Inclusion/exclusion
There are 11,875 subjects in the ABCD Release 3.0 dataset. 
Subjects were excluded for: failing ABCD quality control (QC), in-
sufficient number of runs each 4 min or greater, failing visual QC 
of registrations and normalizations, and missing data required for 
regression modeling (see Supplementary material for details). 
This left N = 5,821 participants across 19 sites for the main 
analysis.

Graph theoretic analysis
Since most graph theory measures require unsigned edge weights, 
each participant’s connectome resulted in two separate sets of 
graphs—one for positive edges and another for negative edges 
(43, 44). We focused on positive graphs consistent with previous 
graph theoretical investigations (43, 44), though supplementary 
analyses revealed that negative graphs did not add meaningful 
predictive information (see Supplementary material).

To estimate network segregation, we calculated within-module 
degree, a node-wise measure that captures each node’s strength 
(i.e. magnitude of summed connectivity weights) within its own 
network. This measure is a modification of the “module degree 
z-score” metric (28), but without within-network z-scoring of 
node strength to better capture differences across participants, 
rather than differences across nodes within each network. 
Formally, the within-module degree of a node i is given by:

Ni

j=1

eij, 

where eij is the edge weight between nodes i and j, and Ni is the set 

of nodes incident to node i that are in the same network as i. 
Greater network segregation involves stronger within-network 
connectivity and is thus reflected in higher within-module degree.

To estimate network integration, we calculated participation 
coefficient, a node-wise measure that captures the diversity of a 
node’s connections with nodes outside its own network (28). 
Intuitively, if a node distributes its connectivity evenly across all 
networks, its participation coefficient will be 1, while departures 
from equality yield commensurately lower scores. Formally, the 
participation coefficient of a node i is given by:

1 −
M

m

ei(m)
ei

 2

, 

where M is the set of networks, ei(m) is the sum of edge weights be-
tween node i and all nodes in network m, and ei is the sum of edge 
weights between node i and all other nodes. Greater network inte-
gration involves stronger between-network connectivity and is 
thus reflected in higher participation coefficient.

For both metrics, we used the community structure defined by 
the applied parcellation schemes to determine network boundar-
ies. Within-module degree (MDP) and participation coefficient 
(PCP) for positive edges were calculated for 418 nodes, yielding 
836 node-wise graph theoretic features per participant.

Latent variable modeling
We constructed a latent variable for SER by applying exploratory 
factor analysis to household income-to-needs, parental educa-
tion, and neighborhood disadvantage (20) (see Supplementary 
material for details). Household income-to-needs represents the 
ratio of a household’s income relative to its need based on family 
size. Parental education was the average educational achieve-
ment of parents or caregivers. Neighborhood disadvantage scores 
reflect an ABCD consortium-supplied variable (reshist_addr1_a-
di_wsum). In brief, participants’ primary home address was 
used to generate area deprivation index values (45), which were 
weighted based on results from Kind et al. (46) to create an aggre-
gate measure.

Statistical analyses
To quantify the multivariate relationship between these 836 
graph theoretic metrics and SER, we used principal component re-
gression predictive modeling (47, 48) (Fig. S2). Briefly, this method 
performs dimensionality reduction on the set of predictive fea-
tures (i.e. MDP/PCP), fits a regression model on the resulting com-
ponents (where the number of components is determined in 
nested cross-validation), and applies this model out-of-sample 
using leave-one-site-out cross-validation (LOSO-CV). We control 
for multiple covariates including sex assigned at birth, parent- 
reported race/ethnicity, age, age-squared, mean FD, and mean 
FD-squared. We controlled for race/ethnicity, a social construct, 
to account for differences in exposure to personal/systemic ra-
cism, disadvantage, and opportunity among people of color (49). 
Statistical significance was determined with nonparametric per-
mutation tests, using the procedure of Freedman and Lane (50) 
to account for covariates. Exchangeability blocks were used to 
account for twin, family, and site structure and were entered 
into permutation analysis of linear models (51) to produce permu-
tation orderings (see Supplementary material for details).

To quantify the univariate relationship between each of the 836 
graph theoretic metrics and SER, we conducted 836 separate uni-
variate linear regression models predicting SER from the MDP and 
PCP of each node. These models controlled for the same covariates 
as our multivariate analyses, as well as study site. We extracted 
standardized regression coefficients and evaluated statistical sig-
nificance after correcting for multiple comparisons separately for 
MDP (418 models) and PCP (418 models) using the Benjamini– 
Hochberg false discovery rate (FDR) (52).

To characterize the spatial patterning of associations between 
brain architecture and SER, we downloaded the CIFTI data for the 
principal gradient of functional connectivity in a previous report 
(38) and calculated an average transmodality score for each region 
of interest (ROI). As both the prior and current studies are in the 
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same CIFTI space, this gradient data spanned cortical, subcortical, 
and cerebellar ROIs. We correlated node-wise transmodality scores 
with the MDP/PCP standardized regression coefficients from the 
univariate analyses described above. As distance-dependent spa-
tial autocorrelation can inflate this relation, statistical significance 
was determined using Moran spectral randomization, which can be 
used for brain data beyond the cortical surface (53, 54). This proced-
ure uses an inverse distance matrix based on spatial data, which is 
decomposed into spatial eigenvectors that estimate spatial auto-
correlation (55). These eigenvectors are then applied to random 
normal data to generate null data with a similar spatial structure, 
which can be compared to the observed results.

Results
Within-module degree and participation coefficient 
are strongly related to socioeconomic resources
As reported in our previous study (20), the LOSO-CV out-of-sample 
multivariate relationship between SER and the entire connectome 
(87,153 connections) was rcv = 0.274, PPERM < 0.0001. Against this 
benchmark result, we found that the LOSO-CV out-of-sample 
multivariate relationship between SER and these 836 node-wise 
graph theoretic measures (MDP/PCP) was rcv = 0.162, PPERM <  
0.0001. Thus, the linear MDP/PCP–SER relationship is 59.1% as 
strong as the whole connectome–SER relationship.

We next examined whether the 836 MDP/PCP features reflect 
distinct or overlapping variance in predicting SER relative to the 
87,153 connections of the entire connectome. We built a stacked 
model that predicted SER from both the full connectome predict-
ive model, and the MDP/PCP predictive model. This stacked mod-
el’s LOSO-CV out-of-sample performance was rcv = 0.268; that is, 
the stacked model performed no better than the full connectome 
model alone.

These results suggest two conclusions. First, the graph theoret-
ic features represent a subset of the variance explained by the 
whole connectome. Second, there is strong concentration of SER 
predictivity in the MDP/PCP features, wherein these 836 graph 
theoretic features account for the majority of the multivariate re-
lationship between the functional connectome and SER.

Associations between socioeconomic resources 
and patterns of integration/segregation differ 
across intrinsic connectivity networks
We next conducted univariate analyses to characterize how topo-
logical associations with SER are spatially distributed across ICNs. 
SER was significantly related to the MDP of 67 nodes (16.0% brain 
regions) and the PCP of 45 nodes (10.8% brain regions), broken 
down by ICN in Table S2. As depicted in Fig. 1, different ICNs ex-
hibit strongly divergent relationships with SER, with four notable 
zones. Zone 0 contains the majority of nodes that lack significant 
relations with SER. In zone 1, we observe significant positive betas 
for MDP in default mode network, an unlabeled network (dubbed 
“None”) primarily anchored in orbitofrontal cortex, and cerebel-
lum, indicating stronger within-network connectivity (greater 
segregation) within these networks with higher SER. In zone 2, 
we observe significant positive betas for PCP primarily in subcor-
tical networks, indicating stronger between-network connectivity 
(greater integration) within this network with higher SER. In zone 
3, we observe significant betas for both MDP (negative betas) and 
PCP (positive betas) primarily in the somatomotor network, indi-
cating weaker within-network connectivity (lower segregation) 
and stronger between-network connectivity (higher integration) 
within this network with higher SER.

Socioeconomic resources exhibit divergent 
relationships with network integration/ 
segregation across the unimodal–transmodal 
gradient
As SER levels were differentially linked to the segregation/ 
integration profiles of different ICNs, we examined whether these 
differences spatially conform to the transmodality axis. As shown 
in Fig. 2, we found that transmodality scores were positively associ-
ated with regression coefficients that characterize the relationship 
between SER and MDP (r = 0.42, PPERM < 0.001), and negatively asso-
ciated with regression coefficients that characterize the relation-
ship between SER and PCP (r = −0.21, PPERM = 0.011); note that 
permutation P-values for this analysis were calculated using the 
Moran spectral randomization method (see Materials and meth-
ods section) to account for spatial autocorrelation. These results 
provide quantitative support that SER levels exhibit divergent 
topological associations across the transmodality gradient, with 
higher SER levels yielding greater integration (lower MDP and high-
er PCP) at the sensorimotor processing pole and greater segrega-
tion (higher MDP and lower PCP) at the association processing pole.

Associations between socioeconomic resources 
and network integration/segregation are robust to 
methodological variation
To verify the robustness of our results, we performed two sensitiv-
ity analyses (see Supplementary material for details). First, while 
our LOSO-CV approach facilitates out-of-sample generalizability, 
we also followed a similar procedure to previous ABCD studies 
(56, 57) and replicated our finding that SER exhibits a strong multi-
variate relation with node-wise MDP/PCP after splitting our sam-
ple into sociodemographically matched discovery/replication 
datasets. Second, as regional boundaries, network affiliations, 
and topological properties are conditional on the selected parcella-
tions, we replicated our results using an alternate (Schaefer-300) 
cortical atlas (14). These sensitivity analyses confirm the robust-
ness of our findings characterizing the topological associations, 
and their spatial patterning, of SER.

Discussion
SER across childhood and adolescence calibrate structural and 
functional neurodevelopment, with potent implications for phys-
ical health, occupational attainment, and emotional wellbeing 
across the lifespan (7, 8). In the present report, we leverage graph 
theory and the largest neuroimaging cohort of youth to date to in-
form our understanding of how variation in SER may become bio-
logically expressed along the developing functional architecture of 
cognitive, affective, and sensorimotor brain systems. We found 
that SER was robustly associated with two graph theoretic metrics 
that decompose brain organization in terms of segregation (separ-
ability of different ICNs) and integration (communication between 
different ICNs). Importantly, topological associations with SER 
were not uniform across the brain; rather, higher SER levels were 
related to greater integration of somatomotor and subcortical sys-
tems, but greater segregation of default mode, orbitofrontal, and 
cerebellar systems. Finally, we demonstrate that SER-related net-
work associations were spatially patterned along the brain’s trans-
modal axis. These findings provide critical interpretive context for 
the established and widespread associations of SER with the in-
trinsic functional architecture of the developing brain.

Previous studies characterizing the neural embedding of SER 
have predominantly examined connections between individual 
pairs of regions (e.g. prefrontal–amygdala connectivity) (12). 
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Given brain-wide associations with SER (12, 18–20), and the thou-
sands of connections that undergird behavior (11), our group re-
cently conducted a multivariate predictive modeling study of 
SER in the ABCD Study (20). We revealed that the correlation 

between actual SER and SER predicted from 87,153 connections 
at rest was 0.27, yet the neuroscientific meaning of these findings 
remained unclear. In the present study, we implemented graph 
theory to distill and reduce these 87,153 connections into only 

Fig. 1. Associations between socioeconomic resource (SER) levels and functional brain architecture. A) Profile plot. For each of the 418 brain regions, we 
conducted a univariate regression analysis predicting SER from within-module degree (MDP) and participation coefficient (PCP) for positive edges. This 
plot depicts the pair of standardized regression beta weights (MDP and PCP) for each node (referred to as “SER-predictive beta”), with nodes shaded by 
network affiliation. Positive values reflect that higher SER levels are associated with greater segregation on the x axis (MDP) and greater integration on the 
y axis (PCP), and vice versa for negative values. As such, from Left to Right and Top to Bottom, higher SER levels become associated with increasingly 
higher segregation and lower integration. Dashed lines represent the thresholds for statistically significant univariate relationships following multiple 
comparison correction using the false discovery rate (418 models for MDP and 418 models for PCP). Zone 0 (transparent nodes) contains the majority of 
nodes that lack statistically significant relations with SER. Zone 1 nodes exhibit positive SER-predictive betas for MDP, consistent with greater segregation 
of these nodes with higher SER. Zones 2 and 3 exhibit higher SER-predictive betas for PCP (zones 2 and 3) and lower SER-predictive betas for MDP (zone 3), 
consistent with greater integration of these nodes with higher SER. The hand somatomotor network in the upper left stands out as exhibiting particularly 
extensive integration with higher SER. CinguloOperc, Cingulo-Opercular network; DorsalAttn, dorsal attention network; SMhand, somatomotor hand 
network; SMmouth, somatomotor mouth network; VentralAttn, ventral attention network. B, C) Brain figures visualizing the spatial pattern of the 
univariate relationship (standardized regression coefficients) between SER levels and B) MDP and C) PCP of cortical, subcortical, and cerebellar nodes.
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836 features that describe the neural associations of SER with 
greater neuroscientific interpretability in terms of intra- and 
inter-network relationships. Specifically, we probed node-level in-
tegration and segregation using participation coefficient 
(between-network connectivity) and within-module degree 
(within-network connectivity), and found that these two metrics 
capture more than half of the original association with SER 
(r = 0.16). These findings indicate that these two nodal graph 

properties largely capture the backbone of functional brain archi-
tecture, particularly in relation to SER. Overall, our multivariate 
findings suggest that the developmental construction of an “opti-
mal” small-world-like configuration may be impacted by SER.

To spatially localize the topological effects of SER, we next con-
ducted univariate analyses probing the segregation and integra-
tion of brain regions within 15 major ICNs. First, we found that 
higher SER levels were associated with greater segregation (higher 

Fig. 2. Spatial pattern of associations between socioeconomic resource (SER) levels and functional brain architecture along the unimodal–transmodal 
axis of brain organization. Transmodality scores from 418 nodes were extracted from a previous report (38), which locates nodes along a continuous 
gradient with lower-order somatosensory processing networks at one end (lowest transmodality scores) and higher-order association networks at the 
other end (highest transmodality scores). As such, from Left to Right, brain regions become increasingly more transmodal. In addition, we conducted 
univariate regression analyses predicting SER from node-wise within-module degree (MDP; “SER-Predictive Betas for Module Degree” in Top panel) and 
participation coefficient for positive edges (PCP; “SER-Predictive Betas for PCP” in Bottom panel). As such, from Bottom to Top, higher SER levels become 
associated with increasingly higher segregation in the Top panel, and increasingly higher integration in the Bottom panel. We found a significant positive 
association between transmodality scores and SER-predictive betas for MDP (Top), such that higher SER levels are associated with greater segregation as 
brain regions become more transmodal. We found a significant negative association between transmodality scores and SER-predictive betas for PCP 
(Bottom), such that higher SER levels are associated with lower integration as brain regions become more transmodal. Nodes shaded by network 
affiliation. CinguloOperc, Cingulo-Opercular network; DorsalAttn, dorsal attention network; SMhand, somatomotor hand network; SMmouth, 
somatomotor mouth network; VentralAttn, ventral attention network.
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within-module degree) of the default mode network, an unlabeled 
network (dubbed “None”) primarily anchored in orbitofrontal cor-
tex, and the cerebellum. These systems have been previously 
linked to SER, despite some inconsistencies in directionality (18, 
19, 58, 59), and are respectively purported to support self- 
referential and introspective cognition, reward processing and 
decision-making, and cognitive and motor control (60–63). Thus, 
these findings may reflect neural mechanisms of goal-directed be-
havior as a function of the socioeconomic environment.

Second, we found that higher SER levels were associated with 
greater integration (higher participation coefficient) of the subcor-
tical network implicated in emotion processing and motor plan-
ning (64, 65). These findings converge with extensive evidence 
linking SER to structural, functional, and connectivity profiles of 
subcortical regions, such as the amygdala and hippocampus 
(12). Given their dense expression of glucocorticoid receptors 
(66), these structures may be particularly sensitive to both nurtur-
ing and stressful experiences often associated with SER levels (8). 
Integration of subcortical regions with cortical systems subserves 
adaptive, contextually bound emotional learning and regulation 
(67), indicating a plausible network-level neural basis for adapta-
tions in emotional behavior depending on developmental context.

Lastly, higher SER levels were strongly associated with greater 
integration (lower within-module degree, higher participation co-
efficient) of the somatomotor network. This network is not com-
monly considered in theoretical accounts linking SER to brain 
development (7, 8), despite being consistently implicated in SER 
and transdiagnostic psychopathology in individual studies (18, 68, 
69). The somatomotor network supports motor planning and exe-
cution (60), and recent data point to its involvement in a “somato- 
cognitive action” network that integrates motoric function with 
goal-directed planning (70). One possibility is that SER levels not 
only calibrate association systems that generate and evaluate ab-
stract cognitive representations but also somatomotor systems 
that translate these abstract representations into goal-relevant be-
havior. These findings highlight the need for theoretical accounts 
and empirical studies to delineate how adversity modulates soma-
tomotor development to confer vulnerability and resilience.

Since SER displayed divergent associations with the integration/ 
segregation of different ICNs, we investigated whether this hetero-
geneity could be explained by considering how ICNs are organized 
along the brain’s unimodal–transmodal axis. This evolutionarily 
rooted, hierarchical axis of brain organization is anchored by sen-
sory and motor networks on one end and association networks on 
the other (36–38). This sensorimotor-association gradient captures 
developmental sequences of multiple neurobiological properties, 
from structure and myelination to plasticity and gene expression 
(29). In the present investigation, we hypothesized that this axis 
may also provide a unifying framework for characterizing the 
network-specific effects of SER. Consistent with this hypothesis, 
we found that topological associations with SER were spatially pat-
terned along the transmodal axis, with higher SER levels associ-
ated with greater integration at the unimodal/somatosensory 
pole and greater segregation at the transmodal/association pole.

Over the course of neurodevelopment from childhood to young 
adulthood, lower-order unimodal networks (e.g. somatomotor 
network) become more integrated, whereas higher-order associ-
ation networks (e.g. default mode network) become more segre-
gated (30, 31). Thus, the construction of integrated somatomotor 
systems and segregated association systems may represent a uni-
versal milestone of functional neurodevelopment. Against this 
backdrop, our findings suggest that higher SER may facilitate 
the emergence of this sensorimotor-association hierarchy. 

Conversely, lower SER may delay the emergence of this configur-
ation, consistent with cross-sectional and longitudinal findings 
suggesting disadvantage-related delays in the pace of neurodevel-
opment (19, 71–74). Candidate mechanisms for protracted neuro-
development following disadvantage include material hardship 
(e.g. resource access and lower-quality nutrition), less complex 
social and cognitive stimulation (e.g. under-resourced schools 
and complex reading materials), and toxicant exposure (e.g. 
lead) (8, 73). These exposures may alter synaptic proliferation 
and pruning, and ultimately maturational refinements in network 
communication (integration) and specialization (segregation) (75).

Nevertheless, an alternative interpretation of our findings is that 
developmental trajectories, milestones, and outcomes of brain de-
velopment may be qualitatively different depending on SER. While 
higher SER youth may establish an integrated unimodal and segre-
gated transmodal pole across development, lower SER youth may 
develop distinct topological profiles that allow them to successfully 
navigate the unique demands of disadvantaged environments. At 
the same time, these profiles could also incur cognitive and socioe-
motional challenges across the lifespan (76). This latter hypothesis 
dovetails with data indicating that functional connectivity patterns 
that optimize cognition differ in high- versus low-SER contexts (77), 
as well as a recent review of longitudinal studies concluding that dis-
advantage may engender unique, rather than temporally shifted, 
trajectories of structural brain development (75).

In a separate report (in preparation), we conducted similar ana-
lyses investigating associations between sleep duration, rather 
than SER, with the integration/segregation of the same 15 ICNs 
in the ABCD Study. Strikingly, we found that sleep duration dis-
played similar but even stronger associations with brain architec-
ture. Consistent with the reported associations of SER, these 
effects were strongest for the organization of the somatomotor 
network, such that shorter sleep duration was associated with a 
more segregated somatomotor network. Overall, these findings 
suggest that somatomotor architecture may represent a robust 
neural signature associated with multiple forms of environmental 
stress and opportunity during development.

Our study has several limitations that will be important to ad-
dress in future research. First, our analyses are cross-sectional 
and thus do not support inferences about the direction of causal-
ity or patterns of neurodevelopment. As neuroimaging data from 
future ABCD waves are released, future studies should disentan-
gle the direction of effects and assess how the spatially divergent 
effects of SER unfold longitudinally across development. Second, 
SER levels in the ABCD Study are overall higher compared to the 
national population, an issue further exacerbated by our exclu-
sion criteria (e.g. head motion cutoffs) (78, 79); thus, caution 
should be exercised when attempting to generalize our findings 
to the broader population nationally and worldwide. Third, given 
our focus on defining how topological associations of SER unfold 
along the transmodality axis, we did not seek to examine how 
these complex context–brain associations mediate or are moder-
ated by behavior and mental health. Lastly, in our previous multi-
variate study of SER (20), granular analyses demarcated that 
parental education was the primary factor related to functional 
connectivity (compared to family income-to-needs and neighbor-
hood disadvantage). Here, our focus is on interpreting and spatial-
ly localizing these multivariate effects. This objective introduces 
challenges in dissecting the unique role of each SER component, 
which constitutes an important future direction to inform prior-
ities for policy, prevention, and intervention.

The present study provides essential neuroscientific meaning 
to the established and widespread effects of SER on brain 
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connectivity. By integrating methodological advancements in net-
work neuroscience with theoretical frameworks of brain organ-
ization, we demonstrate that associations between SER and 
network integration/segregation in youth unfold differentially 
along the brain’s transmodal axis, with stronger effects on default 
mode, cerebellar, subcortical, and somatomotor networks. Our 
findings suggest that SER may calibrate the intrinsic graphical 
architecture of the developing brain, highlighting the importance 
of preventive interventions and policy changes that mitigate ex-
posure to disadvantage and scaffold healthy neurobehavioral de-
velopment regardless of context.
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