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Abstract: Deep learning has been applied to many areas in health care, including imaging diagnosis,
digital pathology, prediction of hospital admission, drug design, classification of cancer and stromal
cells, doctor assistance, etc. Cancer prognosis is to estimate the fate of cancer, probabilities of cancer
recurrence and progression, and to provide survival estimation to the patients. The accuracy of cancer
prognosis prediction will greatly benefit clinical management of cancer patients. The improvement of
biomedical translational research and the application of advanced statistical analysis and machine
learning methods are the driving forces to improve cancer prognosis prediction. Recent years, there
is a significant increase of computational power and rapid advancement in the technology of artificial
intelligence, particularly in deep learning. In addition, the cost reduction in large scale next-generation
sequencing, and the availability of such data through open source databases (e.g., TCGA and GEO
databases) offer us opportunities to possibly build more powerful and accurate models to predict
cancer prognosis more accurately. In this review, we reviewed the most recent published works
that used deep learning to build models for cancer prognosis prediction. Deep learning has been
suggested to be a more generic model, requires less data engineering, and achieves more accurate
prediction when working with large amounts of data. The application of deep learning in cancer
prognosis has been shown to be equivalent or better than current approaches, such as Cox-PH. With
the burst of multi-omics data, including genomics data, transcriptomics data and clinical information
in cancer studies, we believe that deep learning would potentially improve cancer prognosis.
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1. Current Development in Cancer Prognosis Prediction

In the United States, approximately 1 in 10 adults have been diagnosed with cancer [1]. Cancer
causes 1 in 6 deaths around the world [1]. While new therapies can improve cancer treatment
and increase survival rate, cancer prognosis is to estimate cancer development, to provide survival
estimation and to improve clinical management. One major task in cancer prognosis is to provide
better survival estimation based on patients’ clinical features and molecular profile.

Current state-of-the art analytic methods in cancer prognosis for survival analysis are statistical
approaches, including Cox proportional hazard regression [2,3], Kaplan Meier estimator [4] and
log-ranks test [5–7]. The main data sources for these approaches in cancer prognosis for survival
prediction are mainly clinical data, including cancer diagnosis, cancer types, tumor grades, molecular
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profile, etc. In recent years, more data types are available to better understand disease status. These
data are high throughput and high dimensional multi-omics data of patient samples [8]. Multi-omics
data include genomic data (i.e., whole genome data, single nucleotide polymorphism (SNP) data,
copy number alternation (CNA) data, etc.), expression data (i.e., mRNA and miRNA data), proteomic
data and epigenetic data (i.e., methylation and other chromosomal modifications). The volume of
multi-omic data has poses challenges to use purely statistical methods to perform prediction. Other
methods, including machine learning approaches, have been applied or established to solve these
problems. So far, some machine learning methods, including principal component analysis (PCA),
clustering and autoencoder, have been tested to classify cancer types [9,10]. Also, machine learning
methods, including support vector machine (SVM), Bayesian network, semi-supervised learning and
decision tree, have been applied to cancer prognosis prediction and shown some good success [11–16].

The establishment of public accessible large-scale cancer databases indeed provides an open-source
platform for researchers and clinicians to share and analyze patients’ multi-omics data. The Cancer
Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and Genotype-Tissue Expression (GTEx)
databases are the major ones. The Cancer Genome Atlas (TCGA) database has clinical and molecular
data of over 11,000 tumor patients across 33 different tumor types [17,18], including genomic (whole
genome and/or exome sequencing, WGS/WES), transcriptomic (RNAseq, small RNAseq), epigenomic
(HumanMethylation450 BeadChip) and proteomic profiling (reverse-phase protein arrays, RPPAs)
data. There are several public portals of TCGA, such as TCGA data portal [19], cBioPortal [20], the
University of California, Santa Cruz cancer genome browser (UCSC Xena) [21] and FIREHOSE [22].
The Gene Expression Omnibus (GEO) database is a public data repository storing microarray and
next-generation sequencing (NGS) data, as well as other high-throughput functional genomic datasets,
such as genome methylation, chromatin structure, genomic mutation/copy number variation, protein
profiling, and genome–protein interactions [23,24]. The Genotype-Tissue Expression (GTEx) database
contains whole-genome sequencing and RNA-sequencing profiles from ~960 postmortem adult donors
of many tissue samples that have tissue images stored in an image library for public access [25,26].
These public data not only provide unprecedented opportunities to better illustrate the molecular
mechanism of cancers and normal tissues, but also become the major resources to apply novel methods,
build models and perform predictions in cancer prognosis.

2. Overview of Deep Learning

Deep learning, also known as deep neural network (DNN), is a branch of machine learning that
has made some major breakthrough in recent years due to the increase of computation power, the
improvement in model architecture [27] and the exponential growth of data captured by cellular and
other devices. There are three basic machine learning paradigms, supervised learning, unsupervised
learning and reinforcement learning. Supervised learning algorithm are those should be fed in a
set of training data containing features (inputs) and labels (outputs). Some popular supervised
learning algorithms include linear and logistic regression [28], SVM [29], naive bayes [30], gradient
boosting [31,32], classification trees, and random forest [33,34]. These methods are commonly used
in classification and regression studies. Unsupervised learning, on the other hand, does not require
pre-existing output/labels and aim to find patterns based on the input data distributions. Clustering
(e.g., hierarchical clustering [35,36], K-means [37,38]) is the most common unsupervised learning
method. Latent Dirichlet Allocation (LDA) [39], PCA [40] and word2vec [41], are among the most
recent popular unsupervised learning approaches. Neural network (NN) can either be supervised,
unsupervised or semi-supervised learning, suggesting its flexibility. Reinforcement learning [42] can
be summarized as a reward system for the computer program to maximize the rewards in order to
search for the best solution [27].

Deep learning (or DNN) consists of multiple layers of artificial neurons that mimic neurons
in human brain. Similar to linear regression, each neuron has a weight value that is updated by
gradient descent algorithm during backpropagation to minimize global loss function [43]. By applying
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nonlinearity using activation function, such as sigmoid, tanh, or relu, to the multiple layers of each
neuron, more abstract mathematical relationship was extracted from the input data to map to the
output [44]. A well trained model can therefore be used to predict new unlabeled data. Deep learning is
a branch of machine learning, and therefore inherits some common knowledge foundation in machine
learning, including basic probability and statistics, loss/cost function and etc., but in the meantime has
more flexibility and can be built towards more complex layers and multiple neurons in each layer to
have better predictive power [45–50]. The most commonly used NN in medical research includes fully
connected NN (or simplified as NN) for structured data, convolutional NN (CNN) for image data, and
recurrent NN (RNN) for text and sequence data.

In recent years, deep learning has been applied to biomedical research to annotate pathogenicity
of genetic variants [51,52], show state-of-the-art performance in the task of genomic variant calling [53]
and improve protein folding prediction [54,55]. Compared to other methods, deep learning is more
flexible and generic to be applied on discrete or continuous data [56], requires less feature engineering
with expertise knowledge compared to machine learning in general [27] and works better than many
state-of-the-art methods [53].

3. Current Application of Deep Learning in Cancer Prognosis

To review the application of deep learning in the field of cancer prognosis, we used key words,
including “deep learning”. “neural networks” and “cancer prognosis”, and searched literature on
PubMed. To better understand the development of the field and for better comparison, we have
included studies that built simple NN models which consist of 3–4 layers and studies that built DNNs
which consist of more than 4 layers. We reviewed and summarized these studies and models. Based
on the types of NN and whether feature extraction has been used, the publications that we reviewed
could be grouped into three classes: (1) NN models with no feature extraction, (2) Feature extraction
from multi-omics data to build fully connected NNs, and (3) CNN based models. Here, we reviewed
and summarized these studies and models.

3.1. NN Models with no Feature Extraction

As mentioned, Cox proportional hazards model (Cox-PH) is a multivariate semi parametric
regression model that has been used widely in cancer studies to compare survival characteristics
between two or more treatment groups [2,57]. Some early attempts in cancer prognosis have either used
clinical tumor and patient data [58], cellular features from tissue slides [14] or some genes expression
data [13] to build the models. To show the performance, these studies compared the performance of
NN to Cox-PH and/or Kaplan Meier methods, and showed that simple NN models have achieved
similar performance compared to these methods (Table 1). Also, in these studies, because the number
of features was relatively small without omics data, feature selection was not necessary.
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Table 1. Summary of neural network models with no feature extraction.

Publication a Type of
Cancer Type of Data Sample Size Methods Architecture Outputs Hyperparameters Validation NN Model Performance

Joshi et al.,
2006 [58] Melanoma Clinical data of

tumors

1946 (1160
females and
786 males)

3 layers NN Normalized input Survival time Sigmoid activation Not reported

Achieved similar
performance as Cox and
Kaplan Meier statistical

methods

Chi et al., 2007
[14] Breast cancer

Cell images to
measure 30 nuclear

features

Dataset 1: 198
cases;

Dataset 2: 462
cases

3 layers NN 30 input nodes, 20 hidden nods Survival time Epoch = 1000,
Sigmoid activation

10 fold cross
validation

As good as conventional
methods

Petalidis et al.,
2008 [13]

Astrocytic
brain tumor

A list of genes
expression from
microarray data

65

A single layer
perceptron

and an output
(multiple

binary
models)

Number of inputs equals to the
number of classifier genes in

different models
Tumor grades Lr 1 = 0.05,

Epoch = 100

Leave-one-out
cross

validation

44, 9 and 7 probe sets have
achieved 93.3%, 84.6%, and

95.6% validation success
rates, respectively.

Ching et al.,
2018 [59]

10 types of
cancer

TCGA gene
expression data,
clinical data and

survival data

5031 NN
Input normalization and

log-transformed, 0–2 hidden
layers (143 nodes)

Survival time

L1, L2, or MCP 2

regularization, tanh
activation for hidden
layer(s), dropout, Cox
regression as output

layer

5-fold cross
validation

Similar or in some cases
better performance than

Cox-PH, Cox-boosting or RF

Katzman et al.
2018 [60] Breast cancer

METABRIC 3,
4 genes data and

clinical information,
GBSG 4: clinical

data

METABRIC:
1980, GBSG:

1546 training,
686 testing

NN

METABRIC: 1 dense layer, 41
nodes

GBSG: patients clinical
information, 1 dense layer, 8

nodes

Survival

SELU 5 activation,
Adam optimizer,

dropout, LR decay,
momentum

20% of
METABRIC

patients used
as test set
GBSG has
split test
dataset

C-index: 0.654 for
METABRIC and 0.676 for

GBSG, both are better than
CoxPH

Jing et al. 2019
[61]

Breast cancer,
nasopharyngeal

carcinoma

METABRIC,
GBSG,

NPC 7: 8–9 clinical
features

METABRIC:
1980

NPC: 4630
DNN

METABRIC: 4 hidden layers, 45
nodes of each; GBSG: 3 hidden

layers, 84, 84 and 70 nodes,
respectively

NPC, 3 layers, 120 nodes of each
layer in model 1, 108, 108 and 90
nodes respectively in model 2.

Survival

ELU 6, dropout, L1 and
L2, momentum, LR

decay, batch size. Loss
function equals to

mean square error and
a pairwise ranking loss

After removed
patients with
missing data,
20% used as

test set

C-index: 0.661 for
METABRIC and 0.688 for

GBSG, both are better than
CoxPH and DeepSurv.

c-index ranges 0.681–0.704
depends on input data for
NPC, better than CoxPH.

Abbreviation:1 Lr; learning rate; 2 MCP: minimax concave penalty. 3 METABRIC: Molecular Taxonomy of Breast Cancer International Consortium; 4 GBSG: the German Breast Cancer Study
Group; 5 SELU: scaled exponential linear unit; 6 SELU: exponential linear unit; 7 NPC: nasopharyngeal carcinoma. aLinks to source codes if available from publications: Petalidis et al. [13]:
http://www.imbb.forth.gr/people/poirazi/software.html. Ching et al. [59]: https://github.com/lanagarmire/cox-nnet. Katzman et al. [60]: https://github.com/jaredleekatzman/DeepSurv.
Jing et al. 2019 [61]: http:/github.com/sysucc-ailab/RankDeepSurv.

http://www.imbb.forth.gr/people/poirazi/software.html
https://github.com/lanagarmire/cox-nnet
https://github.com/jaredleekatzman/DeepSurv
http:/github.com/sysucc-ailab/RankDeepSurv
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Since the wide acceptance of Cox regression model in survival prediction, Cox regression was
used as the output layer to build NNs to predict cancer survival. Cox-nnet [59] is a NN network which
used genomic data from TCGA as input and Cox regression as the output layer. To avoid overfitting,
they tested ridge regularization, dropout, reduction of NN complexity by using 0 to 2 hidden layers
and a combination of ridge and dropout in training the NN (Table 1). They reported that dropout
and reduction of NN complexity by using 1 hidden layer worked the best to avoid overfitting in their
experimental setting. To measure the performance, they showed that Cox-net performed better than
Cox-PH, Cox-boost (based on gradient boosting) or random forest in the TCGA datasets that they have
tested (Table 1).

Katzman et al. has built a neural network model, named DeepSurv, to perform survival analysis.
DeepSurv is a feed forward NN that uses patient’s clinical data as input and applied dropout, learning
rate decay, regularization, and other commonly used hyperparameters to optimize for different
datasets [60]. Their results showed that this model performed better than CoxPH models (Table 1).
Another neural network model, named RankDeepSurvival, has adapted the basic architecture of
DeepSurv and increased the depth of the network to build 3–4 hidden layers’ DNN to perform survival
analysis in multiple datasets, including cancer datasets [61]. More importantly, they have updated the
loss function by using the sum of mean squared error loss and a pairwise ranking loss based on ranking
information on survival data [61]. They reported that RankDeepSurivival model outperformed CoxPH
models and DeepSurv model in breast cancer datasets from Molecular Taxonomy of Breast Cancer
International Consortium (METABRIC) and the German Breast Cancer Study Group (GBSG) (Table 1).
Both of these studies have further validated their models performed better than CoxPH models in
other disease datasets, such as heart disease and diabetes, which suggested that deep learning models
can be generalized for different tasks.

3.2. Feature Extraction from Gene Expression Data to Build Fully Connected NNs

Health data has the characteristics of high-dimension, small sample size and complex non-linear
effects between biological components [62,63]. Dimension reduction assists the integrative analysis of
multi-omics data [64]. These following studies have tested different algorithms to reduce dimension of
sequencing data, extract a smaller number of features and train a fully connected NN.

In a study to predict breast cancer prognosis, Sun et al. used a method named minimum
redundancy maximum relevance (mRMR) [65] to reduce the dimensionality of gene expression data
and copy number alternation (CNA) data by extracting 400 and 200 genes, respectively, from these
datasets [66]. Next, 3 NN models were built using features selected from gene expression data, CNA
data or clinical data, respectively. Finally, prediction outputs of these three NN models were added
up based on a weighted linear aggregation to calculate a final prediction score. They named this
model as Multimodal Deep Neural Network by integrating Multi-dimensional Data (MDNNMD).
When they selected threshold of 0.443–0.591, a high specificity (0.95–0.99), yet low sensitivity (0.2–0.45)
were reported (Table 2). To show model performance, they reported that ROC (0.845), accuracy, and
precision, and Matthew’s correlation coefficient (MCC) of MDNNMD outperformed other methods,
including SVM, random forest, and logistic regression (Table 2). One of the reasons that the model has
a big performance difference between specificity and sensitivity is likely due to the imbalanced data in
training the NN (491 short term survival versus 1489 long term survival cases).
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Table 2. Summary of neural network models that used feature extraction.

Publication a Type of
Cancer Type of Data Sample Size Methods Used in

Feature Extraction Architecture Outputs Hyperparameters Validation NN Model
Performance

Sun et al.,
2018 [66] Breast cancer

Gene expression
profile, CAN 1

profile and clinical
data

1980 (1489 LTS 2,
491 non-LTS)

mRMR (extracted 400
features from gene
expression and 200
features from CNA)

4 hidden layers (1000,
500, 500, and 100 nodes,
respectively)

Survival time
Lr 3 = 1e–3,
Tanh activation, epoch
10–100, batch size = 64

10-fold cross
validation

ROC4: 0.845 (better
than SVM, RF5, and LR
6), Sp 7: 0.794–0.826,
Pre 8: 0.749–0.875, Sn 9:
0.2–0.25, Mcc10:
0.356–0.486

Huang et al.,
2019 [67] Breast cancer

mRNA, miRNA,
CNB 11, TMB 12,
clinical data

583 (80% for
training, 20% for
testing in each fold
of cross validation)

lmQCM 13,
Epigengene matrix to
extract 57 dimensions
from mRNA data and
12 dimensions from
miRNA data

Hybrid network,
mRNA and miRNA
dimension reduction
inputs have 1 hidden
layer (8 and 4 nodes,
respectively), CNB,
TMB and clinical data
have no hidden layer

Survival time

Adam optimizer,
LASSO 14

regularization,
Epoch = 100, sigmoid
activation,
Cox regression as
output,
batch size = 64

5-fold cross
validation

Multi-omics data
network reached a
median c-index15 of
0.7285

Hao et al.,
2018 [62]

Glioblastoma
multiforme

Gene expression
(TCGA), pathway
(MsigDB 16)

475 (376 non-LTS,
99 LTS)

Pathway based analysis
(12,024 genes from
mRNA data to 574
pathways and 4359
genes)

4 layers NN: gene
layer—pathway
layer—hidden
layer—output

Survival time

Lr = 1e−4,
L2 = 3e−4,
dropout,
softmax output

5-fold
validation

AUC17 = 0. 66 ± 0.013,
F1 score = 0.3978 ±
0.016

Chaudhary et
al., 2018 [68] Liver cancer

mRNA, miRNA,
methylation data,
and clinical data
(TCGA)

360 samples
training, (5
additional cohorts,
230, 221, 166, 40 and
27 samples for
validation)

Autoencoder
unsupervised NN to
extract 100 features
from mRNA, miRNA
and methylation data

3 hidden layers NN
(500, 100, 500 nodes,
respectively) and a
bottleneck layer

Feature
reduction

Epoch = 10,
Dropout = 0.5, SGD 18 Not reported NN outputs were used

for K means clustering.

Shimizu and
Nakayama,
2019, [69]

Breast cancer METABRIC 19
1903 (METABRIC,
952 samples for
training)

Select 23 genes by
statistical methods 3 layers NN Survival time

Lr = 0.001,
Epoch = 1000,
Cross entropy for loss
function
Relu activation for
hidden nodes, softmax
function for output
layer

951 samples
from
METABRIC

NN node weights were
used to calculate a
mPS20

Abbreviation: 1 CNA: copy number alternation, 2 LTS: long term survivals; 3 Lr: learning rate; 4 ROC: receiver operating characteristic; 5 RF: random forest, 6 LR: logistic regression, 7 Sp:
specificity; 8 Pre: precision; 9 Sn: sensitivity; 10 Mcc: Mathew’s correlation coefficient. The equation is (TP*TN-FP*FN)/

√
[(TP + FN)*(TP + FP)*(TN + FN)*(TN + FP)]; 11 CNB: copy number

burden; 12 TNB: tumor mutation burden; 13 lmQCM: local maximum Quasi Clique Merger [67]; 14 LASSO: also known as L1 regularization; 15 c-index (concordance index): Steck et
al. [70] suggested that c-index is equivalent to AUC. Specifically, c-index closes to 0.5 suggested random prediction. The closer c-index gets to 1, the better the model is. 16 MsigDB:
Molecular Signatures Database; 17 AUC: area under the curve of ROC; 18 SGD: stochastic gradient descent; 19 METABRIC: Molecular Taxonomy of Breast Cancer International Consortium;
20 mPS: molecular prognostic score. a Links to source codes if available from publications: Sun et al., 2018 [66]: https://github.com/USTC-HIlab/MDNNMD. Huang et al., 2019 [67]:
https://github.com/huangzhii/SALMON/. Hao et al., 2018 [62]: https://github.com/DataX-JieHao/PASNet. Shimizu and Nakayama, 2019, [69]: https://hideyukishimizu.github.io/mPS_breast.

https://github.com/USTC-HIlab/MDNNMD
https://github.com/huangzhii/SALMON/
https://github.com/DataX-JieHao/PASNet
https://hideyukishimizu.github.io/mPS_breast
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There are many ways to reduce data dimensionality. Huang et al. have obtained five omics data,
including gene expression (mRNA) data, miRNA data, copy number burden data, tumor mutation
burden data and clinical data, performed feature extraction from these data and built a deep learning
model to predict breast cancer patient survival [67]. They also applied a Cox proportional hazards
model to develop a survival analysis learning with a multi-omics NN (or SALMON) model [67]. In
this model, input layers were comprised of features extracted from mRNA and miRNA data using
a local maximal Quasi-Clique Merger (lmQCM) algorithm inspired by spectral clustering [70]. A
matrix, named eigengene, was generated from lmQCM algorithm and used to represent 57 and 12
dimensions from mRNA and miRNA data, respectively (Table 2). In the hidden layer, mRNA and
miRNA data comprises 8 and 4 neurons, respectively. Adam optimizer and lasso regularization were
used as hyperparameters in training (Table 2). Sigmoid function was used as activation function after
each forward propagation to introduce non-linearity and Cox proportional hazards regression and
was used as the output to predict survival time. This model achieved a median concordance index
(c-index) [71] of 0.728 which has been suggested to outperform other models that didn’t include high
dimensional features extracted from mRNA and miRNA data (Table 2), suggesting feature extraction
improves model performance.

In addition to reducing data dimension using algorithm, feature extraction by application of
domain knowledge as selection criteria has also been tested. Hao et al. used gene expression data from
475 glioblastoma multiforme patients with ~12 k genes that contained survival information to build a
prognosis model [62] (Table 2). They grouped the samples into two groups, long term survival (LTS,
survival time >= 24 months) and non-long term survival (non-LTS, survival time <24 months). Next,
they used pathway data from the Molecular Signatures Database (MSigDB) and mapped 4359 genes to
574 pathways. They constructed a NN using the 4,359 genes as input and 574 pathways as the first
hidden layer and applied dropout and L2 regularization to avoid overfitting. Since 20% of the samples
are LTS, the training data suffered from imbalanced data. It is a common problem in handling patient
data. They suggested PASNet achieved AUC of 0.66 that is better than the performance of logistic
LASSO, random LASSO or SVM model. The advantage of PASNet is that it took biological pathways
into consideration when building a NN model.

NN itself can be used to extract features from multi-omics data. Hepatocellular carcinoma (HCC)
is the most common type of liver cancer. High heterogeneity of the disease makes the prognosis
prediction challenging. Chaudhary et al. built a NN model using multi-omics data of 360 HCC samples
from TCGA database [68]. The multi-omics data includes mRNA expression, miRNA expression, CpG
methylation and clinical data. They used unsupervised autoencoder NN to transform features and
perform dimension reduction [68] and extract 100 feature nodes from miRNA, mRNA and methylation
data (Table 2). Next, they used a Cox-PH model to identify 37 significant features, applied K-means
clustering to identify survival risk and used ANOVA to get feature ranking. Finally, prognosis
prediction was built using a SVM model. In another study, Shimizu et al. picked 23 genes from 184
prognosis related genes based on the statistical significance of these individual genes on the overall
survival of breast cancer patients [69]. They used gene expression levels of these 23 genes to build a
NN to get gene weights from NN’s nodes and generate a molecular prognostic score (mPS) (Table 2).
The mPS was then applied to evaluate prognosis. Although both studies didn’t report the performance
of the NNs in their study, these studies suggested that NN can also be a useful tool for dimension
reduction of multi-omic data for prognosis prediction.

3.3. CNN-Based Models

In recent years, deep learning approach has been made the most significant progress because
state-of-the-art networks have been built using convolutional NN (CNN) [45–48] and recurrent NN
(RNN) [49,50]. Many success have been shown in the areas of image recognition/classification and
computer vision by CNN, and natural language processing (NLP) and sequencing data investigation by
RNN. Specifically, great performance has also been witnessed in many medical areas, including
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classification of skin cancer types [72,73], identification of pathological histological slides [74],
identification of Aβ plague region in Alzheimer’s patients, classification of cancer cells from normal
cells using nuclear morphometric measure [75], and extraction information from electronic health
records (EHR) to predict hospital readmission [76,77], mortality [78], and clinical outcome [79]. In
cancer prognosis studies, CNN has been applied to the classification of cancerous tissue for survival
prediction or extraction of feature for downstream prognosis. Some of these studies also added RNN
layers to extract sequential information from the data.

Glioblastoma multiforme (GBM) is a type of brain tumor. Methylation of O6-methylguanine
methyltransferase (MGMT) gene promoter has been found to associate with longer survival and better
response to a drug, temozolomide. Therefore, methylation of MGMT gene has been considered as a
biomarker. However, verification of MGMT gene promoter in the brain is difficult and invasive. Using
high quality MRI images from patients that have labeled information of methylation status of MGMT
promoter, a 50-layer pre-trained CNN model, ResNet50 [80] was used for transfer learning and achieved
the highest accuracy of ~95% compared to ResNet18 and ResNet34 [81] (Table 3). Similarly, another
research group used brain MRI images from a different cohort of GBM patients to build a bidirectional
convolutional recurrent NN (CRNN) model to predict methylation status of MGMT gene promoter
and suggested patient’s sensitivity to temozolomide based on the prediction of methylation status [82].
RNN layers were added into this model to capture sequential information of MRI images [82], but the
effect was not well studied since the model performance was not compared with or without RNN layer.
In this study, the authors applied many techniques to reduce overfitting, such as L2 regularization,
dropouts, and data augmentation (Table 3). Although the training accuracy is high (0.97), but validation
and test accuracies were only 0.67 and 0.62, respectively, suggesting the model was still overfit to the
training data. Instead of predicting methylation status of MGMT gene promoter in glioblastoma cancer,
Mobadersany et al. trained a survival convolutional NN (SCNN) using histology images, clinical data
with or without genomic markers in glioma and glioblastoma and showed the prediction power of this
NN has surpassed the prognostic accuracy of the WHO genomic classification and histologic grading
in 2018 [83]. Using H&E-stained tissue sections of 1,061 samples from 769 patients, regions of interest
(ROIs) that contain viable tumor cells by a web-based platform were identified in tissue images to
train a CNN with Cox proportional hazard regression as the output layer to predict patient outcomes
(Table 3). They also compared the performance of the NN with or without inclusion of some genomic
data (i.e., IDH gene mutation and 1p/19q codeletion). They showed that with the addition of genomic
data, the performance has improved the median of c-index from 0.754 to 0.801 (Table 3).
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Table 3. Summary of CNN based models.

Publication a Type of Cancer Type of Data Sample Size Architecture Outputs Hyperparameters Validation NN Model Performance

Korfiatis et al.,
2017 [81]

Glioblastoma
multiforme MRI images

155 (66 methylated and
89 unmethylated tumors)

Training: 7856 images
(934 methylated, 1621
unmethylated, 5301 no

tumor)
Testing: 2612 images (250

methylated, 335
unmethylated, 2027 no

tumor)

Base model:
ResNet18
ResNet34
ResNet50

3 classes,
methylated,

unmethylated,
or no tumor

Lr1 = 0.01, mini Batch =
32, momentum = 0.5,
weight decay = 0.1,

Relu activation,
Epoch = 50, SGD2 as

optimizer, batch
normalization

Stratified
cross-validation

ResNet50 based model
validation dataset

performance: Accuracy =
94.9%, Precision = 96%,

Recall = 95%
ResNet34 Accuracy =

80.72%, Precision = 93%,
Recall = 81%, ResNet18

Accuracy = 76.75%,
Precision:80%, Recall =

77%

Han et al., 2018
[81]

Glioblastoma
multiforme MRI images

458,951 image frames
from 5235 MRI scans of

262 patients (TCIA3)

3 convolutional layers, 2
fully connected layers, 1

bi-directional GRU4 layer
(RNN), 1 fully connected

layer, softmax output

2 classes
(positive and

negative
methylation

status)

Data augmentation,
(rotation and flipping,
90-fold increase of the
dataset), Lr = 5e−6 –

5e−1,
dropout (0–0.5), Adam

optimizer,
Epoch = 10,

L2 regularization, batch
norm, relu activation

Validation set
reached a

precision of 0.67,
an AUC of 0.56.

Training data set
obtained 0.97 accuracy.
0.67 and 0.62 accuracies

on the validation and test
set, respectively

Mobadersany et
al., 2018 [83]

Low grade
glioma and

glioblastoma

H&E images,
genomics data,

clinical data

769 gliomas from TCGA,
containing genomics data
(IDH mutation and 1 p/19

q codeletion), clinical
data and 1061 slides.

VGG19 is the base model
and cox regression used
as output, Built 2 models
with or without genomics

data

Survival

Data augmentation, Lr =
0.001, epoch = 100,

exponential learning
decay

Monte Carlo
cross-validation

SCNN median c-index is
0.754, GSCNN (adding

IDH mutation and 1 p/19
q codeletion as features)

improved the median
c-index to 0.801

Kather et al.,
2019 [74]

Colorectal
cancer

H&E tissue
slides

Training set (tissue): 86
H&E slides to create

100,000 image patches
Testing set (tissue): 25

H&E slides of 7180 image
patches

Training set (OS5): 862
H&E slides from 500

TCGA patients
Validation set (OS): 409

H&E slides from 409
DACHS patients

Base models: VGG19,
AlexNet, GoogLeNet,

SqueezeNet and
Resnet50, add an output

softmax layer

9 tissue type
classification

Lr = 3e −4,
Iteration = 8,

Batch size = 360, softmax
function

An independent
cohort of 409

samples

VGG19 gets the best
results, 94–99% accuracy
in tissue class prediction
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Table 3. Cont.

Publication a Type of Cancer Type of Data Sample Size Architecture Outputs Hyperparameters Validation NN Model Performance

Bychkov et al.,
2018 [84]

Colorectal
cancer

H&E images of
tumor tissue
microarray

420 patients (equal
number of survived or
died within five years

after diagnosis)

VGG16 to generate a 16 ×
16 feature from input
data, followed with 3

layers LSTM 6 (264, 128
and 64 LSTM cells,

respectively)

Survival

Default hyperparameters
in VGG16, LSTM used
hyperbolic tangent as

activation, binary cross
entropy loss function,
Adadelta optimizer

60 samples for
validation, 140

samples for
testing

CNN + LSTM model
reached an AUC 7 of 0.69,
better than CNN + SVM,
CNN + LR 8, or CNN +

NB 9

Courtiol et al.,
2019 [85] Mesothelioma H&E slides

2981 patient slides
(MESOPATH/MESOBANK,
2300 training, 681 testing)

Validation: 56 patients
(TCGA)

Divided each slide to up
to 10,000 tiles as input

data
3 classes of each tile:

epithelioid, sarcomatoid
or biphasic. ResNet50 for

feature extraction

Survival
Multi-layer perceptron

with sigmoid activation,
Autoencoder

56 patient slides

MesoNet outperformed
histology-based

classification but no
better than a linear

regression based model
(Meanpool)

Wang et al.,
2019 [86]

High grade
serous ovarian

cancer

CT scanning
venous phase

images

Feature learning cohort:
8917 CT images from 102

patients

Five convolutional layers
(24, 16, 16, 16, 16 filters,

respectively)

16 dimensional
feature vector

Batch normalization,
average pooling between

adjacent convolutional
layers

Not reported CNN outputs were used
to build Cox-PH model

Abbreviation: 1 Lr: learning rate; 2 SGD; stochastic gradient descent; 3 TCIA: The Cancer Image Archive; 4 GRU: gated recurrent unit, which is similar to LSTM and is used in
building RNN models; 5 OS: overall survival; 6 LSTM: long short term memory cell; 7 AUC: area under the curve of ROC; 8 LR: logistic regression; 9 NB: naive bayes; 10 c-index: also
known as Harell’s concordance index. a Links to source codes if available from publications: Han et al., 2018 [81]: http://onto-apps.stanford.edu/m3crnn/. Kather et al., 2019 [74]:
http://dx.doi.org/10.5281/zenodo.1214456,http://dx.doi.org/10.5281/zenodo.1420524, http://dx.doi.org/10.5281/zenodo.1471616, Wang et al., 2019 [86]: http://www.radiomics.net.cn/post/111.

http://onto-apps.stanford.edu/m3crnn/
http://dx.doi.org/10.5281/zenodo.1214456
http://dx.doi.org/10.5281/zenodo.1420524
http://dx.doi.org/10.5281/zenodo.1471616
http://www.radiomics.net.cn/post/111
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Colorectal cancer (CRC) is a type of solid tumors. H&E images are the major tool to diagnose
CRC and determine the stage of CRC. In H&E slide of CRC patients, it is important to differentiate
normal tissues from cancer regions. Kather et al. [74] hand labeled 100,000 image patches using 86
CRC H&E slides into 9 tissue classes, including adipose, background, debris, lymphocytes, mucus,
smooth muscle, normal mucosa, stroma and cancer epithelium [74]. They used these images as the
training data with an additional of 7,180 images from 25 patients as the testing data to build a CNN
model using state-of-the-art CNN networks, such as VGG19 and Resnet50, to perform transfer learning
and have reached 94–99% accuracy in classifying tissue types (Table 3). By calculating the hazard
ratios (HRs) for shorter overall survival (OS) and selecting optimal cutoffs based on the ROC curve,
the authors defined a deep stromal score and suggested although not significant correlated, deep
stromal score shows a trend of correlation to shorter OS. In another CRC study, Bychkov et al. [84]
used CNN models as a tool for feature extraction and built an RNN (LSTM) model to predict CRC
patient survival. They used VGG16 as the base model to perform transfer learning and extracted a
256-tile feature vector from each input H&E image of tumor tissue microarray (Table 3). They then
input these feature vectors of 220 patients (equal number of patients in short and long term survival
group) to train a LSTM-cell RNN model. They also trained SVM, naive bayes and logistic regression
models to compare the performance. They showed that LSTM model reached an AUC of 0.69, while
SVM, naive bayes, and logistic regression reached AUCs of 0.64, 0.61, 0.65, respectively. They also
reported that human experts can only reach an AUC of 0.57–0.58, suggesting that the performance of
this model is better than human.

Malignant mesothelioma is a type of rare and highly lethal cancer of the pleural lining. According
to the WHO classification, patients tissue biopsy can be classified into epithelioid, sarcomatoid and
biphasic types. Prognosis of mesothelioma is closely associated with tissue types as epithelioid type
has the longest overall survival, sarcomatoid type has the shortest overall survival and biphasic type is
in-between [85]. Based on the clinical knowledge, Courtiol et al. built a MesoNet model using 100 to
10,000 tiles of histological tissue from 2,300 H&E slide from the MESOPATH/MESOBANK database.
By transfer learning of ResNet50 and performing feature extraction, a matrix of features (2,048) was
extracted from each tile to train MesoNet. C-index showed that MesoNet performed better than
histological based classification methods, but not as good as a linear regression based model, named
Meanpool (Table 3) [85].

Similarly, CNN models can be used to extract features from images for building other machine
learning model to predict cancer prognosis. High-grade serous ovarian cancer (HGSOC) is the most
common and most lethal histological type of ovarian cancer. Wang et al. [86] used CT-based images
and trained a CNN model to extract image features for building a Cox-PH survival prediction model.
In this study, 102 HGSOC patients, who underwent debulking surgery and have remained in 2-year
follow-up study, were used as a feature extraction cohort (Table 3). A total of 8,917 tumor images were
used to train an unsupervised CNN model for feature extraction of a 16-dimensional feature vector.
Next the feature vector was fed to a multivariate Cox-PH regression model to identify the association
of feature vector and recurrence of HGSOC. This study provides an example of using NN, particularly
CNN, to extract image features for downstream studies.

4. Challenges in the Application of Deep Learning in Cancer Prognosis

By reviewing literature, we have noticed that many state-of-the-art deep learning techniques have
been applied to cancer prognosis prediction, indicating the great potential and the urgent need of
utilizing multi-omics data from cancer patients to test new algorithm and improve model performance
(Figure 1). Meanwhile, we found that there are seven main challenges in applying deep learning
approach in cancer prognosis prediction to achieve high performance. We also suggested some
potential solutions for these challenges.
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Figure 1. Workflow of building deep learning models for cancer prognosis prediction. The sources
of input data include clinical data which could be text data and/or structured data (numeric and/or
categorical data), clinical images which could be tissue slides in H&E staining or immune-histological
staining. MRI, CT, etc, and genomic data which could be expression data (i.e., mRNA expression data,
miRNA expression data), genomic sequence data (i.e., whole genome sequence, SNP data, CNA data,
etc), epigenetic data (i.e., methylation data), etc. In the next step, researchers will examine the data to
handle missing data and imbalanced data. Reduction of high dimensional genomic data is an optional
step here. Features are then used to build a deep learning (neural network) model. The type of models
to use depends on the input data. For example, fully connected NN is commonly used for structured
datasets. Image data is used to build CNN models. Sequence data is often used to build RNN models.
If multiple types of data exist, hybrid models can be built to accept different data types. After the model
is built, the model will be tested in the holdout (or validation) datasets. It will also be important to test
and compare the models using benchmark datasets. Finally, the model can be used in applications.
Abbreviations: FPR: false positive rate; TPR: true positive rate.

First, the amount of patient data is still relatively small. Majority models were built on hundreds
of patient samples (Tables 1–3). It is common to see sub-optimal performance and overfitting problems
in these studies. The performance of deep learning models is leveraged by the amounts of data [27].
To combat overfitting, researchers applied regularization methods (ridge and lasso or L1 and L2),
dropout, data augmentation, reduction of NN complexity to improve model performance, but the effect
is still limited by the amount of data. To improve model performance with small datasets, transfer
learning with pretrain models on large amounts of datasets have shown success solving some of the
problems [87–89]. In addition, newer methods and algorithms have also been proposed and tested to
combat small sample size problem, such as few-shot or one-shot learning in CNN [90,91]. Another
direction is to perform data simulation. It will be interesting to test these methods in the field of
cancer prognosis.

Second, imbalanced patient data is commonly found. For some high mortality cancers, it is very
common to find less survivors in the study groups. Imbalanced data in training will reduce the model
performance. While under-sampling in the majority group is suboptimal, generation of synthetic
data could be one of the solutions. In image classification problem, data augmentation is also one
way to increase sample size to adjust the groups that have fewer sample sizes. Also, reporting model
performance should use additional algorithms, such as precision, recall, F1 score and confusion matrix,
rather than just reporting accuracy to better reflect the model performance.

Third, handling sparse or missing data from noisy patient clinical profiles is also a challenge.
Missing data in building a model reduce the power of the model in prediction. Common ways to
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handle missing data include exclusion of missing data observation, but this is very costly when patient
samples are already very limited. A better way to overcome this problem is to do data imputation based
on known data. Rendleman et al. proposed to perform imputation using Multivariate Imputation by
Chained Equations (MICE) [92] to overcome the problem of missing or sparse data in cancer patient
outcome [93]. MICE is a multiple imputation technique [94] that works under the assumption that the
missing data are missing at random. In this study, they showed that prediction using naive bayes or
random forest both works slightly better after imputation, suggesting imputation could be a useful
way to improve prediction.

Fourth, health care data, particularly sequencing data, is high dimensional, feature extraction
could be the solution to improve model performance. As we showed in Table 2, studies have performed
feature extraction by using algorithm or applying domain knowledge to improve model performance.
NN can also be used for feature extraction and dimension reductions [68,86]. It will be interesting to
test and apply new way of data embedding for high dimensional data.

Fifth, more generic deep learning models are needed and model validation in benchmark datasets
is critical to validate model performance. The accuracy in model performance is difficult to compare
among different studies and different models [95]. Deep learning models with improved algorithms
should be built and tested for more generic tasks. For example, a deep recurrent survival analysis
which used LSTM cells as the building blocks has been proposed for survival analysis [96]. It will
be interesting to test this model in cancer prognosis. Also, building benchmark datasets for model
comparison will allow researchers to compare and analyze model performance easier and more efficient.
For example, in recent years, ImageNet, a database that contains millions of images from daily life, has
been frequently used to evaluate CNN models [97–99], which is a critical contributing factor for the
development in the field. The models that were built using daily objects from ImageNet have been
widely used for other tasks and reach great success. Also, these models are commonly used in many
fields and tasks to perform transfer learning. In the medical field, it has also been shown that a single
deep learning model is effective at diagnosis across medical modalities [100]. Therefore, building
benchmark databases for model validation is urgently needed. One solution is to start building cancer
patients’ databases for prognosis analysis [101–110].

Sixth, in addition to technical challenges, building the infrastructure for data storage and
establishing the pipeline to build machine learning model may be greatly useful to facilitate the
development [8]. Because health care data are sensitive, data safety becomes a concern. How to build
a system to safely store and use patients’ health care data to build models and also protect the patients’
privacy requires the effort of administration, research community and personal awareness. Secure
cloud services and relevant infrastructure can be established to support the storage of large amount of
health care data. Federated learning that only train and predict user data on their own devices is one
innovative way to solve privacy issues [111].

Lastly, there is the urgent need of researchers who have expertise in biomedical research and
machine learning. Compared crowdsourced data annotations, such as annotations for ImageNet
objects [112], medical data requires annotators who have expertise to label the data. Domain knowledge
facilitate the construction of machine learning models. Therefore, research engineers who have domain
knowledge are greatly needed to improve research in this area. To solve this need, universities can
provide more relevant courses and degrees.

5. Conclusions and Summary

Deep learning has made significant improvement in research and started to make changes in our
daily lives. In the medical field, many studies have applied deep learning and shown many great
successes [78,113–121]. One advantage of using deep learning to train a model is its capability to
continue training when more data is available [27]. In addition, since health care data have different
formats, e.g., genomic data, expression data, clinical (structured) data, text and image (unstructured)
data, using different NN architectures to solve different types of data problems become more and more
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popular and useful [27]. In this review, we summarized recent studies that applied deep learning
in studying cancer prognosis (Tables 1–3). Among these studies, many have shown deep learning
models performed equally or better than other machine learning models [14,58,59]. Future work
should continue focusing on testing and improving the algorithm and building state-of-the-art models
to improve cancer prognosis prediction.

6. Key Points

• Deep learning (DNN) models accept lots of data in different formats. It is a great tool to be used
in cancer prognosis prediction since patient’s health data contain multi-source data.

• Using feature extraction could be one way to efficiently extract data from multi-omics data to
train neural networks and possibly improve cancer prognosis prediction.

• Fully connected NN and CNN models have been tested in a number of studies to predict cancer
prognosis and showed good performance.

• Current deep learning models in cancer prognosis studies still require further testing and validation
in larger datasets.
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18. Tomczak, K.; Czerwińska, P.; Wiznerowicz, M. Review The Cancer Genome Atlas (TCGA): An immeasurable
source of knowledge. Contemp. Oncol. 2015, 19, A68–A77. [CrossRef]

19. Chandran, U.R.; Medvedeva, O.P.; Michael, B.M.; Blood, P.D.; Anish, C.; Soumya, L.; Antonio, F.; Wong, K.F.;
Lee, A.V.; Zhihui, Z. TCGA Expedition: A Data Acquisition and Management System for TCGA Data. PLoS
ONE 2016, 11. [CrossRef]

20. Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.;
Larsson, E. Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal. Sci.
Signal. 2013, 6. [CrossRef]

21. Haeussler, M.; Zweig, A.S.; Tyner, C.; Speir, M.L.; Rosenbloom, K.R.; Raney, B.J.; Lee, C.M.; Lee, B.T.;
Hinrichs, A.S.; Gonzalez, J.N. The UCSC Genome Browser database: 2019 update. Nucleic Acids Res. 2018,
47, D853–D858. [CrossRef]

22. Deng, M.; Brägelmann, J.; Kryukov, I.; Saraiva-Agostinho, N.; Perner, S. FirebrowseR: An R client to the
Broad Institute’s Firehose Pipeline. Database J. Biol. Databases Curation 2017. [CrossRef]

23. Clough, E.; Barrett, T. The Gene Expression Omnibus Database. Methods Mol. Biol. 2016, 1418, 93–110.
[PubMed]

24. Edgar, R. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic
Acids Res. 2002, 30, 207–210. [CrossRef] [PubMed]

25. Lonsdale, J.; Thomas, J.; Salvatore, M.; Phillips, R.; Lo, E.; Shad, S.; Hasz, R.; Walters, G.; Garcia, F.; Young, N.
The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 2013, 13, 307–308. [CrossRef] [PubMed]

26. Consortium, T.G. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in
humans. Science 2015, 348, 648–660. [CrossRef] [PubMed]

27. Esteva, A.; Robicquet, A.; Ramsundar, B.; Kuleshov, V.; DePristo, M.; Chou, K.; Cui, C.; Corrado, G.; Thrun, S.;
Dean, J. A guide to deep learning in healthcare. Nat. Med. 2019, 25, 24–29. [CrossRef] [PubMed]

28. Cramer, J.S. The Origins of Logistic Regression. Soc. Sci. Electron. Publ. 2003. [CrossRef]
29. Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A Training Algorithm for Optimal Margin Classifiers. Proc. Fifth Annu.

Workshop Comput. Learn. Theory 2008, 5, 144–152.
30. Maron, M.E. Automatic Indexing: An Experimental Inquiry. J. ACM 1961, 8, 404–417. [CrossRef]
31. Breiman, L.; Friedman, J.H.; Olshen, R.A. Classification and Regression Trees; Routledge: New York, NY, USA,

2017.
32. Friedman, J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [CrossRef]
33. Breiman, L. Arcing the Edge; Technical Report; Statistics Department, University of California: Berkeley, CA,

USA, 1997.
34. Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106. [CrossRef]
35. Sibson, R. SLINK: An optimally efficient algorithm for the single-link cluster method. Comput. J. 1973, 16,

30–34. [CrossRef]
36. Defays, D. An efficient algorithm for a complete link method. Comput. J. 1977, 20, 364–366. [CrossRef]
37. Lloyd, S. Least squares quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129–137. [CrossRef]

http://dx.doi.org/10.1158/1535-7163.MCT-07-0177
http://www.ncbi.nlm.nih.gov/pubmed/18445660
http://dx.doi.org/10.1371/journal.pcbi.1006826
http://www.ncbi.nlm.nih.gov/pubmed/30785874
http://dx.doi.org/10.1016/j.csbj.2014.11.005
http://www.ncbi.nlm.nih.gov/pubmed/25750696
http://dx.doi.org/10.5114/wo.2014.47136
http://dx.doi.org/10.1371/journal.pone.0165395
http://dx.doi.org/10.1126/scisignal.2004088
http://dx.doi.org/10.1093/nar/gky1095
http://dx.doi.org/10.1093/database/baw160
http://www.ncbi.nlm.nih.gov/pubmed/27008011
http://dx.doi.org/10.1093/nar/30.1.207
http://www.ncbi.nlm.nih.gov/pubmed/11752295
http://dx.doi.org/10.1038/ng.2653
http://www.ncbi.nlm.nih.gov/pubmed/23715323
http://dx.doi.org/10.1126/science.1262110
http://www.ncbi.nlm.nih.gov/pubmed/25954001
http://dx.doi.org/10.1038/s41591-018-0316-z
http://www.ncbi.nlm.nih.gov/pubmed/30617335
http://dx.doi.org/10.2139/ssrn.360300
http://dx.doi.org/10.1145/321075.321084
http://dx.doi.org/10.1016/S0167-9473(01)00065-2
http://dx.doi.org/10.1007/BF00116251
http://dx.doi.org/10.1093/comjnl/16.1.30
http://dx.doi.org/10.1093/comjnl/20.4.364
http://dx.doi.org/10.1109/TIT.1982.1056489


Cancers 2020, 12, 603 16 of 19

38. MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of
the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Los Angeles, CA, USA, 21 June–18
July 1967; pp. 281–297.

39. Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent dirichlet allocation. J. Mach. Learn. Res. 2003, 3, 993–1022.
40. Pearson, K. Principal components analysis. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1901, 6, 559. [CrossRef]
41. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and phrases

and their compositionality. Adv. Neural Inf. Process. Syst. 2013, 26, 3111–3119.
42. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
43. Hinton, G.E. Learning distributed representations of concepts. In ; , 1991. In Proceedings of the Eighth

Annual Conference of the Cognitive Science Society, Hillsdale, NJ, USA, 7–10 August 1991; p. 12.
44. Bengio, Y. Learning deep architectures for AI. Found. Trends® Mach. Learn. 2009, 2, 1–127. [CrossRef]
45. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.

Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015.

46. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv
2014, arXiv:1409.1556.

47. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head Island, SC, USA, 15 June 2000;
pp. 770–778.

48. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017;
pp. 1251–1258.

49. Jordan, M. Serial Order: A Parallel Distributed Processing Approach; Technical Report; California University:
San Diego, CA, USA, 1986.

50. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
51. Quang, D.; Chen, Y.; Xie, X. DANN: A deep learning approach for annotating the pathogenicity of genetic

variants. Bioinformatics 2015, 31, 761–763. [CrossRef]
52. Farahbakhsh-Farsi, P.; Djalali, M.; Koohdani, F.; Saboor-Yaraghi, A.A.; Eshraghian, M.R.; Javanbakht, M.H.;

Chamari, M.; Djazayery, A. Effect of omega-3 supplementation versus placebo on acylation stimulating
protein receptor gene expression in type 2 diabetics. J. Diabetes. Metab. Disord. 2014, 13, 1. [CrossRef]
[PubMed]

53. Poplin, R.; Varadarajan, A.V.; Blumer, K.; Liu, Y.; McConnell, M.V.; Corrado, G.S.; Peng, L.; Webster, D.R.
Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat. Biomed.
Eng. 2018, 2, 158. [CrossRef] [PubMed]

54. Wang, Y.; Yao, H.; Zhao, S. Auto-encoder based dimensionality reduction. Neurocomputing 2016, 184, 232–242.
[CrossRef]

55. AlQuraishi, M. AlphaFold at CASP13. Bioinformatics 2019, 35, 4862–4865. [CrossRef]
56. Biganzoli, E.; Boracchi, P.; Mariani, L.; Marubini, E. Feed forward neural networks for the analysis of censored

survival data: A partial logistic regression approach. Stat. Med. 1998, 17, 1169–1186. [CrossRef]
57. Cox, D.R. Regression models and life-tables. J. R. Stat. Soc. Ser. B 1972, 34, 187–202. [CrossRef]
58. Joshi, R.; Reeves, C. Beyond the Cox model: Artificial neural networks for survival analysis part II. In

Proceedings of the Eighteenth International Conference on Systems Engineering, Coventry, UK, 3–10 May
2003; pp. 179–184.

59. Ching, T.; Zhu, X.; Garmire, L.X. Cox-nnet: An artificial neural network method for prognosis prediction of
high-throughput omics data. PLoS Comput. Biol. 2018, 14. [CrossRef]

60. Katzman, J.L.; Shaham, U.; Cloninger, A.; Bates, J.; Jiang, T.; Kluger, Y. DeepSurv: Personalized treatment
recommender system using a Cox proportional hazards deep neural network. BMC Med. Res. Methodol.
2018, 18, 24. [CrossRef]

61. Jing, B.; Zhang, T.; Wang, Z.; Jin, Y.; Liu, K.; Qiu, W.; Ke, L.; Sun, Y.; He, C.; Hou, D. A deep survival analysis
method based on ranking. Artif. Intell. Med. 2019, 98, 1–9. [CrossRef]

62. Hao, J.; Kim, Y.; Kim, T.-K.; Kang, M. PASNet: Pathway-associated sparse deep neural network for prognosis
prediction from high-throughput data. BMC Bioinform. 2018, 19, 510. [CrossRef]

http://dx.doi.org/10.1080/14786440109462720
http://dx.doi.org/10.1561/2200000006
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1093/bioinformatics/btu703
http://dx.doi.org/10.1186/2251-6581-13-1
http://www.ncbi.nlm.nih.gov/pubmed/24393631
http://dx.doi.org/10.1038/s41551-018-0195-0
http://www.ncbi.nlm.nih.gov/pubmed/31015713
http://dx.doi.org/10.1016/j.neucom.2015.08.104
http://dx.doi.org/10.1093/bioinformatics/btz422
http://dx.doi.org/10.1002/(SICI)1097-0258(19980530)17:10&lt;1169::AID-SIM796&gt;3.0.CO;2-D
http://dx.doi.org/10.1111/j.2517-6161.1972.tb00899.x
http://dx.doi.org/10.1371/journal.pcbi.1006076
http://dx.doi.org/10.1186/s12874-018-0482-1
http://dx.doi.org/10.1016/j.artmed.2019.06.001
http://dx.doi.org/10.1186/s12859-018-2500-z


Cancers 2020, 12, 603 17 of 19

63. Ma, T.; Zhang, A. Multi-view Factorization AutoEncoder with Network Constraints for Multi-omic Integrative
Analysis. In Proceedings of the 2018 IEEE International Conference on Bioinformatics and Biomedicine
(BIBM), Madrid, Spain, 3–6 December 2018.

64. Meng, C.; Zeleznik, O.A.; Thallinger, G.G.; Kuster, B.; Gholami, A.M.; Culhane, A.C. Dimension reduction
techniques for the integrative analysis of multi-omics data. Brief. Bioinform. 2016, 17, 628–641. [CrossRef]

65. Peng, H.; Long, F.; Ding, C. Feature selection based on mutual information: Criteria of max-dependency,
max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1226–1238. [CrossRef]

66. Sun, D.; Wang, M.; Li, A. A multimodal deep neural network for human breast cancer prognosis prediction by
integrating multi-dimensional data. IEEE/ACM Trans. Comput. Biol. Bioinform. 2019, 16, 841–850. [CrossRef]
[PubMed]

67. Huang, Z.; Zhan, X.; Xiang, S.; Johnson, T.S.; Helm, B.; Yu, C.Y.; Zhang, J.; Salama, P.; Rizkalla, M.; Han, Z.
SALMON: Survival Analysis Learning With Multi-Omics Neural Networks on Breast Cancer. Front. Genet.
2019, 10, 166. [CrossRef] [PubMed]

68. Chaudhary, K.; Poirion, O.B.; Lu, L.; Garmire, L.X. Deep Learning-Based Multi-Omics Integration Robustly
Predicts Survival in Liver Cancer. Clin. Cancer Res. 2017, 24. [CrossRef] [PubMed]

69. Shimizu, H.; Nakayama, K.I. A 23 gene–based molecular prognostic score precisely predicts overall survival
of breast cancer patients. EBioMedicine 2019, 46, 150–159. [CrossRef]

70. Zhang, J.; Huang, K. Normalized imqcm: An algorithm for detecting weak quasi-cliques in weighted graph
with applications in gene co-expression module discovery in cancers. Cancer Inform. 2014, 13, CIN-S14021.
[CrossRef]

71. Steck, H.; Krishnapuram, B.; Dehing-oberije, C.; Lambin, P.; Raykar, V.C. On ranking in survival analysis:
Bounds on the concordance index. In Proceedings of the Advances in Neural Information Processing Systems,
Malvern, PA, USA, 8–10 December 2008; pp. 1209–1216.

72. Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level
classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [CrossRef]

73. Levine, A.B.; Schlosser, C.; Grewal, J.; Coope, R.; Jones, S.J.M.; Yip, S. Rise of the Machines: Advances in
Deep Learning for Cancer Diagnosis. Trends Cancer 2019, 5, 157–169. [CrossRef]

74. Kather, J.N.; Krisam, J.; Charoentong, P.; Luedde, T.; Herpel, E.; Weis, C.-A.; Gaiser, T.; Marx, A.; Valous, N.A.;
Ferber, D. Predicting survival from colorectal cancer histology slides using deep learning: A retrospective
multicenter study. PLoS Med. 2019, 16. [CrossRef]

75. Radhakrishnan, A.; Damodaran, K.; Soylemezoglu, A.C.; Uhler, C.; Shivashankar, G.V. Machine Learning for
Nuclear Mechano-Morphometric Biomarkers in Cancer Diagnosis. Sci. Rep. 2017, 7. [CrossRef]

76. Rajkomar, A.; Oren, E.; Chen, K.; Dai, A.M.; Hajaj, N.; Hardt, M.; Liu, P.J.; Liu, X.; Marcus, J.; Sun, M. Scalable
and accurate deep learning with electronic health records. NPJ Digit. Med. 2018, 1, 18. [CrossRef]

77. Shameer, K.; Johnson, K.W.; Yahi, A.; Miotto, R.; Li, L.; Ricks, D.; Jebakaran, J.; Kovatch, P.; Sengupta, P.P.;
GELIJNS, S. Predictive modeling of hospital readmission rates using electronic medical record-wide machine
learning: A case-study using Mount Sinai heart failure cohort. Pac. Symp. Biocomput. 2017, 22, 276–287.

78. Elfiky, A.A.; Pany, M.J.; Parikh, R.B.; Obermeyer, Z. Development and application of a machine learning
approach to assess short-term mortality risk among patients with cancer starting chemotherapy. JAMA Netw.
Open 2018, 1. [CrossRef]

79. Mathotaarachchi, S.; Pascoal, T.A.; Shin, M.; Benedet, A.L.; Rosa-Neto, P. Identifying incipient dementia
individuals using machine learning and amyloid imaging. Neurobiol. Aging 2017, 59, 80. [CrossRef]

80. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the 2015 IEEE International Conference on Computer Vision
(ICCV), Santiago, Chile, 7–13 December 2015; pp. 1026–1034.

81. Korfiatis, P.; Kline, T.L.; Lachance, D.H.; Parney, I.F.; Buckner, J.C.; Erickson, B.J. Residual Deep Convolutional
Neural Network Predicts MGMT Methylation Status. J. Digit. Imaging 2017, 30, 622–628. [CrossRef]

82. Han, L.; Kamdar, M. MRI to MGMT: Predicting Drug Efficacy for Glioblastoma Patients. Pac. Symp.
Biocomput. Pac. Symp. Biocomput. 2018, 23, 331–338.

83. Mobadersany, P.; Yousefi, S.; Amgad, M.; Gutman, D.A.; Barnholtz-Sloan, J.S.; Velázquez Vega, J.E.; Brat, D.J.;
Cooper, L.A.D. Predicting cancer outcomes from histology and genomics using convolutional networks.
Proc. Natl. Acad. Sci. USA 2018. [CrossRef]

http://dx.doi.org/10.1093/bib/bbv108
http://dx.doi.org/10.1109/TPAMI.2005.159
http://dx.doi.org/10.1109/TCBB.2018.2806438
http://www.ncbi.nlm.nih.gov/pubmed/29994639
http://dx.doi.org/10.3389/fgene.2019.00166
http://www.ncbi.nlm.nih.gov/pubmed/30906311
http://dx.doi.org/10.1158/1078-0432.CCR-17-0853
http://www.ncbi.nlm.nih.gov/pubmed/28982688
http://dx.doi.org/10.1016/j.ebiom.2019.07.046
http://dx.doi.org/10.4137/CIN.S14021
http://dx.doi.org/10.1038/nature21056
http://dx.doi.org/10.1016/j.trecan.2019.02.002
http://dx.doi.org/10.1371/journal.pmed.1002730
http://dx.doi.org/10.1038/s41598-017-17858-1
http://dx.doi.org/10.1038/s41746-018-0029-1
http://dx.doi.org/10.1001/jamanetworkopen.2018.0926
http://dx.doi.org/10.1016/j.neurobiolaging.2017.06.027
http://dx.doi.org/10.1007/s10278-017-0009-z
http://dx.doi.org/10.1073/pnas.1717139115


Cancers 2020, 12, 603 18 of 19

84. Bychkov, D.; Linder, N.; Turkki, R.; Nordling, S.; Kovanen, P.E.; Verrill, C.; Walliander, M.; Lundin, M.;
Haglund, C.; Lundin, J. Deep learning based tissue analysis predicts outcome in colorectal cancer. Sci. Rep.
2018, 8. [CrossRef]

85. Courtiol, P.; Maussion, C.; Moarii, M.; Pronier, E.; Pilcer, S.; Sefta, M.; Manceron, P.; Toldo, S.; Zaslavskiy, M.;
Le Stang, N. Deep learning-based classification of mesothelioma improves prediction of patient outcome.
Nat. Med. 2019, 25, 1519–1525. [CrossRef]

86. Wang, S.; Liu, Z.; Rong, Y.; Zhou, B.; Bai, Y.; Wei, W.; Wang, M.; Guo, Y.; Tian, J. Deep learning provides
a new computed tomography-based prognostic biomarker for recurrence prediction in high-grade serous
ovarian cancer. Radiother. Oncol. 2019, 132, 171–177. [CrossRef]

87. Christopher, M.; Belghith, A.; Bowd, C.; Proudfoot, J.A.; Goldbaum, M.H.; Weinreb, R.N.; Girkin, C.A.;
Liebmann, J.M.; Zangwill, L.M. Performance of Deep Learning Architectures and Transfer Learning for
Detecting Glaucomatous Optic Neuropathy in Fundus Photographs. Sci. Rep. 2018, 8. [CrossRef]

88. Ding, Y.; Sohn, J.H.; Kawczynski, M.G.; Trivedi, H.; Harnish, R.; Jenkins, N.W.; Lituiev, D.; Copeland, T.P.;
Aboian, M.S.; Mari Aparici, C. A Deep learning model to predict a diagnosis of alzheimer disease by using
18F-FDG PET of the brain. Radiology 2018, 290, 456–464. [CrossRef]

89. Raghu, M.; Zhang, C.; Kleinberg, J.; Bengio, S. Transfusion: Understanding transfer learning for medical
imaging. Adv. Neural Inf. Process. Syst. 2019, 3342–3352.

90. Vinyals, O.; Blundell, C.; Lillicrap, T.; Wierstra, D. Matching networks for one shot learning. Adv. Neural Inf.
Process. Syst. 2016, 3630–3638.

91. Triantafillou, E.; Zemel, R.; Urtasun, R. Few-shot learning through an information retrieval lens. Adv. Neural
Inf. Process. Syst. 2017, 2255–2265.

92. Buuren, S.V.; Groothuis-Oudshoorn, K. mice: Multivariate imputation by chained equations in R. J. Stat.
Softw. 2010, 1–68. [CrossRef]

93. Rendleman, M.C.; Buatti, J.M.; Braun, T.A.; Smith, B.J.; Nwakama, C.; Beichel, R.R.; Brown, B.; Casavant, T.L.
Machine learning with the TCGA-HNSC dataset: Improving usability by addressing inconsistency, sparsity,
and high-dimensionality. BMC Bioinform. 2019, 20, 339. [CrossRef]

94. Raghunathan, T.E.; Lepkowski, J.M.; Van Hoewyk, J.; Solenberger, P. A multivariate technique for multiply
imputing missing values using a sequence of regression models. Surv. Methodol. 2001, 27, 85–96.

95. Topol, E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med.
2019, 25, 44–56. [CrossRef]

96. Ren, K.; Qin, J.; Zheng, L.; Yang, Z.; Zhang, W.; Qiu, L.; Yu, Y. Deep recurrent survival analysis. In Proceedings
of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; pp. 4798–4805.

97. Deng, J.; Russakovsky, O.; Krause, J.; Bernstein, M.S.; Berg, A.; Fei-Fei, L. Scalable multi-label annotation. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Toronto, ON, Canada,
26–27 April 2014; pp. 3099–3102.

98. Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database.
In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA,
20–25 June 2009; pp. 248–255.

99. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.;
Bernstein, M. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252.
[CrossRef]

100. Kermany, D.S.; Goldbaum, M.; Cai, W.; Valentim, C.C.; Liang, H.; Baxter, S.L.; McKeown, A.; Yang, G.; Wu, X.;
Yan, F. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 2018, 172,
1122–1131. [CrossRef]

101. Goswami, C.P.; Nakshatri, H. PROGgene: Gene expression based survival analysis web application for
multiple cancers. J. Clin. Bioinform. 2013, 3, 22. [CrossRef]

102. Anaya, J. OncoLnc: Linking TCGA survival data to mRNAs, miRNAs, and lncRNAs. PeerJ Comput. Sci.
2016, 2. [CrossRef]

103. Elfilali, A.; Lair, S.; Verbeke, C.; La, R.P.; Radvanyi, F.; Barillot, E. ITTACA: A new database for integrated
tumor transcriptome array and clinical data analysis. Nucleic Acids Res. 2006, 34, D613–D616. [CrossRef]

104. Wang, Q.; Xie, L.; Dang, Y.; Sun, X.; Xie, T.; Guo, J.; Han, Y.; Yan, Z.; Zhu, W.; Wang, Y. OSlms: A Web Server
to Evaluate the Prognostic Value of Genes in Leiomyosarcoma. Front. Oncol. 2019, 9. [CrossRef]

http://dx.doi.org/10.1038/s41598-018-21758-3
http://dx.doi.org/10.1038/s41591-019-0583-3
http://dx.doi.org/10.1016/j.radonc.2018.10.019
http://dx.doi.org/10.1038/s41598-018-35044-9
http://dx.doi.org/10.1148/radiol.2018180958
http://dx.doi.org/10.18637/jss.v045.i03
http://dx.doi.org/10.1186/s12859-019-2929-8
http://dx.doi.org/10.1038/s41591-018-0300-7
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1016/j.cell.2018.02.010
http://dx.doi.org/10.1186/2043-9113-3-22
http://dx.doi.org/10.7717/peerj-cs.67
http://dx.doi.org/10.1093/nar/gkj022
http://dx.doi.org/10.3389/fonc.2019.00190


Cancers 2020, 12, 603 19 of 19

105. Wang, Q.; Wang, F.; Lv, J.; Xin, J.; Xie, L.; Zhu, W.; Tang, Y.; Li, Y.; Zhao, X.; Wang, Y. Interactive online
consensus survival tool for esophageal squamous cell carcinoma prognosis analysis. Oncol. Lett. 2019, 18,
1199–1206. [CrossRef]

106. Zhang, G.; Wang, Q.; Yang, M.; Yuan, Q.; Dang, Y.; Sun, X.; An, Y.; Dong, H.; Xie, L.; Zhu, W. OSblca: A
Web Server for Investigating Prognostic Biomarkers of Bladder Cancer Patients. Front. Oncol. 2019, 9, 466.
[CrossRef]

107. Yan, Z.; Wang, Q.; Sun, X.; Ban, B.; Lu, Z.; Dang, Y.; Xie, L.; Zhang, L.; Li, Y.; Guo, X. OSbrca: A Web Server
for Breast Cancer Prognostic Biomarker Investigation with Massive Data from tens of Cohorts. Front. Oncol.
2019, 9, 1349. [CrossRef]

108. Xie, L.; Wang, Q.; Dang, Y.; Ge, L.; Sun, X.; Li, N.; Han, Y.; Yan, Z.; Zhang, L.; Li, Y. OSkirc: A web tool for
identifying prognostic biomarkers in kidney renal clear cell carcinoma. Future Oncol. 2019, 15, 3103–3110.
[CrossRef]

109. Xie, L.; Wang, Q.; Nan, F.; Ge, L.; Dang, Y.; Sun, X.; Li, N.; Dong, H.; Han, Y.; Zhang, G. OSacc: Gene
Expression-Based Survival Analysis Web Tool For Adrenocortical Carcinoma. Cancer Manag. Res. 2019, 11,
9145–9152. [CrossRef] [PubMed]

110. Wang, F.; Wang, Q.; Li, N.; Ge, L.; Yang, M.; An, Y.; Zhang, G.; Dong, H.; Ji, S.; Zhu, W. OSuvm: An interactive
online consensus survival tool for uveal melanoma prognosis analysis. Mol. Carcinog. 2020, 59, 56–61.
[CrossRef] [PubMed]

111. McMahan, H.B.; Moore, E.; Ramage, D.; Hampson, S. Communication-efficient learning of deep networks
from decentralized data. arXiv 2016, arXiv:1602.05629.

112. Su, H.; Deng, J.; Fei-Fei, L. Crowdsourcing annotations for visual object detection. In Proceedings of the
Workshops at the Twenty-Sixth AAAI Conference on Artificial Intelligence, Toronto, ON, Canada, 22–26 July
2012.

113. Avati, A.; Jung, K.; Harman, S.; Downing, L.; Ng, A.; Shah, N.H. Improving palliative care with deep learning.
BMC Med. Inform. Decis. Mak. 2018, 18, 122. [CrossRef] [PubMed]

114. Elfiky, A.A.; Elshemey, W.M. Molecular dynamics simulation revealed binding of nucleotide inhibitors to
ZIKV polymerase over 444 nanoseconds. J. Med. Virol. 2018, 90, 13–18. [CrossRef]

115. Horng, S.; Sontag, D.A.; Halpern, Y.; Jernite, Y.; Shapiro, N.I.; Nathanson, L.A. Creating an automated trigger
for sepsis clinical decision support at emergency department triage using machine learning. PLoS ONE 2017,
12. [CrossRef]

116. Henry, K.E.; Hager, D.N.; Pronovost, P.J.; Saria, S. A targeted real-time early warning score (TREWScore) for
septic shock. Sci. Transl. Med. 2015, 7, ra122–ra299. [CrossRef]

117. Culliton, P.; Levinson, M.; Ehresman, A.; Wherry, J.; Steingrub, J.S.; Gallant, S.I. Predicting severe sepsis
using text from the electronic health record. arXiv 2017, arXiv:1711.11536.

118. Oh, J.; Makar, M.; Fusco, C.; McCaffrey, R.; Rao, K.; Ryan, E.E.; Washer, L.; West, L.R.; Young, V.B.; Guttag, J.
A generalizable, data-driven approach to predict daily risk of Clostridium difficile infection at two large
academic health centers. Infect. Control Hosp. Epidemiol. 2018, 39, 425–433. [CrossRef]

119. Miotto, R.; Li, L.; Kidd, B.A.; Dudley, J.T. Deep patient: An unsupervised representation to predict the future
of patients from the electronic health records. Sci. Rep. 2016, 6. [CrossRef]

120. Yang, Z.; Huang, Y.; Jiang, Y.; Sun, Y.; Zhang, Y.-J.; Luo, P. Clinical assistant diagnosis for electronic medical
record based on convolutional neural network. Sci. Rep. 2018, 8. [CrossRef]

121. De Langavant, L.C.; Bayen, E.; Yaffe, K. Unsupervised machine learning to identify high likelihood of
dementia in population-based surveys: Development and validation study. J. Med. Internet Res. 2018, 20.
[CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3892/ol.2019.10440
http://dx.doi.org/10.3389/fonc.2019.00466
http://dx.doi.org/10.3389/fonc.2019.01349
http://dx.doi.org/10.2217/fon-2019-0296
http://dx.doi.org/10.2147/CMAR.S215586
http://www.ncbi.nlm.nih.gov/pubmed/31749633
http://dx.doi.org/10.1002/mc.23128
http://www.ncbi.nlm.nih.gov/pubmed/31646691
http://dx.doi.org/10.1186/s12911-018-0677-8
http://www.ncbi.nlm.nih.gov/pubmed/30537977
http://dx.doi.org/10.1002/jmv.24934
http://dx.doi.org/10.1371/journal.pone.0174708
http://dx.doi.org/10.1126/scitranslmed.aab3719
http://dx.doi.org/10.1017/ice.2018.16
http://dx.doi.org/10.1038/srep26094
http://dx.doi.org/10.1038/s41598-018-24389-w
http://dx.doi.org/10.2196/10493
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Current Development in Cancer Prognosis Prediction 
	Overview of Deep Learning 
	Current Application of Deep Learning in Cancer Prognosis 
	NN Models with no Feature Extraction 
	Feature Extraction from Gene Expression Data to Build Fully Connected NNs 
	CNN-Based Models 

	Challenges in the Application of Deep Learning in Cancer Prognosis 
	Conclusions and Summary 
	Key Points 
	References

