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Abstract: Rett syndrome (RTT) is a rare disorder and one of the most abundant causes of intellectual
disabilities in females. Single mutations in the gene coding for methyl-CpG-binding protein 2 (MeCP2)
are responsible for the disorder. MeCP2 regulates gene expression as a transcriptional regulator
as well as through epigenetic imprinting and chromatin condensation. Consequently, numerous
biological pathways on multiple levels are influenced. However, the exact molecular pathways from
genotype to phenotype are currently not fully elucidated. Treatment of RTT is purely symptomatic
as no curative options for RTT have yet to reach the clinic. The paucity of this is mainly due to
an incomplete understanding of the underlying pathophysiology of the disorder with no clinically
useful common disease drivers, biomarkers, or therapeutic targets being identified. With the premise
of identifying universal and robust disease drivers and therapeutic targets, here, we interrogated a
range of RTT transcriptomic studies spanning different species, models, and MECP2 mutations. A
meta-analysis using RNA sequencing data from brains of RTT mouse models, human post-mortem
brain tissue, and patient-derived induced pluripotent stem cell (iPSC) neurons was performed using
weighted gene correlation network analysis (WGCNA). This study identified a module of genes
common to all datasets with the following ten hub genes driving the expression: ATRX, ADCY7,
ADCY9, SOD1, CACNA1A, PLCG1, CCT5, RPS9, BDNF, and MECP2. Here, we discuss the potential
benefits of these genes as therapeutic targets.

Keywords: Rett syndrome; WGCNA; MECP2

1. Introduction

Rett syndrome (RTT) is one of the most common genetic causes of intellectual disabili-
ties in females and affects one in 10,000 births [1]. RTT is an X-linked dominant disorder
caused by mutations in the MECP2 gene, which encodes the Methyl-CpG Binding Pro-
tein 2 (MeCP2) protein. The molecular pathogenesis of RTT remains poorly understood,
with patients presenting with numerous complex disabilities, which are likely due to the
pleiotropic molecular functions of MeCP2 and its ubiquitous expression.

At a cellular level, MeCP2 expression is critical for neuronal maturation and neu-
ronal function. In hemizygous male patients, loss-of-function mutations in MECP2 cause
neonatal encephalopathy, which is usually fatal before the age of two, and in heterozygous
female patients it results in a severe neurological phenotype [2,3]. MeCP2 is a pleiotropic
protein mediating early events of neurodevelopment, including neurogenesis, migration,
and patterning, where it predominantly acts as a methyl-DNA binding protein and controls
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transcriptional regulation [4,5]. The protein is highly conserved among mammals showing
95% protein sequence identity between human and mouse, and to a lesser extent, between
humans and zebrafish (48%). However, the genomic structure and expression patterns of
MeCP2 in zebrafish and mammals are similar, suggesting probable conserved functions [6].
MeCP2 contains two highly evolutionarily conserved domains, the methyl-CpG-binding
domain (MBD) and the transcriptional repression domain (TRD), and acts as a transcrip-
tional repressor and activator. Upon binding to CpG islands, MeCP2 forms an inhibitory
transcription complex through interactions of the transcriptional repression domain with
cofactors, including Sin3A and histone deacetylase 1. MeCP2 also acts as a transcription
activator to regulate gene expression by either long-range chromatin remodeling or by
regulating RNA splicing [7–9]. MeCP2-deficiency leads to an excitation/inhibition (E/I)
imbalance in the brain and is recognized as the leading cellular and synaptic hallmark
of the disorder resulting in stereotypic hand movements, impaired motor coordination,
breathing irregularities, seizures, and learning/memory dysfunctions [10].

Mice harbouring mutations in the Mecp2 gene represent one of the most clinically
relevant models for RTT as they recapitulate many of the features observed in RTT patients,
such as seizures and motor and cognitive dysfunction, which has assisted in our under-
standing of the underlying pathophysiology [11]. However, despite the vast majority of RTT
patients being female, most gene therapy and other preclinical studies in animal models of
RTT have used male mice, which is not truly representative of the patient population.

Even though the phenotype of the RTT mouse models is very robust, there are many
differences in brain development and structure between humans and mice that may con-
found findings in translational preclinical studies [12]. For example, the origin of cortical
neurons in brain development differs in humans and mice with the subventricular zone,
where human neurogenesis mostly occurs, that is significantly reduced in mice [13]. Thus,
regardless of the significant insight gained from these models, inconsistencies between
mouse models and human disease may affect the validity of preclinical findings.

Immortalised cell lines and post-mortem brain tissue have also been used extensively
to study the pathophysiology of RTT. However, the use of post-mortem brain tissue is
limited, as the tissue only reflects end-stage disease and cannot be used in live-cell testing
studies such as electrophysiology and immortalised cell lines do not represent the complex
organisation of the brain [8].

More recently, stem cells, including human embryonic stem cells (hECSs) and induced
pluripotent stem cells (iPSCs), have come to play an important role in in vitro disease
modelling. hECSs are generated from early-stage human embryos and have the potential
to differentiate into various cell types, whereas iPSCs are derived from patients and can
be differentiated into any cell type [14]. Reprogramming of somatic cells to iPSCs through
the overexpression of transcription factors was demonstrated over a decade ago [15] and
this technology has now strengthened the utility of stem-cell-based disease models [16].
Over the past few years, several studies have successfully generated iPSC lines from RTT
fibroblasts and have differentiated these lines into neural progenitor cells (NPCs), neurons,
and glial cells [17]. Stem-cell-based modelling has been demonstrated to be effective for
RTT research, because iPSC lines can harbour pathogenic MECP2 mutations and thus
can demonstrate neuronal morphological defects, such as reduced dendritic branching,
spine density, and smaller soma size [18,19]. Several studies have reported differentiated
neuronal cells from RTT-iPSCs in two-dimensional (2D) cultures, with a smaller soma
size compared to that of controls [14,20–23]. Additionally, the dysregulation in cellular
maturation and morphological complexities in RTT-iPSC neurons have recapitulated the
findings of mouse studies and in human post-mortem brain tissues [24].

The complexities of RTT at a clinical level and MeCP2 function have resulted in
significant challenges for developing safe and effective therapies [25]. It is unclear whether
novel therapies that have shown promising preclinical efficacy would effectively mitigate
systemic manifestations of the disease when administered in the clinic. This is partly due
to the lack of models that cover all aspects of the disease. Thus, well-characterised, disease-
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relevant models are critical to uncovering underlying molecular, cellular, and physiological
intermediate phenotypes in the pathophysiology of RTT that may provide insights into
potential therapies. Therefore, we hypothesise that by taking advantage of all existing
models, both old and new (Figure 1), useful insights into the pathophysiology of RTT may
be gleaned, which will drive the discovery of novel therapeutic targets. To do this, we
conducted a meta-analysis of the transcriptomic data from three different RTT models:
mouse brain, post-mortem human brain tissue, and iPSC-derived neurons. Weighted gene
correlation network analysis (WGCNA) offers a powerful method to untangle novel disease
pathways compared to approaches, such as differential gene expression. Thus, this study
has utilised WGCNA to examine three previously published transcriptomic datasets of
human post-mortem brain tissue, iPSC-derived neurons, and mouse brain samples. After
identifying a consensus module between the three datasets, we analysed the genes in that
module against another two datasets which could not be included in the WGCNA analysis,
using differential gene expression.
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Figure 1. Cellular phenotype shared by mouse brain, post-mortem brain and iPSC-derived neurons
and glia.

2. Results
2.1. Data Pre-Processing and Identification of Common Genes

Publicly available genome-wide transcriptomic datasets of iPSC-derived neurons,
post-mortem human brain tissue, and mouse brains were retrieved from the NCBI Gene
Expression Omnibus database. These included: GSE75303 (post-mortem), GSE123753 (iPSC-
derived neurons) [26], and GSE96684 (mouse brain) [27] (Table 1). The post-mortem and
mouse datasets included RTT and wild-type samples, whereas the iPSC-derived neurons
included RTT and isogenic controls. The post-mortem dataset included sequencing results
from both the temporal and frontal cortex. The age of the patients ranged from 17 to
20 years, and all subjects were female, harbouring three different mutations: c.378-2A > G,
c.763C > T and c.451G > T. The mouse samples were from the brain cortex, and all were
mouse nomenclature Mecp2 knockout males [18]. The iPSC-derived neurons were females
harbouring a deletion between exons 3 and 4 of MECP2. All samples were included in
this study.
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Table 1. Summary of samples used in WGCNA. WT refers to wild type, RTT refers to Rett Syndrome
and NA refers to not applicable; F refers to feminine and M to masculine.

Study Sample Age Gender Tissue Disease State Mutation

Post-mortem
human brain
GSE75303

GSM1949097 19y 231d F frontal cortex WT NA
GSM1949098 17y 28d F frontal cortex WT NA
GSM1949099 17y 28d F temporal cortex WT NA
GSM1949100 20y 228d F temporal cortex WT NA
GSM1949101 18y 138d F frontal cortex WT NA
GSM1949102 18y 138d F temporal cortex WT NA
GSM1949103 18y 130d F frontal cortex RTT c.378-2A > G
GSM1949104 18y 130d F temporal cortex RTT c.378-2A > G
GSM1949105 20y 356d F frontal cortex RTT c.763C > T
GSM1949106 20y 356d F temporal cortex RTT c.763C > T
GSM1949107 19y 280d F frontal cortex RTT c.451G > T
GSM1949108 19y 280d F temporal cortex RTT c.451G > T

iPSC-derived
neurons
GSE123753

GSM3510829 NA F neurons WT isogenic

GSM3510835 NA F neurons MT Exon 3–4
deletion

GSM3510857 NA F neurons WT isogenic

GSM3510863 NA F neurons MT Exon 3–4
deletion

GSM3510877 NA F neurons WT isogenic

GSM3510883 NA F neurons MT Exon 3–4
deletion

Mouse brain
GSE96684

GSM2538276 P60 M cortex WT NA
GSM2538277 P60 M cortex WT NA
GSM2538278 P60 M cortex WT NA
GSM2538279 P60 M cortex WT NA
GSM2538280 P60 M cortex RTT R168X
GSM2538281 P60 M cortex RTT R168X
GSM2538282 P60 M cortex RTT R168X
GSM2538283 P60 M cortex RTT R168X

All datasets were normalised and filtered prior to WGCNA analysis (Figure 2). Briefly,
abnormal samples were first filtered through hierarchical clustering, where any missing
data count was eliminated. The genes in the mouse dataset were homologated to the human
genome, with only the common genes being included in the study. Overall, there were a
total of 9864 genes included in this analysis (Figure 2). Specific details on the normalisation
used for the three different datasets can be found in Section 4.2.

2.2. Weighted Gene Co-Expression Networks

Weighted gene co-expression networks were constructed based on the identified genes
following the soft threshold analysis using all three datasets combined. An optimal soft-
thresholding power is needed to calculate co-expression similarity. Hence, to assess the
similarity between genes at the expression and network topology levels, we created a
topological overlap matrix (TOM) which was achieved by calculating the adjacency and
correlation matrices of the gene expression profile. As shown in Figure 3A in the scale free
topology plot, power 8 was the lowest power where all three datasets reached a topology fit
index of 0.9. Hence, it was chosen to produce the hierarchical clustering tree (dendrogram).
Using the hierarchical average linkage clustering method in combination with the TOM, we
proceeded to identify gene modules of each gene network. The dynamic tree cut algorithm
highlighted all gene modules and each was identified by a colour (Figure 3B). Each tree
branch constitutes a module, and each leaf in the branch is one gene.
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Figure 3. WGCNA analysis of the three datasets. (A) Analysis of network topology as a function
of the soft-thresholding power for all three datasets. The panels show the scale-free fit index (top
left), median connectivity (in degrees, top right), mean connectivity (in degrees, bottom left) and
the maximum connectivity (in degrees, bottom right). (B) Clustering dendrogram of genes. Gene
clustering tree (dendrogram) obtained by hierarchical clustering of adjacency-based dissimilarity.
The coloured row below the dendrogram indicates module membership identified by the dynamic
tree cut method and the assigned module colour.

2.3. Correlation between Modules and Clinical Traits

The module–trait associations were analysed by correlating module–sample eigen-
genes with clinical traits to identify significant associations. The colours of all the modules
were selected at random to distinguish between modules. Correlation coefficients were as-
signed to each module and the disease status trait (RTT vs. wild-type (WT)). Subsequently,
only modules with a significant correlation to the disease trait (p < 0.05) were identified for
all three datasets (Figure 4).

2.4. Different Brain Tissues/Models Generate Modules of Dysregulated Genes

Through the identification of modules with a significant correlation coefficient to the
disease trait across all models and tissues, four modules were found to be significantly
dysregulated across all datasets (p < 0.5 eigenscore associated with disease trait): brown4,
blue, magenta, and skyblue (Figure 4).

2.5. Module Analysis

To better understand the biological functions of the genes in the four modules, each
module was subjected to KEGG pathway enrichment analysis (Figure 5). The level of
significance of each pathway enrichment was calculated and expressed in adjusted p-values
using the Bonferroni correction method. We then focussed on those pathways that had
higher adjusted p-values (depicted in yellow in Figure 5).
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(C) blue modules (D) brown4 module. Results include level of significance of each pathway enrich-
ment using The Kyoto Encyclopedia for Genes and Genomes (KEGG) calculated and expressed in
adjusted p-value, yellow represents more significant and purple least significant.

The brown4 module was highly enriched in cytokine–cytokine receptor interaction,
the TGF-beta signalling pathway, fluid shear stress, and atherosclerosis, and signalling
pathways regulating pluripotency of stem cells. The blue module was highly enriched
in pathways including ribosomes, COVID-19 disease, thermogenesis, and basal transcrip-
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tion factors. The magenta module was enriched in cysteines and methionine metabolism,
biosynthesis of amino acids, biosynthesis of cofactors, glycosaminoglycan degradation,
mucin-type 0-glycan biosynthesis, pantothenate and CoA biosynthesis, and 2-oxocarboxylic
acid metabolism. Finally, the skyblue module was enriched in GABAergic synapses, mor-
phine addiction, vibrio cholerae infection, thyroid hormone synthesis, purine metabolism,
cortisol synthesis and secretion, alcoholism, ovarian steroidogenesis, glutamatergic synap-
sis, cholinergic synapse, the longevity regulating pathway, growth hormone synthesis,
secretion, and action, inflammatory mediator regulation of transient receptor potential
(TRP) channels and relaxin signalling.

2.6. Key Cellular Pathways Involved in Synapses Dysregulated in Rett Models

Given the relevance to the known pathophysiology of RTT of the pathways identified
in the skyblue module, we investigated this module further. Furthermore, focussing on the
disease trait (WT vs. RTT), the skyblue module exhibited the highest correlation (Figure 4)
and more disease-relevant enrichment (Figure 5). Therefore, this module was identified as
a key module in RTT and was subjected to further analysis.

Interestingly, we found that the skyblue module was driven by hub genes: MECP2,
BDNF, SOD1, PLCG1, CCT5, RPS9, ADCY9, ADCY7, ATRX, and CACNA1A (Figure 6 and
Table 2). Hub genes are defined as genes with connectivity (degree) greater than 10 in the
genetic interaction network. All genes were shown to be downregulated in RTT except for
CCT5 and ADCY9.

Table 2. Hub genes and functions. Information adapted from GeneCards.

Gene Symbol Gene Function

MECP2 Methyl-CpG-binding protein 2; a chromatin-associated protein that can both activate and repress transcription.
It is required for maturation of neurons and is developmentally regulated.

BDNF

Brain-derived neurotrophic factor; during development, promotes the survival and differentiation of selected
neuronal populations of the peripheral and central nervous systems. Participates in axonal growth,
pathfinding and in the modulation of dendritic growth and morphology. Major regulator of synaptic
transmission and plasticity at adult synapses in many regions of the central nervous system (CNS). The
versatility of BDNF is emphasised by its contribution to a range of adaptive neuronal responses including
long-term potentiation (LTP), long-term depression (LTD), certain forms of short-term synaptic plasticity.

CCT5

T-complex protein 1 subunit epsilon; a molecular chaperone that assists the folding of proteins upon ATP
hydrolysis. As part of the BBS/CCT protein complex it may play a role in the assembly of BBSome, a complex
involved in ciliogenesis, regulating transport vesicles to the cilia. Known to play a role in vitro in the folding
of actin and tubulin.

CACNA1A

Voltage-dependent P/Q-type calcium channel subunit alpha-1A; voltage-sensitive calcium channels (VSCC)
mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent
processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility,
cell division and cell death. The isoform alpha-1A gives rise to P and/or Q-type calcium currents. P/Q-type
calcium channels belong to the ‘high-voltage activated’ (HVA) group and are blocked by the funnel toxin (Ftx)
and by omega-agatoxin-IVA (omega-Aga-IVA).

ADCY9
Adenylate cyclase type 9; an adenylyl cyclase that catalyses the formation of the signalling molecule cAMP in
response to activation of G-protein-coupled receptors. Contributes to signalling cascades activated by CRH
(corticotropin-releasing factor), corticosteroids and beta-adrenergic receptors.

ADCY7 Adenylate cyclase type 7; a membrane-bound, calcium-inhibitable adenylyl cyclase.

ATRX

Transcriptional regulator ATRX; involved in transcriptional regulation and chromatin remodelling. Facilitates
DNA replication in multiple cellular environments and is required for efficient replication of a subset of
genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin, and in vitro binds
DNA quadruplex structures. May helpin stabilising G-rich regions into regular chromatin structures by
remodelling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin
remodelling complex ATRX:DAXX, which has ATP-dependent DNA translocase activity.
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Table 2. Cont.

Gene Symbol Gene Function

RPS9 Small subunit ribosomal protein s9e; ribosomal protein S9.

SOD1 Superoxide dismutase [Cu-Zn]; destroys radicals that are normally produced within the cells and toxic to
biological systems.

PLCG1

1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-1; mediates the production of the second
messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). Plays an important role in
the regulation of intracellular signalling cascades. Becomes activated in response to ligand-mediated
activation of receptor-type tyrosine kinases, such as PDGFRA, PDGFRB, FGFR1, FGFR2, FGFR3 and FGFR4.
Plays a role in actin reorganisation and cell migration.
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2.7. Differential Gene Expression in iPSC Derived Neurons (OH) and Postmortem (MT) Datasets

To broaden the study and determine whether the skyblue module genes were also
dysregulated in other RTT studies, the expression profiles obtained from two other datasets
were analysed. The MT dataset (GSE6955 [28]) consisted of post-mortem human brain
tissue, and OH (GSE107399 [29]) of iPSC-derived neurons (Table 3). Due to the constrains
of WGCNA analysis, these datasets could not be included in the original analysis as the
OH dataset had less than six samples (considering each experimental replicate as one
sample) and the MT dataset was analysed using single cell RNA sequencing. The MT
dataset consisted of six post-mortem superior frontal gyri samples, two belonging to female
RTT patients, and four non-RTT controls (Table 3). The OH dataset consisted of seven
iPSCs-derived neuron samples, of which two were RTT patients analysed in replicate, and
three were the corresponding isogenic controls.

Table 3. Summary of samples used in the DGE analysis. WT refers to wild type, RTT refers to Rett
Syndrome, and NA refers to not applicable; F refers to feminine and M to masculine.

Study Sample Gender Tissue Disease State Mutation

Post-mortem
human brain (MT)
GSE6955

GSM160306 F Superior Frontal
Gyrus WT NA

GSM160307 F Superior Frontal
Gyrus RTT c.316C > T

GSM160308 F Superior Frontal
Gyrus WT NA

GSM160309 F Superior Frontal
Gyrus RTT c.316C > T

GSM160310 F Superior Frontal
Gyrus WT NA

GSM160311 F Superior Frontal
Gyrus x WT NA

GSM2866278 F neurons WT Isogenic (c.1461A > G)
GSM2866279 F neurons WT Isogenic (c.705delG)

iPSC-derived
neurons (OH)
GSE107399

GSM2866281 F neurons WT Isogenic
(c.705delG)

GSM2866282 F neurons RTT c.1461A > G (replicate 1)
GSM3510883 F neurons RTT c.1461A > G (repiclate 2)
GSM3510885 F neurons RTT c.705delG (replicate 1)
GSM3510886 F neurons RTT c.705delG (replicate 2)

After performing differential gene expression analysis, 12,625 genes were identified in
the MT dataset, of which 156 were significantly upregulated and 61 significantly downreg-
ulated (p < 0.05). Conversely, analysis of the OH data demonstrated 20,055 differentially
expressed genes. Of these, 655 were significantly upregulated and 992 were significantly
downregulated (p < 0.05).

Next, the gene expression profiles of MT and OH were cross-referenced with those
genes in the skyblue module to identify common dysregulated genes across all datasets.
Overall, there were 71 genes shared between the skyblue module and the MT dataset.
TOX3, FABP7, ATRX, and SGMS1 had the largest positive log-fold changes (Figure 7A).
BDNF, GNG11, FAM168B, HMOX1, and VCL were identified as having the largest negative
log-fold changes (Figure 7A). A comparable number of genes (107) were common between
the skyblue module and the OH dataset. The top five upregulated genes with the greatest
positive log-fold change were NPAS4, FABP7, HECW2, TOX3, and CACNA1A (Figure 7B).
Conversely, FREM2, BDNF, HMOX1, KDELR2, and CXADR had the highest negative
log-fold changes (Figure 7B).
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Figure 7. Volcano plot showing similarities in differentially expressed genes between the skyblue
module and selected datasets. (A) Volcano plot of shared gene expression profiles from patients with
RTT and age matched controls within skyblue and MT. The log2FC (x-axis) of each gene is plotted
against the −log10P (y-axis). Expression difference is considered significant for log2FC of 0.1, and
p-value < 0.05, as indicated by the purple-coloured points. The grey points represent genes with
non-significant differences in expression. (B) Volcano plot of similarly differentially expressed genes
in the skyblue module and OH dataset comparing patient-derived neuronal samples and controls.
The log2FC (x-axis) of each gene is plotted against the −log10P (y-axis). Significant differences in
gene expression, where log2FC is 0.5, and p-value < 0.05, are depicted by the purple points. The grey
points represent genes with non-significant differences in expression.

The expression of the hub genes identified in the skyblue module was also cross-
examined in the MT and OH datasets (Figure 8). From the meta-analysis, CCT5 and ADCY7
were upregulated in the skyblue module, whilst the remaining eight (MECP2, BDNF,
CACNA1A, ADCY9, ATRX, RPS9, SOD1, and PLCG1) were downregulated.
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significant changes in expression are represented by grey points.

When compared with the other datasets, ATRX was significantly upregulated (p < 0.05)
in the MT dataset and CACN1A was upregulated in the OH dataset. Interestingly, BDNF
was significantly downregulated in all datasets (Figure 8A,B).

3. Discussion

The overarching aim of this study was to identify common pathways and genes
that intersect RTT transcriptomic studies spanning different species and models with the
premise of identifying universal and robust disease drivers and therapeutic targets. To
do so, a meta-analysis and bioinformatics approach consisting of the identification of
gene modules rather than differential gene expression was employed to interrogate the
transcriptomic landscape of RTT using human post-mortem brain tissue, mouse models,
and patient-derived neurons.

After identifying the statistically significant dysregulated modules between all the
RTT samples and controls, the module with the highest correlation to disease status and



Int. J. Mol. Sci. 2022, 23, 11125 13 of 20

genes with the highest connectivity within the module were interrogated to identify key
genetic drivers across all tissue samples and models. Reassuringly, the identified hub genes
included MECP2 and BDNF, where the correlation between the two genes in RTT is well
recognized, with BNDF being a well-established target gene of MeCP2 [30,31].

3.1. Meta-Analyses Produced Four Significant Modules Correlated to Disease Status

Through this meta-analysis four modules of genes that were significantly dysregu-
lated in the RTT transcriptome relative to the controls was identified. The pathways that
were enriched in each of the four modules were investigated and the brown4 module was
identified to be mostly enriched in pathways related to immunological aberrations, which
is consistent with previously published studies in RTT, including one of our own [16,25,26].
Next, the magenta module was enriched for pathways primarily involving the metabolic
system, which also aligns with previously reported literature [32,33]. On the other hand,
enrichment of the blue module did not produce any pathways known to be of relevance in
RTT. The fourth module, skyblue, consisted of enriched modules, including glutamatergic,
GABAergic, and cholinergic synaptic pathways, as well as protein export, and was iden-
tified to have the most enriched pathways relevant to the neuropathology of RTT, hence
supporting our further focus on this module.

3.2. Meta-Analysis Hub Genes within the Skyblue Module Are Relevant to RTT Pathology

The ten hub genes that were identified as the main drivers of the skyblue module
were ATRX, ADCY7, ADCY9, SOD1, CACNA1A, PLCG1, CCT5, RPS9, BDNF, and MECP2.
They are therefore surmised to play key roles in the pathology of RTT and may assist
in understanding the underlying disease pathophysiology, as well as identifying disease
drivers and drug targets.

ATRX (ATRX Chromatin Remodeler) has recently been implicated in RTT as a bind-
ing partner of MeCP2 where together they modulate pericentric heterochromatin (PCH)
organization in neurons [34]. Mutations in ATRX cause ATR-X syndrome, implicated in
abnormal brain development and associated with severe intellectual disability [34,35]. The
downregulation of ATRX in this meta-analysis supports previous reports of an interaction
with MeCP2, where MeCP2 recruits the helicase domain of ATRX to heterochromatic foci in
a DNA methylation dependent manner, as shown in living mouse cells [36]. Furthermore, it
has been shown that the heterochromatin location of ATRX is disrupted in Mecp2-null mice
neurons. These data together suggest that a MeCP2–ATRX interaction leads to pathological
changes that contribute to the mental retardation phenotype. Interestingly, as an epigenetic
modifier, ATRX has been implicated in cancer and has received a level of attention in
the identification of expression modifying drugs [37]. ATRX loss leads to increased DNA
damage and general genomic instability [38], and thus drugs or small molecules aimed at
increasing the stability of the genome may be potential therapeutic options for RTT.

Adenylate Cyclases 7 and 9 (ADCY7 and ADCY9) are membrane-bound enzymes that
catalyze the formation of cyclic AMP from ATP and are highly expressed in the brain. De
novo mutations in ADCY7 have been reported in autism spectrum disorders (ASD) where
the gene has been proposed to be a risk factor [39]. ASD and RTT share some commonalities
with RTT individuals showing some ASD-like behaviors [40,41]. ADCY7 mRNA is highly
expressed in microglia and plays an important role in presynaptic GABA release, and
evidence suggests that ADCY7 is involved in mood regulation and plays an essential role in
the immune response [42]. Conversely, despite ADCY9 being highly expressed in the brain,
its function in the CNS remains largely unknown. However, some findings have suggested
that ADCY9 may regulate cognitive function and learning and memory [42]. Interestingly,
ADCY9 has been shown to be downregulated in Mecp2 null embryonic cortexes, suggesting
ADCY9 as a target of MeCP2 [43]. This effect is lost postnatally, suggesting the crucial
role of ADCY9 in embryogenesis [36,43]. Interestingly, both genes are involved in two
common pathways: the GPER1 signaling and integrin pathway, which provides potential
therapeutic targets to explore in RTT.
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SOD1 plays a crucial role in the oxidative stress response and systemic redox alter-
ations, and the related oxidative stress is well reported in RTT [44]. It is therefore not
surprising to find the free radical scavenger SOD1 enzyme downregulated in this meta-
analysis. Loss of SOD1 has been hypothesized to result in an accumulation of mitochondrial
reactive oxygen species, leading to oxidative damage and mitochondrial dysfunction [45].
Animal studies have suggested a possible direct correlation between Mecp2 mutations and
increased ROS levels, and the debate continues regarding whether oxidative stress is a
cause or consequence of RTT.

The voltage-dependent P/Q-type calcium channel subunit alpha-1A (CACNA1A) gene
has been implicated in epileptic encephalopathy, familial hemiplegic migraine, episodic
ataxia, and spinocerebellar ataxia [46] and has recently been reported in a small number of
atypical Rett patients previously lacking known genetic mutations [47]. Voltage-sensitive
calcium channels mediate the entry of calcium ions into excitatory neurons and are also
involved in a variety of calcium-dependent processes and neurotransmitter release. Our
findings suggest that the downregulation of CACNA1A in this meta-analysis may be
contributing to the epileptic encephalopathy of RTT. Among its related pathways are the
CREB and integrin signaling pathways.

PLCG1 (Phospholipase C, gamma 1) is a protein involved in cell growth, migration,
apoptosis, and proliferation. Among its related pathways is theBDNF-TrkB signaling
pathway. Even though no direct link to MECP2 has been reported in the literature, it is
known that activation of the neurotrophin receptor TRKB by BDNF triggers downstream
PLCG1 signaling [48].

No direct relation has been reported between CCT5 and RPS9 and MECP2. However,
CCT5 is implicated in the cellular pathways related to trafficking to the periciliary mem-
brane and cell cycle and has also been linked to intellectual disabilities and early onset
motor neuropathies [49–51]. On the other hand, RPS9 is linked to RNA binding and is a
structural constituent of the ribosome, and as ribosomal dysfunction has been previously
reported in RTT iNeurons by Rodrigues et al., 2020 [26], the dysregulation of RPS9 in this
study supports these findings and provides further evidence of ribosomal dysfunction
in RTT.

In addition, common cellular pathways, such as the CREB and integrin signaling
pathways, are common amongst the hub genes. The CREB pathway has previously been
reported to be implicated in RTT, where overexpression of CREB signaling in RTT forebrain
neurons rescued the phenotype of neurite growth, dendritic complexity, and mitochondrial
function [52]. Furthermore, pharmacological activation of CREB in female RTT mice rescued
several behavioral phenotypes [52]. These findings support the motion to investigate the
CREB pathway as a potential therapeutic target [52]. In addition, while the integrin pathway
has not been reported in RTT, it has been previously implicated in dendritic development,
autism spectrum disorder, and intellectual disabilities [53] suggesting that this pathway
too could also be a potential target for future RTT therapeutics.

3.3. Meta-Analysis Shows Commonly Dysregulated Synaptic Pathways

Through this study, three synaptic pathways enriched in the skyblue module were
identified, namely the cholinergic, glutamatergic, and GABAergic pathways. A loss of exci-
tation/inhibition (E/I) balance in the neural circuit is a major hallmark of RTT pathology,
causing many neurological symptoms, such as loss of purposeful hand movements, im-
paired motor coordination, breathing irregularities, and seizures, amongst others [10]. This
loss of E/I balance is caused by MeCP2 deficiency, leading to a dysregulation of the gluta-
matergic and GABAergic pathways. Furthermore, downstream genes affected in RTT such
as BDNF play an important role influencing neurotransmission activity. Many drugs have
been tested to improve the E/I balance in RTT, including glutamatergic modulators such as
AMPAkines to increase excitatory synapsis and enhance BDNF expression, ketamine, and
NMDAR antagonist to enhance neuronal activity [54,55]. GABAergic modulators have also
shown potential in aiding with behavioral dysfunction in RTT patients and mice. However,
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while respiratory alterations were ameliorated by treatment using benzodiazepines and
Midazolan in mice, the phenotype was not fully rescued [56].

3.4. Expression of Overlapping Genes in MT and OH in Comparison to Skyblue

A comparison of differentially expressed genes in the MT and the OH datasets with
the skyBlue module identified 71 and 107 commonly expressed genes, respectively. Inter-
estingly, TOX3 was upregulated in both datasets and the skyblue module. TOX3 plays
a role in shaping DNA and altering chromatin structure and while the protein has been
shown to be a neuron survival factor [57], it is yet to be linked with neurodevelopmental
disorders and specifically to RTT. BDNF and HMOX1 were also commonly dysregulated in
all the datasets where they were observed to be significantly downregulated.

HMOX1 is a heme oxygenase responsible for the degradation of heme to biliverdin/
bilirubin and free iron and heavily implicated in aging and disease. The expression of
HMOX1 is confined to small populations of neurons and glia and is upregulated by a
wide range of pro-oxidant and other stressors [58]. While there have been no reports
linking HMOX1 to RTT pathology, its downregulation confirms the role of oxidative stress
in the pathology of RTT. ATRX and CACNA1A were identified to be dysregulated in the
skyblue module as well in either the MT or OH datasets where the expression of ATRX
was upregulated in the MT dataset and CACNA1A was upregulated in OH.

Additionally, BDNF, an identified hub gene for skyblue, was also downregulated
in both the MT and OH datasets. This is the first time BDNF has been demonstrated to
be consistently downregulated in a bioinformatic meta-analysis examining dysregulated
genes across species and models.

3.5. Hub Gene Expression Comparison across Studies

Of the ten identified hub genes in the meta-analysis, eight were downregulated, sug-
gesting that wild type MeCP2 transcriptionally activates these genes, and two (ADCY9 and
CCT5) were upregulated, suggesting that MeCP2 transcriptionally represses these genes.

From the differential gene expression analysis performed on the OH and MT datasets,
we showed that BDNF was downregulated in both studies, and ARTX and CACN1A were
upregulated in the MT and OH datasets, respectively. We showed an overall trend of
upregulation in the five tested genes ATRX, ADCY7, ADCY9, CACNA1A, and SOD1. These
results were different to that found in the meta-analysis as only ADCY9 was upregulated.
This disparity in expression between the meta-analysis and differential gene expression
points to the complexity of RTT and the context dependent expression of MECP2.

Here, we have used two different analytical tools (WGCNA and DGE), two species,
and three models to identify dysregulated genes that drive the disease pathology of RTT.
The identification of BDNF as the only consistent gene to be downregulated relative to
controls across all models comes as no surprise given the known association with RTT.
BDNF has been explored as a therapeutic target for RTT. However, as BDNF has a low
blood–brain barrier permeability, this limits its bioavailability for peripheral administration
as a therapy [59]. Three clinical trials aimed at augmenting BDNF expression, trialing
Copaxone (glatiramer acetate) [60] and Fingolimod, have been conducted [61]. However, to
date, no therapies have entered the clinic, with the glatiramer acetate trial being withdrawn
due to reported potential life-threatening reactions [62]. Additional compounds have been
described to increase BDNF levels and improve RTT-like symptoms in mice, however, none
have reached human clinical trials, alluding to the complexity of the disorder and difficulty
of this approach [59].

4. Materials and Methods
4.1. Dataset Selection

The three datasets included in the WGCNA analysis were obtained from the NCBI
Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/ (last accessed on 20
June 2022)): GSE75303 (Post-mortem), GSE123753 (iPSC-derived neurons), and GSE96684

https://www.ncbi.nlm.nih.gov/geo/
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(Mouse Brain). The GSE75303 dataset contained 12 samples in total, including three female
RTT patient frontal and temporal cortexes harboring mutations at c.378-2A > G, c.763C > T
and c.451G > T and three female age-matched controls. The GSE123753 dataset consisted of
six female samples: three patients involving rearrangements that removed exons 3 and 4,
creating a functionally null mutation, and their three corresponding isogenic controls. The
GSE96684 dataset consisted of eight male mouse samples: four MECP2 knockout and
four wild type mice. The characteristics of the samples in each dataset are summarized in
Table 1.

4.2. Dataset Pre-Processing

Since the three datasets were from different sequencing platforms, we performed pre-
processing according to a previously published WGCNA pipeline. Specifically, GSE75303
(human post-mortem brain) array data were quantile normalized, GSE123753 (iPSCs de-
rived neurons) provided the already quantile normalized data as a supplementary file
through GEO (Gene Expression Omnibus), and the raw sequencing data were obtained
for GSE96684 from SRA (PRJNA3779366) and mapped to mm10 using STAR (Version 2.7).
Mouse gene symbols were mapped to human gene symbols using biomart as an R package.
It is important to also note that one requirement of WGCNA with multiple models is that
the same list of genes for each tissue sample should be used in the analysis, which may
lead to missing the information on genes that are not represented in every sample. Briefly,
raw counts and probe intensity data were pre-processed using the Limma package [63] in
the R environment. Count data were transformed by mean-variance modelling at the obser-
vational level (voom) [64] before all studies were subjected to quantile normalization and
data quality control as recommended for WGCNA. Finally, for differential gene expression
analysis, raw count data were voom transformed and array data were log-transformed in
the Limma package [63] in the R environment, followed by quantile normalization and
data quality control.

4.3. Weighted Gene Correlation Analysis

Unsigned co-expression networks were built using the WGCNA 1.63 package in R
software [65]. Clusters of genes that behaved similarly were grouped together into different
color modules. These modules were related to specific traits. In heatmaps, red represents
genes upregulated within that dataset and green represents genes downregulated within
that dataset. The top 1000 connections within a gene network were determined by WGCNA.
For the multiple array consensus analysis, WGCNA was performed on the individual
datasets first, as suggested by Langfelder and Horvath’s tutorial [65], using “1 step function
for network construction and detection of consensus modules”. The default WGCNA
soft thresholding power β in which co-expression was raised was chosen to calculate the
adjacency of each data set. The soft thresholding power β was used to allow us to compare
each data set by approximate scale-free topology, thus compensating for scale differences
between data sets.

4.4. Module Selection

The correlation between module eigengenes and clinical traits was analyzed to identify
modules of interest that were significantly associated with clinical traits. For the purpose
of this study, we identified the modules that were significantly correlated with disease
status in all three datasets. The correlation values were then displayed within a heatmap.
Gene significance (GS) was defined as the correlation between gene expression and each
trait. In addition, module membership (MM) was defined as the association between gene
expression and each module eigengene. Subsequently, the correlations between GS and MM
were examined to verify certain module–trait associations. The correlation analyses in this
study were performed using Pearson correlation as described in the WGCNA package [65].
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4.5. Module Enrichment

The genes in each module of interest were extracted from the network and enrichment
analysis was performed to further explore the functions of the respective modules. The R
package ‘clusterProfiler’ was used to perform Kyoto Encyclopedia of Genes and Genomes
(KEGG) [66,67] pathway enrichment analysis. A statistical p value of <0.05 was set as the
significance threshold, and the enrichment results of KEGG pathways in each module of
interest module were obtained.

4.6. Module Visualisation and Identification of Hub Genes

The intramodular connectivity of genes in the corresponding modules of interest was
measured using module eigengene-based connectivity (kME). The top 30 genes of each
module of interest, which represent the central status in the module gene network, were
selected to visualize the subordinate module using String software [68]. Subsequently, one
key module was chosen that exhibited the highest levels of positive or negative correlation
with RTT to search for hub genes for RTT in the modules. The top ten genes with the
highest kME were selected as the hub genes in the corresponding module [65] and their
gene significance (GS) for RTT (disease status) and intramodular connectivity kME were
determined to confirm the reliability of these hub genes.

4.7. Differential Gene Expression

Differential gene expression analysis was performed on six patient-derived datasets
from the MT study (GSE6955) and seven iPSC-derived neuronal samples from the OH
study (GSE107399). Samples in the MT study were taken from the superior frontal gyrus
of patients with RTT and age-matched controls. From the OH study, seven samples were
utilized for analysis. Of these, four were RTT mutants (including two experimental controls)
and three isogenic controls. The datasets were analyzed in R using the EdgeR package
(R Bioconductor). Firstly, genes with low expression and a CPM value ≤ 1 were filtered.
Then, the remaining counts were used to generate linear models and statistical analysis
was conducted. To identify overlapping differentially expressed genes from the OH and
MT datasets corresponding to the skyblue module, the log fold change was noted for genes
that overlapped were identified.

5. Conclusions

Through this meta-analysis and sub-analysis of datasets belonging to a mouse model,
using post-mortem brain and iPSC-derived neurons to identify dysregulated genes that
underpin the RTT pathology, a set of genes common to all models were identified. Some
genes, such as BDNF, ADCY9, ATRX, and CACNA1A, have previously been linked to RTT,
while others, including CCT5, RPSP, and PLCG1, are potential disease-modifying genes.
Interestingly, a previous transcriptomic study using DGE only in RTT human samples did
not cidentify some of the molecular network hub genes identified in the current study [69].
Validating BDNF, a known target of MeCP2, demonstrates the utility of this bioinformatic
approach in identifying therapeutic genes targets. Further exploration of these known
and novel disease-modifying genes may provide a better understanding of the molecular
mechanisms of RTT and pave the way for the investigation of novel therapeutic candidates.
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