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Cyclophosphamide 
arrhythmogenicity	testing using 
human‑induced pluripotent stem 
cell‑derived cardiomyocytes
A. D. Podgurskaya1, M. M. Slotvitsky1, V. A. Tsvelaya1, S. R. Frolova1, S. G. Romanova1, 
V. A. Balashov1 & K. I. Agladze1,2*

Cyclophosphamide (CP) is an anticancer drug, an alkylating agent. Cardiotoxicity of CP is associated 
with one of its metabolites, acrolein, and clinical cardiotoxicity manifestations are described for 
cases of taking CP in high doses. Nevertheless, modern arrhythmogenicity prediction assays in vitro 
include evaluation of beat rhythm and rate as well as suppression of cardiac late markers after acute 
exposure to CP, but not its metabolites. The mechanism of CP side effects when taken at low doses 
(i.e., < 100 mg/kg), especially at the cellular level, remains unclear. In this study conduction properties 
and cytoskeleton structure of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-
CMs) obtained from a healthy donor under CP were evaluated. Arrhythmogenicity testing including 
characterization of 3 values: conduction velocity, maximum capture rate (MCR) measurements and 
number of occasions of re-entry on a standard linear obstacle was conducted and revealed MCR 
decrease of 25% ± 7% under CP. Also, conductivity area reduced by 34 ± 15%. No effect of CP on 
voltage-gated ion channels was found. Conduction changes (MCR and conductivity area decrease) 
are caused by exposure time-dependent alpha-actinin disruption detected both in hiPSC-CMs and 
neonatal ventricular cardiomyocytes in vitro. Deviation from the external stimulus frequency and 
appearance of non-conductive areas in cardiac tissue under CP is potentially arrhythmogenic and could 
develop arrhythmic effects in vivo.

The cardiotoxicity of anticancer therapy can cause life-threatening complications. In the last few decades, this 
topic has mainly been associated with anthracyclines. However, the use of other classes of anticancer drugs, 
including alkylating agents, can also result in serious heart disorders. Cyclophosphamide (CP), belonging to the 
class of alkylating agent, is one of the most effective and safe medicines essential in a health system. However, 
its application is often associated with atrial and ventricular tachyarrhythmias and complete atrio-ventricular 
block, hypotension, heart failure (HF; including congestive HF), and myocarditis (including hemorrhagic myo-
pericarditis, leading to pericardial effusions, cardiac tamponade, and death)1–6. Manifestations of such side 
effects include a decreased amplitude of the QRS complex, non-specific T-wave or T-segment abnormalities, 
and asymptomatic left ventricular ejection fraction (LVEF) drop1,4. These disorders can be caused by a high 
dose of CP (i.e., 100–200 mg/kg)1,3–5. In addition, a past study reported fulminate fatal congestive heart failure 
occurring after a CP dose of 75 mg/kg was applied in a case of diffused large B cell lymphoma7—a rare clini-
cal example of CP cardiotoxicity at a dose lower than 100 mg/kg. Acute symptoms may occur within 14 days 
after drug administration and can last up to 10 days after initiation2,4–6. However, in some patients (up to 10%), 
the symptoms may disappear spontaneously in 1–7 days4,6. The prevalence of fatal CP cardiomyopathy varies 
at between 2 and 17% of patients1,4. The pathomechanism involves the direct damage of endothelial cells and 
cardiomyocytes (CMs), interstitial hemorrhage, and edema. Autopsy studies showed the thickening of the left 
ventricular walls and interventricular septum, and the hemorrhagic necrosis of the myocardium. Due to the 
development of an intracapillary microemboli/coronary vasospasm under CP, it also causes ischemic damage4,8. 
In addition, the troponin I level was found to rise between 8 and 15 days after the administration of a high dose 
of CP, which may indicate direct myocardial damage9.
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CP is an alkylating agent that undergoes hepatic metabolism and forms 4-hydroxy cyclophosphamide 
(4-HCY); 4-HCY metabolizes into aldophosphamide by CYP3A4/A5. Aldophosphamide, in turn, produces 
phosphoramide mustard, which is responsible for the anticancer activity, with further metabolism into the 
non-toxic compounds carboxyphosphamide and nitrogen mustard, along with acrolein. Acrolein is toxic and 
affects the myocardium and endothelial cells; however, CP itself is not associated with any cardiotoxic sequalae8. 
Less aldehyde dehydrogenases (ALDH) activity, increased reactive oxygen species (ROS) levels, and myocardial 
cytotoxicity were induced by 4-HCY and acrolein in H9c2 cells. In these cell cultures, 4-HCY was metabolized 
to acrolein10. Ultrastructural changes in rat CMs included the moderate lysis of myofibrils, the dilation of vesicles 
in the granular and agranular sarcoplasmic reticulum, and the destruction of mitochondria with the formation 
of myelin-like residual bodies after the intraperitoneal injection of CP in a single dose of 125 mg/kg11.

The lack of response to CP was found in a human CM arrhythmic risk model developed by Guo et al.10. 
This model was based on the detection of changes in the beat rhythm and rate of a confluent monolayer of 
human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs; iCell Cardiomyocytes) caused by 
a compound, using real-time cellular impedance measurement. Arrhythmogenicity is quantified by predicted 
proarrhythmic score based on 2 concentrations of each drug: IB20, the lowest concentration at which ≥ 20% 
arrhythmic/irregular/atypical beats in 3 consecutive 20-s sweeps are induced; and BR20, the lowest concentra-
tion at which reduction in a spontaneous beat rate of ≥ 20% at 3 consecutive sweeps compared to the control is 
induced. This system allowed for the better prediction of torsadogenicity in humans in comparison to either 
human Ether-à-go-go-related gene (hERG) inhibition or QT prolongation assays. The other model that was 
used to test CP was human embryonic stem cell (hESC) model developed by Zhu et.al.12. It was based on hESC 
differentiation into cardiomyocytes in vitro with further distinction of cardiac precursor cells and late mature 
cardiomyocytes. IC50 value for CP toxicity towards mature cardiomyocytes was 476 ± 13 mg/l (1823 ± 50 µM). 
Nevertheless, data related to the cardiotoxicity of CP at concentrations less than 100 mg/kg1, as well as data on 
its influence on ion channels, are rare. As such, the mechanism of its action in producing arrhythmias is not 
fully understood.

In the current study, hiPSC cardiac tissue from a healthy donor was used to examine 3 values: the conduction 
velocity (CV), maximum capture rate (MCR), and number of occasions of re-entry on a standard linear obstacle 
after the application of 213–852 µM of CP using the optical mapping method. Earlier proposed arrhythmo-
genicity test using a standard linear obstacle developed by Slotvitsky M.M., Agladze K.I. et al.13,14 was validated. 
Patch-clamp experiments were conducted to measure currents through voltage-gated fast sodium (INav), delayed 
rectifier potassium (rapid: IKr; slow: IKs), and L-type calcium (ICaL) ion channels under CP. Immunocytochem-
istry was used to evaluate changes in the α-actinin structure in hiPSC-CMs under CP.

Materials and methods
All studies were conducted by the National Institutes of Health Guide for the Care and Use of Laboratory Animals 
(NIH publications No. 8023, revised 1978) and approved by the Moscow Institute of Physics and Technology 
Life Science Center Provisional Animal Care and Research Procedures Committee, Protocol \#A2-2012-09-02.

Fibroblast derivation and reprogramming to the pluripotent state, characterization of iPSC 
lines and differentiation of iPSCs into cardiomyocytes.  Fibroblast derivation and reprogramming 
to the pluripotent state, characterization of iPSC line m34Sk3, differentiation of iPSCs into cardiomyocytes were 
performed as previously described in Materials and methods section in Ref.14. In brief, dermal fibroblasts iso-
lated from a skin biopsy of healthy donor were nucleofected with episomal vectors expressed OCT4, SOX2, 
KLF4, L-MYC, and LIN28 (Addgene IDs #41855-41858, #41813-41814). Surface for cell plating was coated with 
Geltrex LDEV-Free hESC-Qualified Reduced Growth Factor Basement Membrane Matrix. Reprogramming to 
the pluripotent state was performed as described in https​://tools​.therm​ofish​er.com/conte​nt/sfs/manua​ls/epi5_
episo​mal_ipsc_repro​gramm​ing_man.pdf. Spontaneous differentiation of the cell lines was carried out through 
embryoid bodies formation. iPSCs were cultivated for several passages under feeder-free conditions. Directed 
differentiation of iPSCs into cardiomyocytes was triggered by adding the RPMI 1640 medium (Lonza) contained 
B27 supplement minus insulin (Thermo Fisher Scientific) and 8 μM CHIR99021 (Sigma-Aldrich) for 48 h. The 
first cell contractions were observed from day 9 of differentiation. The flow cytometry data for cardiac markers 
of patient-specific iPSC-derived CMs from healthy donor that used in this study (m34Sk3 cell line) is provided 
in Ref.15, the efficiency of directed iPSC differentiation into cardiomyocytes was 47%. The differentiated cells 
were subjected to metabolic selection to isolate cardiomyocytes, almost all cells that passed the metabolic selec-
tion expressed cardiac troponin T on day 45. When the culture reached 50 days, the optical mapping occurred.

Preparation of neonatal rat ventricular cardiomyocytes, preparation of samples.  Preparation 
of NRVMs, preparation of samples were performed as previously described in Materials and methods section 
in Ref.16. In brief, isolation and seeding of NRVMs were performed according to the Worthington protocol 
(http://www.worth​ingto​n-bioch​em.com/NCIS/defau​lt.html). For cell seeding and cultivation, 13- and 21-mm 
glass coverslips were covered with human fibronectin (Imtek) and placed in Petri dishes and 24-well culture 
plates. iPSCs were seated in the wells of 24-well sterile plates covered with Geltrex. The differentiation protocol 
started on day 3–4 after plating.

Protocol of optical mapping.  Optical mapping was carried out as previously described13,14. The setup 
included high-speed video camera (Andor IXon3, Andor Technologies), a mercury lamp (Olympus U-RFL-T), 
an optical microscope (Olympus MVX10), a filter cube (Olympus U-M49002XL), and an impulse generator 
(Vellemann, PCGU-1000), a platinum point electrode and a reference circular electrode.

https://tools.thermofisher.com/content/sfs/manuals/epi5_episomal_ipsc_reprogramming_man.pdf
https://tools.thermofisher.com/content/sfs/manuals/epi5_episomal_ipsc_reprogramming_man.pdf
http://www.worthington-biochem.com/NCIS/default.html
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Optical mapping of human iPSC-derived cardiomyocytes occurred 50 days after the start of differentiation 
protocol. Samples were incubated in a sterile medium at 37 °C with the fluorescent calcium-dependent Fluo-4 
AM (Invitrogen, USA) dye in concentration 4 μg/ml for 30 min. Then the dye solution was exchanged with a 
sterile Tyrode’s solution (Sigma T2145) containing 136.9 mM NaCl, 2.6 mM KCl, 1.8 mM CaCl2, 1.1 mM MgCl2, 
0.4 mM NaH2PO4, 11.9 mM NaHCO3, 5.6 mM d-glucose, pH = 7.4 with free Ca2+ concentration of 1.80 mM.

At first, the samples were checked for the presence of spontaneous beating. Then the passage of square pulses 
of 1 Hz frequency was initiated. If impulses of 1 Hz were captured by a tissue, the frequency of square pulses 
was increased in increment of ≤ 0.5 Hz. Each step was checked whether the impulses of set frequency are cap-
tured. When the tissue was not able to capture each of the external impulses (for example, 1:2 capturing) of set 
frequency, the value of frequency on the previous step was the MCR. After capturing the CV and MCR controls, 
the solution of CP (Baxter) in Tyrode’s was added to the cell culture at concentrations: 213 μM, 639 μM, 852 μM, 
1065 μM in the increasing order. The CV and MCR were measured ≤ 10 min after the addition of CP solution. The 
CV was measured at a frequency of 1 Hz, for the MCR measurements the frequency was increased from 1 to 5 Hz 
in increments of ≤ 0.5 Hz. Three independent differentiations of m34Sk3 cell line were done with n = 2, n = 3 and 
n = 3 independent runs of experiments respectively. The experiments were carried out at 37 °C, 0.03–0.05% CO2.

As the metabolism of individual organism is specific, the correspondence between concentrations in vitro 
and concentrations in mg/kg could be estimated approximately. Setting the mass of the human body 60 kg and 
the blood volume of 4.8 L, 213–1065 µM CP in vitro correspond to 4.45–22.25 mg/kg.

Standard linear obstacle.  After adding Tyrode solution to the sample, a standard linear obstacle was 
made on the cell tissue perpendicular to the direction of excitation wave propagation (Supplementary Fig. 1). 
The obstacle width was ≤ 100 μm. The configuration of the propagating wave front under normal conditions and 
under various (213–852 μM) concentrations of CP in the presence of a standard linear obstacle was evaluated. 
N = 8 independent runs of experiments were conducted, and the number of occasions of re-entry formation 
were counted.

Patch‑clamp.  Whole-cell currents were recorded using the perforated patch-clamp technique in single car-
diomyocytes, which were isolated from neighboring cells. As a perforating agent, Amphotericin B in DMSO was 
used at a final concentration of 0.24 mg/ml17. A cover slip with cardiac cells was placed in the recording chamber 
mounted on the stage of the Olympus IX71 inverted microscope table. The pipette and the extracellular solutions 
used in these protocols are listed below.

The bathing solution used for recording Na+ current: 50 mM NaCl, 1.8 mM CaCl2, 1 mM MgCl2, 110 mM 
CsCl2, 10 mM d-glucose, 10 mM HEPES/NaOH (pH = 7.4 CsOH). The patch pipette was filled with a solu-
tion:135 mM CsCl2, 10 mM NaCl, 2 mM CaCl2, 5 mM EGTA, 10 mM HEPES/NaOH, 5 mM MgATP (pH = 7.2 
CsOH). For recording Ca2+ current: 160 mM TEA-Cl, 5 mM CaCl2, 1 mM MgCl2, 10 mM d-glucose, 10 mM 
HEPES/NaOH (pH = 7.4 CsOH). The pipette solution contained 145 mM CsCl2, 5 mM NaCl, 5 mM EGTA, 
10 mM HEPES/NaOH, 5 mM MgATP (pH = 7.2 CsOH). For the whole-cell recording of IKr currents, the bath-
ing solution contained, 150 mM NaCl, 5.4 mM KCl, 1 mM MgCl2, 1.8 mM CaCl2, 15 mM d-Glucose, 15 mM 
HEPES/KOH (pH = 7.4 NaOH) and the patch pipette was filled with a solution containing 150 mM KCl, 2 mM 
CaCl2, 5 mM NaCl, 5 mM MgATP, 5 mM EGTA, 10 mM HEPES/KOH (pH = 7.2 KOH). Nifedipine was used 
to block calcium channels18.

Voltage clamp experiments were performed as previously described in Materials and Methods section in 
Ref.19. Patch pipettes were pulled from borosilicate glass (BF150-86-10 Sutter Instrument, USA) with tip resist-
ances of ~ 3 MΩ when placed into the experimental solution. The pipette offset was corrected to zero just prior 
to the formation of a gigaohm (GΩ) seal. After formation of the GΩ seal, the pipette capacitance was cancelled 
using the amplifier fast capacitance cancellation settings. Electrical access to the cell by perforation was indi-
cated by the appearance of slow capacitance currents that increased the amplitude and rate of decay when more 
amphotericin pores formed in the membrane enclosed by the patch pipette. The access resistance was monitored 
using the slow whole-cell capacitance cancellation settings on the amplifier. Once the access resistance decreased 
below 12 MΩ, the experiment was started. Series resistance was compensated if required.

Whole-cell currents evoked by ramping up stimuli from − 120 to + 50 mV was examined over a 200-ms 
period, with a holding potential (HP) of − 80 mV (using a prestep: − 80 to − 120 mV for 100 ms)20. The voltage-
dependence of the peak Na+ currents was determined by measuring peak inward currents for cells depolarized 
from − 80 to + 15 mV in 5-mV increments, which were applied for 200 ms. To detect L-type Ca2+ currents without 
contamination from Na+ currents, a 100-ms prepulse to − 40 mV from a HP of − 80 mV was used21,22. The peak 
ICaL was measured at 0 mV. Outward IKr was elicited by a 5-s depolarizing pulse from − 40 mV to + 50 mV in 
10-mV increments (HP of − 40 mV). IKr was isolated as an E4031-sensitive current23. Typically, the membrane 
capacitances measured with pCLAMP10.2 software ranged from 20 to 50 pF.

The experiments were carried out at 37 °C, 0.03–0.05% CO2.

Immunofluorescent staining.  The protocol used for fixation and immunocytochemistry of the samples 
was made due to recommendations from https​://www.abcam​.com/proto​cols/immun​ocyto​chemi​stry-immun​
ofluo​resce​nce-proto​col. Immunofluorescent staining was performed as previously described13. Cells were fixed 
for 10 min in 4% paraformaldehyde, permeabilized for 10 min in 0.4% Triton-X100. Cells were further incu-
bated for 30 min in blocking buffer (1% bovine serum albumin in phosphate-buffered saline, PBS), overnight at 
4C with primary antibodies and for 1 h at room temperature with secondary antibodies. Cells were washed twice 
for 15 min in PBS. Nuclei were stained with DAPI. Primary antibodies (working dilution—1:100)—sarcomeric 
alpha-actinin (Abcam, ab9465). Secondary antibodies (Thermo Fisher Scientific, working dilution—1:400)—

https://www.abcam.com/protocols/immunocytochemistry-immunofluorescence-protocol
https://www.abcam.com/protocols/immunocytochemistry-immunofluorescence-protocol
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Alexa Fluor 568 goat anti-mouse IgG (HþL) highly cross adsorbed (A11031). Alexa Fluor 488 phalloidin 
(Molecular Probes, USA, A12379) was used for F-actin non-specific staining.

Assessment of the structural integrity of the hiPSC‑CMs cytoskeleton.  Normally, α-actinin in 
cardiomyocytes is associated with F-actin, which is organized in several parallel bundles. These structures are 
greatly affected by CP. The degree of this effect was estimated using the Fast Fourier Transform and Directional-
ity plugin in ImageJ (NIH, Maryland, USA, http://rsb.info.nih.gov/ij) software. It allowed to analyze a distribu-
tion of structures orientation present in the input image.

F-actin parallel bundles cross-linked by α-actinin appear in the distribution charts as peak values compared 
to the baseline intensity. Damage of cellular structures leads to a decrease in peak intensities and an increase in 
baseline intensity. The contrast of the highest peak was calculated according to Weber’s definition24 as:

where C denotes contrast; Imax is the maximal preferred structures orientation; Ibl is the baseline intensity 
calculated by Directionality plugin.

Data processing and statistics.  Data processing was performed as previously described16. All videos 
from optical mapping and images from the confocal microscope were processed in the ImageJ. The activa-
tion maps were built using Wolfram Mathematica. The statistical significance was determined using a one-way 
ANOVA followed by Fisher’s least significant difference for comparisons among groups. Values of p < 0.05 were 
considered statistically significant.

Results
Optical mapping of hiPSC‑CMs with CP.  In the first set of experiments, efficiency assessment of three 
differentiations that were performed in this study was done on the basis of optical mapping fluorescence data. 
Using Fluo-4 dying of obtained cardiac tissue, amplitude maps were constructed and the percent of cardiomyo-
cytes was calculated. The percentage of CMs in the tissue, and, therefore, average efficiency of each of three 
independent differentiations was 42% (n = 4), 51% (n = 6) and 50% (n = 9) (Fig. 1).

In the second set of experiments, the CP dose-dependences of the conduction velocity (CV) and maximum 
capture rate (MCR) were measured in the hiPSC cardiac tissue. Three independent differentiations of m34Sk3 
cell line were done with n = 2, n = 3 and n = 3 independent runs of experiments. Negative control data of CV 
(Fig. 2a,c) and MCR (Fig. 2b,d) was obtained during incubation of the cells with Tyrode’s solution. In 1 of the 
8 runs of experiments, normal propagation stopped after the addition of 724 µM (~ 15 mg/kg) of CP, and in 
another 2 runs after the addition of 852 µM (~ 18 mg/kg). In the other 5 runs normal propagation stopped after 
the addition of 1065 µM (~ 22 mg/kg) of CP (Fig. 2e). Figure 2f illustrates MCR values for each run. No con-
siderable difference in CV was found during CP treatment (Fig. 2g) up to 852 µM (~ 18 mg/kg). The MCR was 
stable within the margin of error after the addition of 213 µM (~ 4 mg/kg) of CP. The MCR fell by 25% ± 7% in 
comparison to the control values after the addition of 852 µM (~ 18 mg/kg) of CP (Fig. 2h).

In the third set of experiments, re-entry occurrence was checked on a standard linear obstacle in hiPSC 
cardiac tissue (n = 8) after the addition of 213 µM (~ 4 mg/kg), 639 µM (~ 13 mg/kg), or 852 µM (~ 18 mg/kg) 
of CP. While increasing the frequency of the external impulses from 1 to 5 Hz in increments of ≤ 0.5 Hz, no re-
entry was observed (Fig. 3).

However, arrhythmogenicity diagram on Fig. 3d illustrates the increase of non-capturing probability with 
the increase of CP dose. The impulses of the highest frequencies captured in control (4 Hz and 5 Hz) were not 
captured in all of the samples under 852 µM CP.

The conductivity area of excitation wave propagation at different doses of CP was measured. Setting the 
conductivity area in control as 100%, conductivity areas were 92 ± 8% (n = 8, p < 0.01 vs control), 82 ± 10% (n = 8, 
p < 0.001 vs control) and 66 ± 15% (n = 8, p < 0.01 vs control) under the influence 639 µM (~ 13 mg/kg), 852 µM 
(~ 18 mg/kg) and 1065 µM (~ 22 mg/kg) of CP respectively.

C = (Imax− Ibl)/Ibl,

0%
10%
20%
30%
40%
50%
60%
70%

Differentiation 1
(n=4)

Differentiation 2
(n=6)

Differentiation 3
(n=9)

Differentiation efficiency

Figure 1.   Human iPSC-CMs differentiation efficiency for three independent differentiations of m34Sk3 cell 
line. Quantification was done on the basis of optical mapping fluorescence data (Ca2+) of obtained cardiac tissue.

http://rsb.info.nih.gov/ij
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Figure 2.   The CP dose-dependences of CV and MCR in the hiPSC cardiac tissue. The CV was measured at 
a frequency of 1 Hz. For the MCR measurements, the frequency was increased from 1 to 5 Hz in increments 
of ≤ 0.5 Hz. Dashed lines indicate the moments when normal propagation stopped. The CV and MCR were 
measured ≤ 10 min after the addition of the CP solution. (c,d,g,h) Data of each run was normalized to the 
control value. Summary data is presented as mean ± SD (n = 8); *p < 0.05, **p < 0.01, ***p < 0.001 vs. control. (a,e) 
Error bars on each individual point represent the equipment error for each measurement of CV.
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Figure 3.   The effect of cyclophosphamide on re-entry formation in the hiPSC cardiac tissue. Activation maps 
of successful propagation on a standard linear obstacle in (a) control, (b) under 639 µM (~ 13 mg/kg) and 
(c) 852 µM (~ 18 mg/kg) of CP. The activation time is color coded. The frequency was increased from 1 to 
5 Hz in increments of ≤ 0.5 Hz; white circles correspond to the border of the sample, white lines correspond 
to the location of the obstacle, and red arrows indicate the direction of the excitation wave propagation. 
Arrhythmogenicity diagram (d), the orange bars indicate cases in which the tissue did not capture the external 
impulses. The vertical values of the diagram bars show the probability of the external impulses non-capturing in 
the hiPSC-derived cardiac tissue.
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Patch‑clamp experiments on hiPSC‑CMs with CP.  Patch-clamp experiments were conducted on iso-
lated hiPSC-CMs obtained from a healthy donor. According to the results of experiments, voltage-dependent 
INav, ICaL, IKs and IKr ion currents were detected in cardiomyocytes without changes in the presence of 630 μM 
(~ 13 mg/kg) CP with an experiment duration of no more than 30 min (Fig. 4).

The ion currents of voltage-dependent ion channels were fixed unchanged after 5, 10, 15, 20, 25 min after the 
start of exposure to CP. After 30 min and more, vacuoles appear in isolated cells, the cells begin to die by visual 
observation under a microscope in the presence of 630 μM (~ 13 mg/kg) CP.

Optical mapping of neonatal rat ventricular myocytes (NRVMs) with CP.  The CP dose-depend-
ences of CV and MCR were measured in neonatal rat ventricular myocytes (NRVM) monolayers. In 1 of the 
5 runs of experiments, normal propagation stopped after the addition of 639 µM (~ 13 mg/kg) of CP, and in 
another 4 runs after the addition of 852 µM (~ 18 mg/kg) (Fig. 5a). Figure 5b illustrates MCR values for each run. 
No considerable difference in CV was found during CP treatment (Fig. 5c) up to 639 µM (~ 13 mg/kg). The MCR 
was stable within the margin of error after the addition of 213 µM (~ 4 mg/kg) of CP. The MCR fell by 33% ± 9% 
in comparison to the control values after the addition of 639 µM (~ 13 mg/kg) of CP (Fig. 5d). The conductivity 
area of excitation wave at 852 µM (~ 18 mg/kg) of CP was 77 ± 13% (n = 5, p < 0.05 vs control).

Immunocytochemistry of hiPSC‑CMs and NRVMs.  Samples with ~ 50 hiPSC-CMs (both isolated and 
in clusters) were prepared. Control samples and samples after 5, 10, 20, and 30 min incubation with 213 µM 
(~ 4 mg/kg) of CP were fixated and further stained for F-actin, α-actinin, and DAPI (Fig. 6a–f). Modification 
of the α-actinin structure under CP was found (Fig. 6b, Table 1). Distribution of structures orientation present 
in the image is characterized as C-value (calculation of the C-value is described in Materials and Methods sec-
tion, paragraph 7). C-value for normal, undamaged cardiomyocytes that were presented in control samples, 
was 1.53 ± 0.67 (n = 9) and for cardiomyocytes with damaged cytoskeleton after 30 min incubation with 213 µM 
(~ 4 mg/kg) of CP—0.64 ± 0.18 (n = 9, p < 0.001 vs control).

Samples with ~ 100 isolated of NRVMs were prepared. Control samples and samples taken after 5, 10, 20, and 
30 min of incubation with 213 µM (~ 4 mg/kg) of CP were fixated and further stained for α-actinin. Modification 
of the α-actinin structure under CP was also found (Fig. 7).

The proportion of CMs with a normal cytoskeleton (i.e., “undamaged”) in relation to the total number of CMs 
per sample was calculated for each time interval of incubation with CP (Table 1). For hiPSC-CMs samples, the 
number of “undamaged” isolated CMs and “undamaged” CM clusters were summarized, and the proportion to 
the total number of isolated CMs and CM clusters for each time interval was calculated. The boundary time at 
which the number of undamaged cells was close to that of the control (a 9% and 22% decrease for hiPSC-CMs 
and NRVMs, respectively) was 5 min.

Discussion
CP is an anti-cancer drug that is used in the treatment of rheumatoid arthritis, lupus erythematosus, multiple 
sclerosis, neuroblastoma, and other types of cancer and it is also used in transplantology25. Unfortunately, its 
action is often associated with cardiovascular side effects such as atrioventricular block, tachyarrhythmias, heart 
failure, and myocarditis when taken in high doses (i.e., 100–200 mg/kg)1–6. While heart failure and myocarditis 
are caused by metabolites of CP8, atrioventricular block and tachyarrhythmias might be associated with the 
mechanisms of arrhythmia occurrence under CP influence on a cellular level, particularly when small doses of 
the drug are taken (i.e., less than 100 mg/kg).

To directly test the arrhythmogenic properties of CP and not its metabolites, we used an experimental model 
based on CMs obtained from the induced pluripotent stem cells of a healthy donor. 3 values were measured: the 
conduction velocity (CV), maximum capture rate (MCR), and number of occasions of re-entry on a standard 
linear obstacle (Supplementary Fig. 1) after the application of CP using the optical mapping method. The obtained 
3 values compose the arrhythmogenicity test previously published by the authors13,14. Electrophysiological param-
eters (action potential duration APD, stable value of CV, the response to periodic stimulation in the range of 
physiological values etc.) of these cells were measured by Slotvitsky M.M., Agladze K.I. et al. previously26 and 
reached the same values as in mature cardiomyocytes at the 50th day of differentiation. As a spontaneous activity 
could be either a limit cycle or stochastic parameter depends on stochastic gating of transmembrane currents 
and of calcium release channels, it was not investigated in this study27,28.

The CV was stable within the margin of error under 213–852 µM (~ 4–18 mg/kg) CP. The level of Cx43 in 
a cardiomyocyte tissue/monolayer is connected with changes of conduction velocity. The significant reduction 
of intercellular coupling is required to cause minor slowing of conduction velocity29,30. Recent study provided 
the dependence of CV on Cx43 level in strands of ventricular myocytes. The average value of the CV was > 1.5 
times slower in cell strands combining 70% wild type cells and 30% Cx43 knock out cells vs 100% wild type cell 
samples (p < 0.05). 50% wild type cells and 50% Cx43 knock out cells combination showed CV reduce > 5 times 
vs 100% wild type cell samples (p < 0.05)31 and the conduction block. Thus, the fact that conduction velocity was 
stable within the margin of error after applying CP in this study leads to the conclusion that intercellular contacts 
might not be influenced by 213–852 µM (~ 4–18 mg/kg) of CP.

However, in this study, a decrease in the MCR of the hiPSC cardiac tissue of up to 25% ± 7% under the influ-
ence of 852 μM (~ 18 mg/kg) was observed. The conductivity area of excitation wave was dose-dependently 
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Figure 4.   The effect of CP on voltage-dependent ion channels in hiPSC-CMs obtained from a healthy donor. 
(a) Voltage-dependent fast sodium current (INav) shown in the control and after the addition of 630 μM 
(~ 13 mg/kg) of CP, and a ramp current that was evoked when the voltage was increased smoothly from − 120 
to + 50 mV for 200 ms. The cell was prepulsed to − 120 mV for 100 ms from a holding potential of − 80 mV. The 
voltage protocol is shown above the current trace. Summary data is presented on the bar graph as mean ± SEM 
(n = 5). (b) L-type Ca2+ currents obtained in the absence (control) and presence of 630 μM (~ 13 mg/kg) of CP. 
Inset: The original current trace in response to a voltage step from − 40 to 0 mV for 300 ms. The inactivation 
of INa+ was achieved by a pre-step from a holding potential of − 80 mV to − 40 mV for 100 ms. Summary data 
is presented on the bar graph as mean ± SEM (n = 3). (c) The effect of 630 μM (~ 13 mg/kg) of CP on the slow 
potassium currents of the delayed rectification IKs current elicited in response to the 5 s depolarizing pulse 
from − 40 mV to + 60 mV in 10 mV increments. Summary data is presented on the bar graph as mean ± SEM 
(n = 5). (d) Voltage-clamp recordings of the IKr current elicited in response to the 5 s depolarizing pulse 
from − 40 mV to + 60 mV in 10 mV increments (HP of − 40 mV), showing the effect of 630 μM (~ 13 mg/kg) of 
CP on a tail current of IKr. IKr tail after the stimulation step during a 3 s holding potential of − 40 mV could be 
observed. Summary data is presented on the bar graph as mean ± SEM (n = 4).

◂

Figure 5.   The CP dose-dependences of CV and MCR in the NRVM monolayer. The CV was measured at a 
frequency of 1 Hz. For the MCR measurements, the frequency was increased from 1 to 5 Hz in increments 
of ≤ 0.5 Hz. Dashed lines indicate the moments when normal propagation stopped. (a) Error bars on each 
individual point represent the equipment error for each measurement of CV. (c,d) Data of each run was 
normalized to the control value. Summary data is presented as mean ± SD (n = 5); **p < 0.01, ***p < 0.001 vs. 
control.
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reduced and the normal propagation has stopped in all of the samples under 1065 µM (~ 22 mg/kg). The negative 
effect of CP manifested in maximum capture rate and conductivity area decrease was also found in NRVMs. 
These effects could be induced either by a disruption in the functioning of ion channels or damage to the cell 
structures’ integrity.

Our study shows that CP has no effect on the voltage-dependent ICaL, IKs and IKr, and INa ion channels 
(Fig. 4) in the concentration of 630 μM (~ 13 mg/kg) with an experiment duration ≤ 30 min. Nevertheless, CP 
caused exposure time-dependent changes in the α-actinin structure in the part of the seeded CMs (Table 1). It was 
detected both in human iPSC-CMs from a healthy donor and in NRVMs. Moreover, detachment process of the 
cells’ edge occurred after 30 min of incubation with CP (see SEM micrographs of hiPSC-CMs in Supplementary 
Fig. 3). Such structural changes may lead to the reduction of the conductivity area and cause the MCR decrease 
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Figure 6.   Confocal imaging of F-actin, α-actinin and DAPI in hiPSC-CMs. (a,c,e) Normal, undamaged 
cardiomyocytes. C = 3.6 for the presented cells. (b,d,f) Bottom part of figure: cardiomyocytes with damaged 
cytoskeleton after incubation with 213 µM (~ 4 mg/kg) of CP. C = 1.0 and C = 0.7 for cardiomyocytes presented 
on the image.
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under the influence of CP. This is consistent with the fact that clinical QT prolongation may also be a conse-
quence of structural injury to the myocardium32. Thus, a possible mechanism of the CP effect on CMs in vitro is 
shown to be related to the structural injury of the cells rather than to effects on the voltage-gated ion channels.

As shown in previous works, CP showed no response according to the hiPSC-CM (iCell Cardiomyocytes) 
arrhythmic risk model developed by Guo et al.33 based on real-time cellular impedance measurement. The 
absence of re-entry on a standard linear obstacle in this study proves these results. Re-entry formation presence 
under CP was checked on the whole range of frequencies of the external impulses from 1 to 5 Hz in increments 
of ≤ 0.5 Hz. No re-entry on the standard linear obstacle in hiPSC cardiac tissue was observed during CP treat-
ment. Three drugs with confirmed proarrhythmic risk in clinic and known effects on voltage-dependent ion 
channels were used as the positive control (experiments were conducted on the current experimental setup) and 
published before13,14. Lidocaine and E-4031 were tested on patient-specific hiPSC cardiac tissue from a healthy 
donor (one cell line, ISMA6L)13. Lidocaine, fast sodium channel blocker, at the concentration 100 µM induced 
re-entry formation on the sharp end of the obstacle at 2 Hz, higher than 2 Hz frequencies of external stimulation 
were not captured by the tissue. E-4031, hERG-channel blocker, in a concentration of 1.6 µM induced re-entry 
formation on the sharp end of the obstacle at 1.7 Hz and lower frequencies of the external impulses, higher than 
1.7 Hz frequencies were not captured by the tissue. Erythromycin was tested on the same model used in this 
study, patient-specific hiPSC cardiac tissue from a healthy donor, cell line m34Sk314. Erythromycin, IKr channel 
blocker, at the concentrations 15–30 µM induced re-entry formation on the sharp end of the obstacle at 2–2.5 Hz, 
higher frequencies of external stimulation were not captured by the tissue. As discussed above, the re-entry 
formation is connected with voltage-gated ion channel blockage, which was not found during CP treatment. 
Arrhythmogenicity diagram on Fig. 3d illustrates that frequencies higher than 4 Hz were not captured by the 
tissue under 639 µM (~ 13 mg/kg) CP and frequencies higher than 3,33 Hz were not captured by the tissue under 
852 µM (~ 18 mg/kg) CP, whereas 4 Hz and 5 Hz were captured in control. Deviation from the external stimulus 
frequency could be regarded as arrhythmic beats and should be considered when using CP for disease treatment. 
Moreover, appearance of non-conductive areas in cardiac tissue under CP could develop arrhythmia in vivo.

Table 1.   The influence of CP on hiPSC-CM and NRVM cytoskeleton in relation to incubation time.

Incubation with CP hiPSC-CMs: nundamaged/ntotal NRVMs: nundamaged/ntotal

0 min 0.82 0.55

5 min 0.75 0.43

10 min 0.48 0.27

20 min 0.34 0.3

30 min 0.42 0.27

α-actinin α-actinin22 µm 22 µm

a b
Normal (undamaged) Damaged

NRVMs

Figure 7.   Representative image of α-actinin damage in isolated NRVMs under the influence of CP. (a) Normal, 
undamaged cardiomyocyte. (b) Cardiomyocyte with damaged α-actinin after incubation with 213 µM (~ 4 mg/
kg) of CP.
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Limitations
iPSC-CMs are often regarded as immature electrophysiologically34,35. Nevertherless, in this research tissue of 
50 days old human iPSC-CMs were used for cardiotoxicity testing. Electrophysiological characteristics of these 
cells were measured previously26 and reached the same values as in mature cardiomyocytes after the 50th day 
of differentiation.

Selected patient-specific iPSC line (m34Sk3 line) from healthy donor is well studied by authors in all aspects 
related to this work: the structure of hiPSC-CMs tissue26, maturation26, reference tests for arrhythmogenicity 
with hERG channels blockage14,26, studies of electrophysiology and ion channels (E4031)26. The selected dif-
ferentiation protocol was optimized and published earlier14. Stable differentiation efficiency was obtained15,26 
(Fig. 1). However, since one line of patient-specific human iPSC (m34Sk3) is used in this work, each particular 
conclusion cannot be generalized to other cell lines of human iPSC-CMs.

Compliance with ethical standards.  The cell line is provided by the E. Meshalkin Novosibirsk Scien-
tific Research Institute of Circulation Pathology and handling approved by the Institute of Circulation Pathol-
ogy Ethics Committee (#27, March 21, 2013). The generation of iPSC line from cells donated by patient with 
informed consent described in Refs.14,15. All experiments and procedures were performed in accordance with 
principles for human experimentation as defined in the 1964 Declaration of Helsinki and its later amendments 
and were approved by the Scientific Council of the MIPT Life Science Center.

All applicable international, national, and/or institutional guidelines for the care and use of cell lines were 
followed.

Conclusions
This study examined the conduction properties and cytoskeleton structure of hiPSC cardiac cells (m34Sk3 
patient-specific cell line) obtained from a healthy donor under low doses (i.e., < 100 mg/kg) of CP. CP has distinct 
negative effect on cardiac tissue in vitro which is manifested in the reduction of maximum capture rate (the 
maximum rate at which each stimulus from the electrode was followed by a response) and the conductivity area.

Maximum capture rate decreased up to 25% ± 7% after application of 852 µM (~ 18 mg/kg) cyclophosphamide 
for ≤ 10 min. The conductivity area of excitation wave was 66 ± 15% under the influence 1065 µM (~ 22 mg/kg) 
of CP for ≤ 10 min. CP has no direct effect on re-entry formation, measured according earlier proposed method 
of cardiac tissue optical mapping13,14. It could be explained by absence of effect on voltage-gated ion channels in 
patch-clamp experiments in this study on hiPSC cardiac cells (m34Sk3 patient-specific cell line) obtained from 
a healthy donor. Immunocytochemical labeling revealed an exposure time-dependent disruption of α-actinin, 
which indicated the CP influence on the cardiomyocytes structure and, consequently, on conduction properties 
of the cardiac tissue. Thus, CP arrhythmogenicity testing showed deviation from the external stimulus frequency 
under 639 µM (~ 13 mg/kg) and 852 µM (~ 18 mg/kg) CP and appearance of non-conductive areas in cardiac 
tissue, which is potentially arrhythmogenic and could develop arrhythmic effects in vivo.

Data availability
The datasets generated and analysed during the current study, plugins for data processing are available from the 
corresponding author on reasonable request.
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