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The interaction of microbiota with its host has the ability to alter the cellular functions of both, through several
mechanisms. Recent work, from many laboratories including our own, has shown that epigenetic mechanisms
play an important role in the alteration of these cellular functions. Epigenetics broadly refers to change in the
phenotype without a corresponding change in the DNA sequence. This change is usually brought by epigenetic
modifications of the DNA itself, the histone proteins associated with the DNA in the chromatin, non-coding
RNA or the modifications of the transcribed RNA. These modifications, also known as epigenetic code, do not
change the DNA sequence but alter the expression level of specific genes. Microorganisms seem to have
learned how to modify the host epigenetic code and modulate the host transcriptome in their favour. In this
review, we explore the literature that describes the epigenetic interaction of bacteria, fungi and viruses, with
their mammalian hosts.
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1. Introduction

Coexistence in the same ecological niche promotes
interactions between different organisms. Microbes
form a dominant group of organisms who have formed
a commensal or pathogenic relationship with the mul-
ticellular organisms with whom they coexist. Human
microbiota, the microbes that coexist with humans, can
be thought of as an additional multifunctional organ. In
fact, the microbes that coexist with and within a human
being outnumber the number of human cells by a factor
of ten (Turnbaugh et al. 2007). The microbial cell can
complement the metabolic traits, such as synthesis of
specific vitamins, conjugated bile acid transformation,

ability to break down complex plant polysaccharides,
and dietary oxalate degradation. Microbiota educates
our immune system to tolerate microbial immune
determinants, reducing allergic response to environ-
mental antigens, food, etc. (Xu and Gordon 2003).
The interaction of microbiota with its host has the

ability to alter the cellular functions of both, through
several mechanisms. Recent work, from many labora-
tories including our own, has shown that epigenetic
mechanisms play an important role in the alteration of
these cellular functions (Paschos and Allday 2010;
Sharma et al. 2016). Epigenetics broadly refers to
change in the phenotype without a corresponding
change in the DNA sequence. This change is usually
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brought by epigenetic modifications of the DNA itself,
the histone proteins associated with the DNA in the
chromatin, non-coding RNA or the modifications of the
transcribed RNA. These modifications, also known as
epigenetic code, do not change the DNA sequence but
alter the expression level of specific genes (Rothbart
and Strahl 2014). Microorganisms seem to have
learned how to modify the host epigenetic code and
modulate the host transcriptome in their favour.
In this review, we explore the literature that describes

the epigenetic interaction of bacteria, fungi and viruses,
with their mammalian hosts.

2. Epigenetic modifications

2.1 Histone modifications

Post-translational modifications (PTMs) of histone
proteins are known to alter chromatin organisation.
Modifications decrease or increase the nucleosome
compaction to form euchromatin (open chromatin
conformation) or heterochromatin (closed chromatin
conformation). Euchromatin is usually associated with
active gene expression, whereas heterochromatin is
normally associated with gene silencing. Modification
of histones in their globular domain has the ability to
influence histone-histone and histone-DNA interactions
(Bannister and Kouzarides 2011). These modifications
are established by the action of specific enzymes called
epigenetic writers. Histone modifications are dynamic
and protein factors called epigenetic erasers catalyse
the removal of histone modifications. Thus an excep-
tional balance exists between these enzyme/enzyme
complexes that determine the effective modifications
present at a specific position on a particular histone
(Jenuwein and Allis 2001; Bannister and Kouzarides
2011). Briefly described below (also see figure 1) are
the different histone modifications known.

2.1.1 Acetylation: Histone acetyltransferases (HATs)
acetylate the e-amino group of lysine side chains on H3
and H4 using acetyl-CoA as a cofactor and histone
deacetylases (HDACs) remove these acetyl groups
(Roth et al. 2001). The acetyl group, being negatively
charged is associated with the disruption of the elec-
trostatic interactions, repulsion of the negatively
charged DNA, and weakening of the histone-DNA
interactions (Bannister and Kouzarides 2011). This
allows open chromatin and active transcriptional state.
Histone H3 acetyl lysine 9 (H3K9ac) and acetyl lysine
27 (H3K27ac) are associated with promoters and distal

enhancers of transcriptionally active genes (Barnes
et al. 2019). In addition to histone tails, acetylation also
occurs at the globular domain of histones. Histone H3
acetyl lysine 56 (H3K56ac) in the histone H3 core
protrudes its side chain towards DNA major groove
affecting histone-DNA interactions (Yuan et al. 2009;
Bannister and Kouzarides 2011).

2.1.2 Phosphorylation: Kinases, like KAT2A, phos-
phorylate the hydroxyl group of the amino acids Ser-
ine, Threonine, and Tyrosine using ATP as a phosphate
group donor (Bannister and Kouzarides 2011). The
addition of a phosphate group increases the net nega-
tive charge affecting the chromatin organisation.
Phosphorylation influences the interaction between
other histone modifications and is involved in chro-
matin condensation during mitosis. For instance, his-
tone H3 phosphoserine 10 (H3S10ph) compacts
chromatin during mitosis in all eukaryotes (Bannister
and Kouzarides 2011; Rossetto et al. 2012). Similarly,
histone H2B phosphoserine 14 condenses chromatin
during apoptosis (Füllgrabe et al. 2010). Another
example of regulation by histone phosphorylation is
observed during double-stranded DNA breaks, where
histone variant H2AX phosphoserine 139
(H2AXS139ph) recruits DNA damage repair proteins
to the site (Lowndes and Toh 2005).

2.1.3 Methylation: Methyltransferases, like SETD7,
catalyse the transfer of methyl group is transferred from
S-adenosyl methionine (SAM), to e-amino group on
lysine and x-guanidino on arginine of histones. SET
domain-containing enzymes (Lysine Methyltrans-
ferases, KMT) catalyse the transfer to lysine on histone
tails (HKMTs), while non-SET domain containing
proteins transfer methyl group to the globular domain
(Greer and Shi 2012). Protein arginine methyltrans-
ferases (PRMT) family catalyses arginine methylation
(Blanc and Richard 2017). Histone methylation can be
stably propagated through multiple cell divisions.
Unlike phosphorylation or acetylation, addition of
methyl group allows maintenance of histone-DNA
interactions. However, it is thought to influence the
chromatin organisation due to the hydrophobicity of
the methyl group. The count (mono-, di-, or tri-) and
symmetry of methylation (symmetric, or asymmetric)
increases the methylation complexity (Bannister and
Kouzarides 2011). Methylation may participate in both,
transcription activation or repression, depending on the
site of methylation. Histone H3 methyl lysine 4
(H3K4me1/2/3) is enriched at gene promoters as well
as transcription start sites of active and
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developmentally-regulated genes. Histone H3 trimethyl
lysine 36 (H3K36me3) is enriched on the gene bodies
of transcribed regions (Greer and Shi 2012). On the
other hand, histone H3 trimethyl lysine 9 (H3K9me3)
is correlated with constitutive heterochromatin in gene-
poor regions such as repetitive elements present at
centromeres, transposons, inactivated X-chromosome,
etc. Histone H3 trimethyl lysine 27 (H3K27me3)
temporarily marks gene-rich regions that regulate
development and embryonic stem cell function. ‘Bi-
valent domains’ containing both H3K4me3 (active)
and H3K27me3 (repressive) marks have been identi-
fied in pluripotent embryonic cells. These domains
support low level of transcription (Greer and Shi 2012).
Arginine methylation is also associated with both

activation and repression of a gene. Histone H4
asymmetric dimethyl arginine 3 (H4R3me2a) is asso-
ciated with active transcription which recruits H3K9ac
for the binding of a transcription factor. Histone H3

asymmetric dimethyl arginine 17 (H3R17me2a) is also
associated with active transcription. On the other hand,
histone H4 symmetric dimethyl arginine 3
(H4R3me2s) and Histone H3 symmetric dimethyl
arginine 8 (H3R8me2s) are associated with gene
repression (Blanc and Richard 2017).

2.1.4 Ubiquitinylation: E1 (activation), E2 (conjuga-
tion), E3 (ligation) enzymes sequentially add covalent
modifications on histones. Histone H2A monoubiqui-
tinated lysine 119 (H2AK119ub1) and Histone H2B
monoubiquitinated lysine 123 (H2BK123ub1) are
associated with change in nucleosomal conformation
and intranucleosomal interaction. It is also known to
play a crucial role in the DNA damage response
(Bannister and Kouzarides 2011; Cao and Yan 2012).

2.1.5 Tail clipping: Histone N-terminal’s regulated
proteolysis to remove multiple PTMs is known as tail

Figure 1. Histone post translational modifications (PTMs): Histone are modified at specific residues in their N-terminal tails
(A) and by specific histone modifiers (B). (A) Summary of post-translationally modified amino acids in the various histone
proteins. Globular core region of each histone is depicted by black rectangle. The amino acids in their N-terminal tails are
depicted by 1-letter codes. PTMs are depicted above the 1-letter codes of amino acids. The numbers below depict the position
of the modified amino acids from the N-terminus. The modified amino acids in the core regions of the histone are shown in
green. Ac—acetylation, me—methylation, P—phosphorylation. (B) Changes in the molecular structure of amino acids by
histone modifying enzymes. Acetylation: acetyl group added to terminal nitrogen atom in lysine by histone acetyltransferases
(HATs). Phosphorylation: phosphate moiety is added to the hydroxyl group of a-carbon in serine and threonine and to the
para-hydroxyl group in tyrosine by kinases. Methylation: methyl group(s) is (are) added to the terminal amino group of lysine
or arginine by lysine methyltransferases (KMTs) or protein arginine methyltransferases (PRMTs) respectively. Up to 3 methyl
groups can be added to lysine (mono- or di- or trimethyl lysine). And 2 to arginine (mono- or di-methylarginine). The two
methyl groups in dimethylarginine if added at the adjacent nitrogen atom forms symmetric dimethylarginine, whereas if
added to same nitrogen atoms leads to asymmetric dimethylarginine. A few known examples of histone modifying enzymes
are provided for each type of modifications.
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clipping. It is reported in many organisms and is an
irreversible process. It activate genes due to the
increased DNA accessibility for transcription (Santos-
Rosa et al. 2009; Bannister and Kouzarides 2011).
The histone modifications mentioned above, along

with the deimination of arginine, O-linked b-N-acetyl
glucosamination, ADP ribosylation, sumoylation, and
proline isomerization constitute the ‘Histone Code’
(Turner 2002; Bannister and Kouzarides 2011). Pro-
teins with specialised domains including chromod-
omain, tudor, MBT, bromodomain and PHD domain
interact with and read the histone code to mediate
binding of effector proteins to specific modifications
and recruit the epigenetic machinery to alter chromatin
organisation (Bannister and Kouzarides 2011; Rothbart
and Strahl 2014). Furthermore, ATP-dependent nucle-
osome remodelling complexes containing these
domains are known to mediate specific association with
modified histones and their tails. For instance, the
bromodomain of the SWI/SNF complex tethers to
acetylated promoters, rearrange chromatin by assem-
bling or disassembling nucleosomes and exchange
histones with their variants (Becker and Workman
2013).

2.2 DNA methylation

DNA methylation is a reversible epigenetic modifica-
tion of DNA and is associated with dynamic regulation
of gene expression. Cytosine and Adenine bases in the
DNA are known to be methylated in all organisms—
from bacteria to mammals (figure 2) (Blow et al. 2016;
Greenberg and Bourc’his 2019).

2.2.1 5mC methylation: Methylation of cytosine at the
5th position does not affect Watson-crick base pairing.
However, despite being a small hydrophobic methyl
group, it protrudes into the major groove of DNA
affecting the biophysical properties (Pérez et al. 2012).
Addition of this modification is catalysed by DNA
methyltransferases. The de novo DNA methyltrans-
ferases DNMT3A and DNMT3B catalyse this addition
on unmethylated DNA substrate (Okano et al. 1999).
The maintenance methyltransferase, DNMT1, adds
methyl group to hemimethylated DNA substrate and
maintains DNA methylation through cell divisions (Li
et al. 1992). DNMT3L, which lacks catalytic activity,
interacts with DNMT3A and DNMT3B and stimulates
their activity besides recruiting them to the specific loci
by binding to histone H3 that is methylated at lysine 4
(Bourc’his et al. 2001). De novo and maintenance

methyltransferases collaborate to ensure DNA methy-
lation is established and maintained in subsequent
generations (Jaenisch and Bird 2003). DNMT2 or
TRMT1 has also been classified as a DNA methyl-
transferase but it has been shown to methylate both
tRNA and mRNA (Dev et al. 2017; Jeltsch et al. 2017).
Ten-eleven translocation (TET) family proteins catal-
yse DNA demethylation actively by converting
5-methylcytosine to 5-hydroxymethylcytosine (Tahil-
iani et al. 2009). 5-hydroxy methylcytosine (5hmc) is
an intermediate product – a new epigenetic mark that
affects chromatin structure and gene expression (Shi
et al. 2017).
DNA methyltransferases predominantly methylate

cytosines in CpG dinucleotide context in the mam-
malian genome (Reik et al. 2001). CpG dinucleotides
are present at frequency lower than expected in the
genome and at most places as CpG islands (CGIs).
These islands have been found near or within regula-
tory element and gene promoters (Deaton and Bird
2011). Gene promoters should be accessible to tran-
scription factors and DNA methylation at these sites
leads to transcriptional repression. Promoters of
housekeeping genes are usually unmethylated (Reik
et al. 2001). DNA methylation recruits methyl-CpG
binding domain proteins including MeCP2, MBD1,
MBD2, MBD3 and MBD4, which in turn engages
histone deacetylases (HDACs) to repress transcription
(Fournier et al. 2012). This cross-talk emphasizes the
relationship between DNA methylation and histone
modifications.
Non-CpG methylation is methylation of the cytosine

in CpA, CpT, CpC dinucleotide context. First discov-
ered in the plant genome (Lindroth et al. 2001), non-
CpG methylation is known to be catalysed by several
DNA methyltransferases in mammals (Arand et al.
2012). Non-CpG methylation is highly enriched in
neurons, glial cells, oocytes, ES cells and induced
pluripotent stem cells (IPSCs). In adult somatic cells,
non-CpG methylation accounts only for 0.02% of the
total methylated cytosines. However, the level of non-
CpG methylation is substantially more in ES cells
(Laurent et al. 2010; Lister et al. 2011, 2013; Guo et al.
2014).

2.2.2 N6-methyladenosine (6mA): Recent studies in
mammals have shed light on N6-methyl adenine (6mA)
(Heyn and Esteller 2015). Methylation of adenine at
N-6 position was reported during the discovery of
bacterial restriction-modification (R-M) system to
protect against viral invasions (Arber and Linn 1969;
Heyn and Esteller 2015). Extensive genomic analysis,
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reveals that eukaryotes (from fungus to mammals)
during evolution have adopted adenine methyltrans-
ferases from prokaryotes. In different organisms, 6mA
is enriched in different genomic regions, including
promoters, transcription start sites, coding regions, and
transposons. Unlike cytosine, methylation of adenine
upregulates transcription in most cases. 6mA has been
attributed with several functions that are species-
specific (Fu et al. 2015; Zhang et al. 2015; Iyer et al.
2016; Koziol et al. 2016; Xiao et al. 2018).
DAMT-1, with a MTA70 domain, is a DNA adenine

methyltransferase inC. elegans (Greer et al. 2015). RNA
m6A methyltransferases, METTL3 and METTL14, are
homologs in this family. METTL4, a DAMT-1 homolog
in mammals, is a paralog of METTL3 and METTL14
(Balacco and Soller 2019).

3. RNA modifications

Several modifications of eukaryotic mRNAs are
known: capping at the 5’ end; polyadenylation at the 3’
end, splicing to derive mature mRNA from pre-mRNA,
etc. Recently, post-transcriptional modifications of
cellular RNA (including non-coding RNA) similar to
DNA and histone modifications have also been iden-
tified (Boccaletto et al. 2018). These modifications
directly influence gene expression, adding another level
of epigenetic regulation termed as ‘epitranscriptomics’

(Saletore et al. 2012). Chemical modifications in RNA
alter charge on transcripts, base-pairing potential, sec-
ondary structure, and protein-RNA interactions; these
shape the outcome of gene expression by modulating
RNA processing, localization, translation, and decay.
Few of the common RNA modifications are shown in
Figure 3.

3.1 m6A methylation of RNA

m6A is the predominant modification present on all
cellular RNAs (Zaccara et al. 2019). meRIP-sequenc-
ing on human and mouse models reveal that m6A
methylation is mainly enriched in long internal exons,
3’ untranslated regions (UTRs), and region upstream of
stop codon (Dominissini et al. 2012). A heterodimeric
protein complex of METTL3 and METTL14 methy-
lates RNA by depositing methyl group on exocyclic
NH2 at the sixth position of the adenosine using SAM
as a methyl donor (Figure 3, Liu et al. 2014). Proteins
such as WTAP and KIAA1429 interact with the com-
plex to load on to the target RNA (Ping et al. 2014).
FTO and ALKB homologue 5 (ALKBH5) actively
demethylate RNA m6A (Zheng et al. 2013; Mauer
et al. 2017). m6A destabilizes RNA duplex to
accommodate A-U bonding by rotating the methyl
group from low energy syn (when unpaired) to high
energy anti conformation (when paired with uracil).

Figure 2. DNA methylation. Cytosine and Adenine methylation. Cytosine is methylated at the 5th carbon whereas Adenine
is methylated at the 6th carbon of the nitrogenous base. m5C—5-methylcytosine, hm5C—5-hydroxymethylcytosine, m6A—
N6-Methyladenosine. A representative DNA sequence is provided. DNMTs –DNA methyltransferases; TET—an enzyme
belonging to the hydroxy-methyltransferase family. Dam methylase- DNA adenine methyltransferase (known in
prokaryotes).
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The rotation disrupts the local structure of transcripts
predisposing it to bind to other proteins (Roost et al.
2015).
Reader proteins bind to m6A and decide the fate of

target mRNA. YTH domain-containing proteins are a
classic example for m6A readers: YTHDC1 (nuclear)
affects mRNA splicing and export; YTHDC2 (nuclear
and cytoplasmic) affects translation initiation and
mRNA degradation; YTHDF1 (cytoplasmic) promotes
translation; YTHDF2 (cytoplasmic) targets RNA to the
P-bodies; YTHDF3 (cytoplasmic) binds to circular
RNA. HNRNPC, HNRNPG, and HNRNPA2B1 pref-
erentially bind to m6A in non-coding RNA (Xiao et al.
2016; Hsu et al. 2017; Zaccara et al. 2019).

3.2 N1-methyladenosine

N1-methyladenosine (m1A) refers to methylation at the
N1 position of adenosine. m1A blocks base-pairing at
the Watson-Crick interface, unlike m6A and other
adenosine methylations, affecting the RNA secondary
structure and protein-RNA interactions (Dominissini

et al. 2016; Roundtree et al. 2017). tRNA and rRNA
abound with m1A. m1A correlates with the upregula-
tion of translation due to its unique position near
translation start sites and the first splice site of the
coding transcripts. ALKBH3 demethylates m1A in
response to cellular stresses (Dominissini et al. 2016;
Roundtree et al. 2017).

3.3 5-methylcytosine

RNA methyltransferases NSUN2 and DNMT2
methylate RNA at the fifth position of cytosine (5mC)
(Goll et al. 2006; Hussain et al. 2013; Dev et al. 2017).
Several findings have revealed that 5mC distributes on
precise mRNA regions and, 50 and 30 UTRs, a binding
site for argonaute proteins (Squires et al. 2012). 5mC
stabilizes RNA structures by promoting base stacking
leading to the increased thermal stability of hydrogen
bonding with guanosine. 5mC stabilized tRNAs influ-
ence the anti-codon stem-loop conformation and
translational fidelity of rRNA. ALYREF, an mRNA
export adaptor protein, recognizes and exports m5C

Figure 3. Modified RNA bases. Epigenetic modifications of mRNA or rRNA molecules. Methyl and hydroxyl group are
added to the nitrogenous bases of either cytosines or adenine. m1A—N1-methyladenosine, m6A—N6-Methyladenosine,
m6Am—N6,2-O-dimethyladenosine, m5C—5-methylcytosine, hm5C—5-hydroxymethylcytosine, 20-O-me—20-O-Methyla-
tion, CH3—methyl group, OH—Hydroxyl group.
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transcripts (Squires and Preiss 2010; Roundtree et al.
2017).

3.4 2’-OH methylation

2’-OH methylation of ribose is frequent in RNAs. In
piRNA, 20-O-me is vital for its recognition by Piwi-
Claude argonautes over Ago-Claude proteins. 20-O-me
affects secondary structures of RNA and their interac-
tions with proteins. 20-O-me exists in the second and
third nucleotides, which may also have adenosines
methylated at the sixth position, and together they form
m6Am modification and rescue mRNA from degrada-
tion (Kurth and Mochizuki 2009; Roundtree et al.
2017).

3.5 Pseudo uridine

Uridine can isomerize to give the fifth nucleotide—
pseudo uridine (W). W provides an additional hydrogen
bond donor, helps in the proper folding of rRNA, and
stabilizes the C-C bond and tRNA structure (Roundtree
et al. 2017).

3.6 Adenosine-to-Inosine RNA editing

Adenosine deaminases acting on RNA (ADARs)
deaminates adenosine to inosine, which pairs with
cytosine. A-to-I editing recodes the transcript by pair-
ing inosine non-canonically with guanosine, altering
protein sequences, and affecting splicing and miRNA
biogenesis (Bass 2002; Roundtree et al. 2017).

4. Non-coding RNA

Genome-wide deep sequencing studies reveal that
mammalian transcriptomes are only partially translated
into proteins; studies estimate that 80,000 out of
100,000 RNAs remain untranslated and are known as
non-coding RNAs. They are divided mainly into two
classes based on length as long non-coding RNA
([200nt) and short non-coding RNA (\200nt). Non-
coding RNAs influence gene expression at both tran-
scriptional and post-transcriptional levels. As genome
complexity evolved across organisms, non-coding
RNA count correspondingly increased with number of
protein-coding genes remaining relatively static (Der-
rien et al. 2012).

4.1 Long non-coding (long ncRNA) RNA

Long ncRNAs recruit chromatin-remodeling com-
plexes. The components of PRC1 and PRC2 chromatin
remodelling complexes, which establish repressive
histone mark H3K27me3, interact with ncRNA. For
example, Xist, a long ncRNA, expresses from
X-chromosome and binds to PRC1 and PRC2 protein
complexes, establishes H3K27me3 and also recruits
histone deacetylases and DNMT3A to methylate CpG
(Ponting et al. 2009; Derrien et al. 2012).

4.2 Small non-coding RNA

Small non-coding RNAs are either structural (riboso-
mal, transfer, small nuclear, small nucleolar RNAs) or
regulatory (miRNA, siRNA, piRNA) in nature. Small
non-coding RNAs mediate post-transcriptional inter-
ference—a powerful mechanism for gene silencing.
miRNAs are evolutionarily conserved 20 to 24
nucleotides single-stranded RNA molecules. Mature
miRNAs are processed from imperfectly paired hairpin
pre-precursor miRNA by the action of Drosha and
Dicer. Mature miRNA interacts with Argonaute (Ago)
proteins to form the RNA-induced silencing complex
(RISC) and targets 30UTRs to guide gene silencing.
siRNAs are similar to miRNA in size and function.
However, Dicer processes the mature siRNA from a
long, linear dsRNA precursor. Processed siRNA is
loaded onto RISC, which degrades the target mRNA.
siRNAs are thought to be protecting the genome from
invasion by viruses and transposons (Krol et al. 2010).
piRNAs vary from 24 to 31 nucleotides and contain
uridine at the 50 end, and 20-O-methylation at the 30

end. piRNAs get their name from Piwi proteins of the
Argonaute family that process the single-stranded
precursor to anti-sense RNAs. The primary role of
piRNA is to cleave transposons and protect the germ-
line, which generates sense piRNAs arising from the
target transposons. The anti-sense and sense piRNAs
enter into a ’Ping-Pong’ cycle increasing the piRNA
pool (Czech and Hannon 2016).
RNA-induced silencing complexes (RISCs) is a

versatile gene-silencing machine that contains a com-
plex of different proteins. RISC co-localizes with target
RNAs and generates gene-silencing pathways. RISC
can repress protein synthesis, degrade target RNA, and
establish heterochromatin. The RISC core is composed
of two modules: (i) a small regulatory RNA such as
siRNA, miRNA, piRNA, rasiRNA, tasiRNA, tncRNA,
hcRNA, scnRNA which function as a guide by
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establishing Watson-Crick base pairing with their tar-
gets and (ii) a highly conserved argonaute protein
bound to the small RNA along with associated pro-
teins. The exact composition of the RISC complex
varies with different determinants like associated RNA
type, the function, and the subcellular location (Paroo
et al. 2007).

5. Microbial interaction with the host epigenetic
machinery

Host mammalian cells interact with several types of
microbes including bacteria, viruses, fungi, protozoa,
etc. Microbial interaction could be intracellular or
extracellular. It could be binary (one host, one
microbe), or consortia (Eloe-Fadrosh and Rasko 2013).
The interaction could be commensal or pathogenic.
Presented below is a brief review of literature which
describes modulation of the host epigenetic circuitry by
microbes.

5.1 Bacteria and the host epigenetic circuitry

Bacterial factors can modify DNA by incorporating
foreign genetic material into the genome, alter the
availability of chemical donors for modifying histone
or DNA by producing metabolites, and directly interact
with the host modifying enzymes such as HMTs,
HDACs, and DNMTs. Pathogenic as well as com-
mensals, can modulate the host epigenetic machinery
for their survival. They have an array of epigenetic
modifiers that follow different modes of action; interact
with the target receptor leading to a signalling cascade,
target an intracellular host protein to mediate a modi-
fied signalling cascade or self-modify the target host
protein directly (Cortese et al. 2016). In the following
section, we discuss the available literature on the epi-
genetic interaction of the various bacterial species that
are known to have a symbiotic or pathogenic rela-
tionship with humans. The summary of bacterial mode
of interaction with host epigenetic machinery is sum-
marized in table 1.

5.1.1 Bacteroides: Bacteroides (gram-negative, bile
resistant, anaerobic and non-spore forming) form one
of the earliest arising lineages of bacteria in a human
infant, bacteria which the mother passes to the child
during birth. Bacteroides are commensal until they
escape from the gut due to GI tract rupture or surgery.
Outside the gut they may cause abscess formation in

various parts of the body, including the brain, pelvis,
lungs, abdomen, and liver (Wexler 2007). B. vulgatus
has been shown to induce inflammatory signalling
cascade leading to phosphorylation and acetylation of
histone H3. Studies have shown that it can maintain
homeostasis via TGFb1/ Smad signalling and by reg-
ulating NF-kB signalling in the intestinal epithelium
through reduction in H3 acetylation levels and
recruitment of HDAC at pro-inflammatory gene
promoters.
Metabolites sulforaphane cysteine and sulforaphane

N-acetyl-cysteine from cruciferous vegetables and allyl
mercaptan and diallyl disulfide from garlic by B.
thetaiotaomicron are potent histone deacetyltransferase
inhibitors (Haller et al. 2003; Bhat and Kapila 2017).
Epigenetic modifications have also been identified in
the genome of B. dorei during metagenomic analysis of
stool samples. The study indicated the presence of
m6A methylation at 20,551 GATC sites within the
bacterial genome distributed over the gene body as well
as intergenic regions. The study also highlighted
methylation of the Ton and Tol transport system, an
energy source for transporting across the outer mem-
branes in gram-negative bacteria (Leonard et alet al.
2014).

5.1.2 Bifidobacterium: Bifidobacterium is one of the
earliest microbes that colonizes the gut of an infant. It
is amongst the various bacteria that are part of probi-
otics, nutraceuticals, and dairy products. Bifidobacteria
genomic DNA has high G?C content. Studies have
shown that unmethylated CpG motifs from the bifi-
dobacterial genome interact with TLR9 (Toll-like
Receptor-9) present on immune cells promoting Th1
response, which fights against intracellular viral
pathogens.
Lack of folate or the methyl group (from SAM) in

the diet is associated with DNA hypo-methylation in
rats and humans. Folate abundance affects the effi-
ciency of DNA methylation, repair, and replication.
Bifidobacterium strains are known to produce folate.
One of the Bifidobacterium strains BGN4 is also
known to produce S-Adenosyl-L-methionine (SAM), a
methyl donor and a substrate for methylation reaction
(Pompei et al. 2007; Ruiz et al. 2017). In addition, B.
breve has been shown to reduce global histone H4 and
H3S10/K14 acetylation and increases DNA methyla-
tion in HT29 cells (Ghadimi et al. 2012).

5.1.3 Faecalibacterium: Bacteria of Faecalibacterium
species belongs to the phylum firmicutes. F. prausnitzii
is an oxygen-sensitive, spore-forming gut commensal,

   94 Page 8 of 31 Ramisetti Rajeev et al.



T
ab

le
1.

B
ac
te
ri
al

in
te
ra
ct
io
n
w
it
h
ho
st
ep
ig
en
et
ic

m
ac
hi
ne
ry

B
ac
te
ri
al

sp
ec
ie
s

B
ac
te
ri
al

fa
ct
or

N
at
ur
e
of

ba
ct
er
ia
l

fa
ct
or

T
ar
ge
t
m
ol
ec
ul
e/
ge
ne

D
ow

ns
tr
ea
m

ef
fe
ct
s

R
ef
er
en
ce
s

A
ct
in
ob
ac
te
ri
a

S
ec
on
da
ry

m
et
ab
ol
it
e

H
is
to
ne

de
ac
et
yl
as
e

in
hi
bi
to
r

H
D
A
C

H
D
A
C

m
ed
ia
te
d
ge
ne

ex
pr
es
si
on

m
od
ul
at
io
n

V
ar
gh
es
e
et

al
.
(2
01
5)

A
er
om

on
as

hy
dr
op
hi
la

A
er
ol
ys
in

P
or
e
fo
rm

in
g

pr
ot
ei
n

H
3

P
ho
sp
ho
ry
la
ti
on

of
H
3S

10
H
am

on
an
d
C
os
sa
rt
(2
01
1)

A
gg
re
ga
ti
ba
ct
er

ac
ti
no
m
yc
et
em

co
m
it
an
s

S
C
FA

(a
ce
ti
c,

pr
op
io
ni
c,

bu
ty
ri
c

ac
id
s)

H
D
A
C
,
H
D
A
C
3

A
ff
ec
ts
ph
ag
oc
yt
os
is

an
d
cy
to
ki
ne

pr
od
uc
ti
on

N
aq
vi

et
al
.
(2
01
4)

m
iR
N
A
-2
9b

an
d
le
t-
7f

M
od
ul
at
e
IL
-6
R
a
an
d
S
O
C
S
4
at

pr
ot
ei
n
le
ve
l

C
or
rê
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and has been considered as a marker of health because
of its low abundance in Inflammatory Bowel Disease
(IBD). It secretes factors that cause immunomodula-
tion, inhibition of NF-kB activation and IL-1b medi-
ated IL-8 secretion in Caco-2 cells (Miquel et al. 2013).
Studies have uncovered that mothers having higher
levels of firmicutes show hyper-methylation of pro-
moters of 568 genes and hypo-methylation of pro-
moters of 245 genes (Kumar et al. 2014).
Faecalibacterium produces butyrate in the gut,

which constitutes a preferred energy source for colonic
epithelial cells. Butyrate is a short-chain fatty acid
(SCFA) rapidly absorbed by the lumen of the colon and
is a recognized HDAC inhibitor. Butyrate induces
colonic Treg cell differentiation by increasing the level
of histone H3 acetylation at the promoter and con-
served regions of Foxp3 and functions as a tumour
suppressor against colonic cancer by decreasing pro-
liferation and increasing apoptosis through inhibition
of miR-92a transcripts. Butyrate also derepresses epi-
genetically silenced genes (such as p21 and BAK) in
cancer cells (Paul et al. 2015).

5.1.4 Lactobacillus: Lactobacilli are members of lactic
acid bacteria (LAB) family, characterized by their
carbohydrate metabolism leading to lactic acid pro-
duction. These bacteria are commonly used as probi-
otics since they can colonize the oral cavity, GI tract,
and vagina in humans as well as other mammals
(Walter 2008). Exposure to Lactobacillus spp. (singly
or in combination with E. coli) reduces global histone
H3 and H4 acetylation levels in colonic cancer cell line
Caco2. Global DNA methylation levels remain unaf-
fected when Caco2 cells are exposed to Lactobacillus
spp. alone but in combination with E. coli the level
show significant alteration (Bhat et al. 2019). Co-in-
cubation of L. rhamnosus GG increases global DNA
methylation and reduces histone H4 and H3Ser10/
Lys14 acetylation in HT29 cells (Ghadimi et al. 2012).
This co-incubation also leads to downregulation of p38
by upregulation of miR-155 (Giahi et al. 2012). Co-
incubation with L. acidophilus enhances the expression
of genes that are silenced in colorectal cancer (CRC) by
DNA methylation (Icam5, Clstn2, Ppm1e, Runx3,
Timp3, Rgl1, and Rassf1a) (Lightfoot et al. 2013).
Among vaginal commensals, L. gasseri and L. reuteri

have been shown to modulate the gene expression of the
DEFB1 (Defensin Beta-1) gene, which encodes for
antimicrobial peptide human b-defensin-1. In vaginal
keratinocyte cells VK2/E6E7, this modulation is bac-
terial species dependent; L. gasseri causes enrichment
of H3K4me3 and acetylation of H3 at the promoters

with increased DEFB1 expression but L. reuteri shows
an opposite effect (Lee et al. 2017). Lactate produced
by Lactic acid bacteria inhibits HDAC and enhances
HDAC associated gene expression but is not as profi-
cient as trichostatin and butyrate (Latham et al. 2012).
In mouse model, L. plantarum was shown to induce
differential methylation of transcripts involved in cel-
lular function and maintenance, cellular assembly, and
vitamin metabolism (Jabs et al. 2020).

5.1.5 Fusobacterium: Fusobacterium is a typical oral
microbiota and has symbiotic relationship with the
human. However, it is also an opportunistic pathogen
and may cause colorectal cancer (Brennan and Garrett
2019). F. nucelatum has been shown to epigenetically
lower the gene expression of DNMT1 and HDAC2 in
gingival epithelial cells (GEC) as well as human
immortalized keratinocyte cell lines (TERT). F. nuce-
latum can induce CCL20 and hBD2 expression in the
oral cavity by acetylation and methylation. It has also
been shown to cause hypomethylation of Elastase2 and
GATA3 genes and hypermethylation ofMALT1 gene. In
addition, co-incubation with Fusobacterium affects the
expression of genes involved in epigenetic modifica-
tions. It downregulates histone H2AFY, HELLS (heli-
case implicated in chromatin remodelling), PRMT7,
and HDAC3 and upregulates CXXC1, PHF8, IGF2,
SUV39H1, and CARM1 (Yin and Chung 2011).

5.1.6 Escherichia coli: E. coli is a prominent inhabi-
tant of the gut microflora. It is a commensal and helps
to maintain gut homeostasis, but transforms into
pathogenic strain upon acquiring chromosomal or
extrachromosomal virulence operons (Duriez et al.
2001). Pathogenic E. coli causes urinary tract infec-
tions (UroPathogenic E. coli—UPEC), diarrhoea in
young children (EnteroPathogenic E. coli—EPEC),
and haemolytic uremic syndrome (EnteroHemorrhagic
E. coli—EHEC). Uropathogenic E. coli has been
shown to cause changes in histone acetylation and
DNA methylation in the host during infections (Tolg
et al. 2011). Commensal E. coli interacts with host
epigenetic machinery via the production of membrane
vesicles (MVs). Upon exposure of HCT8 cell line to
commensal E. coli MVs, upregulation of 738 out of
1434 differentially expressed genes was observed.
H3K4me3 increased at the transcription start site (TSS)
of the upregulated genes. Also, MVs remodelled
chromosomes by opening chromatin or relaxing chro-
mosome at TSS of upregulated genes leading to
increased accessibility of nucleosome-free DNA to the
transcription machinery (Vdovikova et al. 2018).
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5.1.7 Anaplasma phagocytophilum: Anaplasma
phagocytophilum is a tick-transmitted obligate intra-
cellular rickettsial pathogen that causes human granu-
locytic anaplasmosis. Bacteria of this species abrogate
essential antimicrobial functions of the host cell to
survive inside the hostile environment of neutrophils
by replicating within vacuoles and secreting effectors
through a bacterial type IV secretion system (T4SS)
(Borjesson et al. 2005). One such effector is AnkA,
which contains ankyrin (Ank) repeats usually found in
eukaryotic nuclear transcription factors (Garcia-Garcia
et al. 2009). AnkA binds to the AT-rich promoter of
CYBB gene in the granulocyte nucleus recruiting
HDAC1 and leading to the deacetylation of H3 (Ren-
noll-Bankert et al. 2015). The reprogramming repres-
ses CYBB encoded b—subunit of NOX2, which
mediates superoxide anion production. The superoxide
deprivation abolishes a critical mechanism of bacterial
elimination from infected neutrophils and presents the
pathogen a significant survival advantage. AnkA is also
known to target other AT-rich sites, at various chro-
mosomal locations and associated with nuclear protein
matrix attachment regions (MARs), and changing the
3D structure of the chromatin by directing chromoso-
mal remodeling dynamics (Dumler et al. 2016).

5.1.8 Bacillus anthracis: Bacillus anthracis is an
anthrax causing endospore-forming bacterium that
produces a lethal toxin (LT) which disrupts MAPK
signalling by inactivating MAPKKs (Bardwell et al.
2004). LT-mediated inhibition downregulates H3S10ph
and H3K14ac at IL-8 promoter in lung epithelial cells
and deacetylates HDAC8 mediated H3K27ac at IL1-b
enhancer in macrophages (Ha et al. 2016). B. anthracis
also produces a Lysine methyltransferase (BaSET) that
enters the nuclei and carries out H1 lysine trimethyla-
tion upon infection in macrophages (Mujtaba et al.
2013).

5.1.9 Burkholderia complex: Members of Burkholde-
ria complex including B. pseudomallei and B. thai-
landensis cause human melioidosis. Although non-
pathogenic, B. thailandensis infections in human are
reported. They also produce a Lysine methyltrans-
ferase, BtSET that targets H3K4. BtSET associates
with ribosomal DNA promoters during in vitro ectopic
expression in cell lines (Li et al. 2013). In addition,
aberrant DNA methylation has been observed at
genomic loci associated with pathogen-induced sig-
nalling, intracellular signalling, inflammatory respon-
ses, and apoptosis during B. pseudomallei infection
(Cizmeci et al. 2016). Furthermore, B. thailandensis

infection has been shown to cause significant down-
regulation of DNMT3B, HDAC1, and HDAC2 (Krish-
nananthasivam et al. 2017).

5.1.10 Chlamydia: Chlamydia trachomatis causes a
wide assortment of diseases such as trachoma (eye
infection), inflammation of the urethra and pelvis,
ectopic pregnancy, neonatal infections, and lym-
phogranuloma venereum, a sexually transmitted dis-
ease. It has been shown to secrete a nuclear effector
(NUE), which is a SET domain harbouring histone
methyltransferase that can methylate host histones
H2B, H3, and H4 (Pennini et al. 2010). Chlamydophila
pneumoniae, which causes pharyngitis, bronchitis, and
atypical pneumonia in humans, encodes a SET domain
protein cpnSET that can methylate histone H3 (Murata
et al. 2007).
Chlamydophila psittaci, which causes pneumonia

(systemic infection) as well as psittacosis or ornithosis
(latent and persistent infection), is associated with
ocular adnexal marginal zone B-cell lymphoma
(OAMZL) in humans. Aberrant CpG island methyla-
tion and E-cadherin (CDH1) gene hypermethylation
are characteristic of OAMZL (Choung et al. 2012). C.
psittaci also secretes SinC, a chromatin-anchoring
modulator that targets host nuclear inner membrane
proteins such as MAN1 and LAMP1 and is correlated
with the reorganization of the chromatin (Mojica et al.
2015).

5.1.11 Ehrlichia chaffeensis: Ehrlichia chaffeensis, a
tick-transmitted rickettsial pathogen causes human
monocytotropic ehrlichiosis. This pathogen repro-
grams the mononuclear phagocyte landscape by
secreting bacterial type I secretion system (T1SS)
effectors, namely Ank200 (p200), tandem repeat
containing protein (TRP) 32, TRP47 and TRP120
(Wakeel et al. 2011). p200 binds to chromatin at AT-
rich regions termed as Alu-Sx elements and targets a
wide array of genes involved in intracellular traffick-
ing, cytoskeletal rearrangement genes, immune
response, cell signalling and transcriptional/transla-
tional regulation, leading to substantial dysregulation
of the host cellular environment (Zhu et al. 2009).
The serine-rich TRPs, TRP32 and TRP120 bind to
G-rich and G?C-rich motifs in the host DNA,
respectively. They also bind to epigenetic modulators
such as chromatin-remodelling complexes, polycomb-
group (PcG) proteins, and histone modifiers (Luo
et al. 2011). TRP120 interacts with the RING domain
of PCGF5, a PRC1-like complex component through
a C-terminal HECT E3 domain, to target PCGF for
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polyubiquitination (Dunphy et al. 2014). The degra-
dation of PCGF concurs with a reduction in histone
H2A ubiquitinated at lysine 119, leading to tran-
scriptional activation of the target genes. TRP47
harbours an MYND-binding domain and translocates
to the nucleus and binds to G?C-rich motifs (Kibler
et al. 2018). TRPs redundantly target transcriptional
regulation, signal transduction, apoptosis, immune cell
differentiation, chromatin remodelling, and RNA
transcription genes (Farris et al. 2016).

5.1.12 Helicobacter pylori: Helicobacter pylori can
invade gastric epithelial cells and survive in mononu-
clear phagocytes and neutrophils by disrupting
phagosome maturation. H. pylori secrete HP0175, a
peptidyl-prolyl cis-, trans isomerase (PPIase), which
activates IL-6 promoter leading to MAP kinases
mediated MSK1 phosphorylation that in turn tran-
siently dephosphorylates H3S10ph and H3T3ph,
reduces H3K23ac and NF-jB subunit p65 phospho-
rylation. Increased expression of p21WAF, a cell cycle
regulator, fostered by H. pylori infection, removes
HDAC1 from the promoter and leads to hyperacety-
lation of H4. In addition, H. pylori encoded effectors
alter host epigenetic circuitry indirectly by releasing
inflammatory cytokines (Xia et al. 2008; Fehri et al.
2009). H. pylori infection also promotes aberrant 5mC
patterns at CpG islands of miRNA genes, the E-cad-
herin gene CDH1, DNA repair genes such as MLH1
and tumour suppressor genes such as USF1/2 and
WWOX (Chan et al. 2003; Ando et al. 2009; Bussière
et al. 2010; Yan et al. 2011).

5.1.13 Legionella pneumophila: Legionella pneu-
mophila causes Legionnaire’s disease by infecting
alveolar macrophages. In lung epithelial cells, flagellin,
a component of the flagellum, activates NF-jB/RelA
and p38 MAPK signalling pathway causing acetylation
of H3 and H4 and phosphorylation of H3 (Schmeck
et al. 2008). L. pneumophila secretes four T4SS
effectors: a SET domain and Ank repeat harboring
histone methyltransferase LpSET, AnkX, SnpL, and
AnkH. LpSET, a secreted protein, has been shown to
modulate rRNA expression in the nucleolus by binding
at the promoter and intergenic-spacer regions of the
silent rDNA genes through its interaction with chro-
matin modulator HP1 and dimethylation of histone H3
on lysine 4. LpSet also known as RomA, can catalyses
trimethylation of histone H3 on lysine 14 at the pro-
moters of genes involved in innate immunity (Li et al.
2013; Rolando et al. 2013).

SnpL interferes with mRNA processing and tran-
scription elongation and inhibits SUPT5H, a DRB
sensitivity-inducing factor (DSIF) complex component.
AnkH targets LARP7, a small nuclear ribonucleopro-
tein (snRNP) complex component. Both AnkH and
SnpL interferes with RNA pol II transcription elonga-
tion activity, and together both lead to genome-wide
transcriptional reprogramming (Schuelein et al. 2018;
Von Dwingelo et al. 2019).

5.1.14 Listeria monocytogenes: Four Listeria viru-
lence factors, Listeriolysin (LLO), Internalin B (InlB),
Listeria nuclear-targeted protein A (LntA) and OrfX
interfere in cellular epigenetic mechanisms. LLO is a
pore-forming, cholesterol-dependent cytolysin, which
can trigger K? efflux and is involved in dephospho-
rylation of H3S10 and deacetylation of H4 at the pro-
moters of proinflammatory chemokine CXCL2,
phosphatase DUSP4 and the interferon regulatory fac-
tor IRF3 (Hamon et al. 2007; Hamon and Cossart
2011). LLO can also degrade Mre11, a double-strand
DNA break sensor leading to increased phosphoryla-
tion of the histone variant H2AX (Hamon et al. 2007;
Hamon and Cossart 2011).
Internalin B mimics hepatocyte growth factor (HGF),

the physiological ligand of c-Met tyrosine kinase
receptor, and impacts the chromatin regulation post
priming by LLO. Interaction of InlB with cMet acti-
vates PI3K—Akt pathway translocating cytoplasmic
SIRT2 to the nucleus. The nuclear SIRT2 deacetylates
H3K18ac at TSS, which in turn leads to the silencing of
genes encoding transcription factors (SMAD1, FOXM,
IRF2), chromatin remodelling members (SMARCA2,
SAP130) and cell signalling components (MAPK14,
PIK3R3, PTPNG, SOS1, VAV3, ABL1, CAMK26,
MAP2K6, LEF1, RASGRP1) (Eskandarian et al.
2013).
LntA accumulates in the host cell nucleus and targets

BAHD1. BAHD1, a C-terminal BAH domain-con-
taining protein, is involved in heterochromatinization
through DNA methylation, histone modifications, and
chromatin remodelling. BAHD1 responds to signalling
cues in a cell-type-specific manner and causes gene
repression. LntA is also known to subdue HDAC1/2
and BAHD1 recruitment to promoters of Interferon-
Stimulated genes (ISG) that leads to deacetylation and
upregulation of ISGs (Lebreton et al. 2011). OrfX
binds and reduces cellular RYBP, a transcriptional zinc
finger protein, inhibiting E3 ubiquitin ligase MDM2-
mediated degradation of p53. Thus, it indirectly pro-
vides survival advantage to the bacteria by regulating
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superoxide and nitric oxide production (Prokop et al.
2017).

5.1.15 Mycobacterium tuberculosis: Mycobacterium
tuberculosis (Mtb) is an intracellular bacterium and the
causative bacteria of Tuberculosis. One of the most
successful pathogenic bacteria known, Mtb creates for
itself a niche inside the host macrophage by inhibiting
the phagosome-lysosome fusion. The modulation of
the host cellular machinery by Mtb is achieved either
directly by secreting bacterial effector molecules that
can modulate the host epigenome or indirectly by
inducing host signalling pathways. Several studies,
including ones from our own laboratory, have shown
epigenetic modulation of the host epigenome by
mycobacterial proteins. The modulation of the host
epigenome takes place either through changes in the
DNA methylation, post-translational modification of
the histones or via regulatory non-coding RNAs. Dif-
ferential methylation of the host genome upon Mtb
infection has been reported. In addition to CpG din-
ucelotides, the differential methylation was noticed at
non-CpG dinucleotide (Sharma et al. 2016). Rv2966c,
aMtb-encoded methyltransferase, secreted into the host
cells was found to be responsible for this non-canonical
DNA methylation (Sharma et al. 2015). Both hyper-
methylation and hypomethylation of DNA were
observed at several essential host defence genes. Pro-
teins from Mycobacterium tuberculosis are also known
to modify the host histones. Rv1988, was found to
methylate histone H3 at R42 and suppress genes
involved in the first line of host defence (Yaseen et al.
2015). Rv3423.1 was found to be a histone acetyl-
transferase that modulates the expression of anti-in-
flammatory host genes (Jose et al. 2016). Another
mycobacterial protein, Enhanced Intracellular Survival
protein (EIS alias Rv2416c) was shown to acetylate H3
at the IL-10 promoter helping M.tb to escape autop-
hagy (Pacis et al. 2019).

5.1.16 Mycobacterium leprae: Mycobacterium leprae
(ML), the bacilli that causes human leprosy, estab-
lishes infection in adult Schwann cells, primary non-
immune target cells causing neurological injury that
leads to sensory motor loss. Schwann cells in adults
infected with ML undergo a reprogramming that
converts Schwann cells into progenitor/stem-like cells
(pSLC) and promote bacterial dissemination. In
pSLC, mesodermal/EMT genes, Twist1, Prrx1, Tbx18,
and Bmp6, were found to be significantly
hypomethylated, leading to a transcriptional activa-
tion of these genes. On the other hand, Sox10 was

significantly hypermethylated leading to the loss of
Sox10 expression. These findings suggest that this
reprogramming caused significant epigenetic changes
in essential regulatory genes (Masaki et al. 2013). In
addition, hsa-mir-21 RNA has been found to be
upregulated upon ML infection leading to inhibited
expression of the genes encoding the two vitamin D–
dependent antimicrobial peptides, CAMP and
DEFB4A (Liu et al. 2012).

5.1.17 Porphyromonas gingivalis: Porphyromonas
gingivalis is responsible for periodontitis. This infec-
tion significantly decreases global H3K4me3 in gingi-
val epithelial cells (GECs). P. gingivalis
lipopolysaccharide (Pg LPS) has been shown to sig-
nificantly reduce the level of DNA methyltransferase,
DNMT1 and HDAC1 and upregulate nuclear histone
acetyltransferase p300. This was found to be correlated
with changed expression of Alzheimer’s disease-linked
genes APP, APPBP2, IFNGR1, MMP1, MMP2 and
MMP16. Loss of KDM3C in both human and mouse
macrophages, in response to Pg LPS stimulation,
induced pro-inflammatory cytokines, p65 phosphory-
lation, and accelerated its nuclear translocation. (Imai
et al. 2009; Yin and Chung 2011).
In vitro infection with P. gingivalis led to an increase

in expression of B7-H4 and lysine demethylase 5B
(KDM5B) (Diomede et al. 2017). Co-expression of B7-
H4 and KDM5B correlated significantly with a bacte-
rial load and lead to acetylation of epithelial innate
immune response genes hBD2 and CCL20 (Olsen et al.
2017). In addition, miRNA-203 was also found to be
upregulated along with upregulation of SOCS3 (Sup-
pression of cytokine signalling 3) and SOCS6 genes
(Lee et al. 2019).

5.1.18 Salmonella: Salmonella enterica acetyltrans-
ferase, AAC (60)-ly, belongs to the acetyltransferase
superfamily that includes HATs, suggesting that it
might be the bacterial ancestor of the eukaryotic HATs.
In vitro studies have shown that AAC (60)-ly can
acetylate histone proteins (Hamon and Cossart 2008).
The nuclear RNA decay factors, MTR4 and RRP6,

are involved in the degradation of unstable nuclear
ncRNAs, and their loss causes accumulation of unsta-
ble nuclear ncRNAs. Salmonella infection triggers the
loss of nuclear RNA decay factors, resulting in the
accumulation of unstable nuclear ncRNAs, resulting in
the upregulation of immune genes (Imamura et al.
2018). On the other hand, Several members of the miR-
15 family inhibit Salmonella infection (Maudet et al.
2014). In addition, progressive loss of DNA
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methylation at multiple CpG sites has been observed in
Salmonella-infected macrophages (Pacis et al. 2019).

5.1.19 Shigella flexneri: Shigella flexneri targets
colonic epithelial cells causing bacillary dysentery. S.
flexneri secretes four nucleomodulins, IpaB, IpaH9.8,
OspB and OspF. OspF, a type III secreted effector
protein, is a phosphothreonine lyase. It mediates con-
version of a phosphothreonine residue into dehy-
drobutyrine, leading to irreversible inactivation of
MAPK by preventing its phosphorylation (P38 and
ERK). This abrogates subsequent histone H3S10
phosphorylation at a subset of NF-kB-regulated pro-
moters and blocks inflammatory gene transcription.
OspF also directly interacts with HP1 and dephos-
phorylates it at S83, by inactivating the kinase MSK1.
The activity of OspF is unique, and no eukaryotic
homolog has been identified (Arbibe et al. 2007).
Shigella infection induces an MTOR-dependent

upregulation of mir155 and mir31 levels, which in turn
targets and regulates PP2A in the macrophages (Holla
et al. 2014). Host miRNA miR-29b-2-5p has been
found to have a dual role during Shigella infection.
Host cells internalize Shigella, where it replicates and
decreases levels of miR-29b-2-5p, which contributes to
a balanced intracellular replication, premature cell
death evasion, and the efficient dissemination of Shi-
gella to neighbouring cells (Grassl and Finlay 2007).

5.1.20 Streptococcus pneumoniae: Streptococcus
pneumoniae is responsible for bacterial pneumonia and
meningitis in the upper respiratory tract. Its pore-
forming toxin pneumolysin (PLY), along with the
pyruvate oxidase SpxB is responsible for H2O2 pro-
duction. The combined effects of PLY and H2O2 trig-
gers host signalling that dephosphorylates H3S10,
mediated by the host cell phosphatase PP1 (Dong et al.
2020). In addition, Streptococcus pneumoniae infection
upregulates hsa-miR-200b that might promote pneu-
monia via targeting of KALRN (Huang et al. 2017).

5.1.21 Pseudomonas aeruginosa: P. aeruginosa, an
opportunistic pathogen that typically infects and colo-
nizes inflamed airways (e.g., in cystic fibrosis) and
burn wounds, causes pneumonia, urinary tract infec-
tions, wound infections, acute otitis, and septicemia.
The quorum-sensing signal 2-aminoacetophenone,
released by P. aeruginosa, induces expression of
HDAC1 in human THP-1 monocytes leading to global
hypoacetylation of histone H3K18. Changes in acety-
lation marks dampen the induction of inflammatory
cytokines and chemokines, including TNF, IL-1ß, and

MCP-1, impairing host cell responses to infection
(Bandyopadhaya et al. 2016).
The secretory Pseudomonas proteins, PopB and

PopD enter the host membrane to form a pore to
accompany T3SS effectors that leads to potassium
(K?) efflux as well as histone H3 modification. PopB–
PopD-dependent H3S10 dephosphorylation requires
PP1 phosphatase, which affects infection (Dortet et al.
2018). In addition, microRNA 93 (miR-93), which is
highly expressed in basal conditions, decreases during
Pseudomonas infection along with increased expres-
sion of the IL-8 that in turn causes accumulation of
neutrophils in the airways, leading to lung injury
(Dortet et al. 2018).

5.1.22 Neisseria gonorrhoeae: N. gonorrhoeae causes
the sexually transmitted disease gonorrhoea. It can
survive in the host both extracellularly and intracellu-
larly. The pathogen harbours the Gc-HDAC gene, a
histone deacetylase-like enzyme that shares 3D-ho-
mology to human HDAC1, HDAC2, and HDAC8. N.
gonorrhoeae infection causes reduction in the expres-
sion of host defence peptides LL-37, HBD-1, and SLPI
in macrophages. It can modify host chromatin with
enrichment of the epigenetic mark H3K9ac at the
promoters of proinflammatory genes. Initial exposure
to Neisseria or purified lipooligosaccharides (LOS)
from Neisseria upregulates microRNA-146a, which in
turn suppresses immune responses, and facilitates
bacterial survival and dissemination (Zughaier et al.
2020).
In addition, epigenetic modulation of the host cell

machinery has also been documented for other bacte-
rial species including Actinobacteria, Aeromonas,
Bordetella, Moraxella, Fusobacterium and Clostrid-
ium. Gram-positive Actinobacteria reside on human
skin and mucosal surfaces and can be both commensal
and opportunistic pathogens to humans. They produce
metabolites that can interact with and modulate the host
epigenetic machinery. Extracts of Actinobacteria No-
cardiopsis spp cause 60% inhibition of HDAC (com-
parable to 68% inhibition by the known HDAC
inhibitor, trichostatin A) (Varghese et al. 2015). Aero-
monas hydrophila, associated with gastroenteritis pro-
duces aerolysin, a pore-forming toxin. Aerolysin is
known to induce K? efflux and decreases cellular
H3S10phosphorylation ( Hamon and Cossart 2011).
Bordetella bronchiseptica encodes a histone methyl-
transferase, BbSET, ectopic expression of which in
HeLa cells causes dysregulation of ribosomal RNA
transcription (Li et al. 2013). Moraxella catarrhalis
induces H3S10ph/H3K14ac through inflammatory
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signalling cascades and downregulates HDAC1/2
expression in bronchial epithelial cells (Slevogt et al.
2006). Downregulation of DNMT1, HDAC1and
HDAC2 has been observed in the periodontal disease
caused by Fusobacterium nucleatum (Yin and Chung
2011). A neurotoxin (BoNT) secreted by Clostridium
botulinum has been shown to stimulate histone
deacetylase HDAC4 and cause differential miRNA
expression of miR-1/206 and miR-133 family of
miRNAs. (Worton et al. 2018).

5.2 Viral interaction with host epigenetic
machinery

DNA and RNA viruses promote their infectivity and
latency when their early proteins interact with cellular
regulatory elements of the host, which then serves as
the checkpoint for specific or global gene regulation.
To modulate their environment for successful infection,
different viruses employ strategies of targeting the
cellular pool of host factors. Prime candidates for such
epigenetic control includes host gene involved in: cell
cycle progression, senescence, survival, inflammation,
and immunity. Discussed below are some examples of
host-viral interaction at the epigenetic front.

5.2.1 Human adenovirus (HAdv): Adenoviruses are
associated with diseases including gastroenteritis,
conjunctivitis, hepatitis, myocarditis, and pneumonia.
Human Adenovirus (HAdv) is responsible for 5-7% of
global upper respiratory tract paediatric cases, includ-
ing the common cold. Nuclear replicating viruses have
evolved to manipulate the host machinery to promote
infection and evade the cellular defence system. Ade-
noviral infection is correlated with increased acetyla-
tion of H3 at the active viral gene promoters. The
acetylation leads to increased expression of the active
viral genes. Daxx/ATRX histone chaperone complex is
required to maintain the H3K9me3 silencing mark at
specific heterochromatin loci (Zughaier et al. 2020).
Along with Sp100, the complex restricts viral chro-
matinization at the early stages of infection. Aden-
ovirus induces E1B-55K mediated proteasomal
degradation of Daxx/ATRX, thereby removing the
barricade of viral chromatinization and early-stage
infection (Horwitz et al. 2008; Schreiner et al. 2010).

5.2.2 Kaposi’s sarcoma-associated virus (KSHV):
Kaposi’s sarcoma-associated virus is associated with
sarcoma and lymphoproliferative diseases and is
known to stay latent for lifetime in the host. The

combination of histone modifications serves as a switch
for the virus to transform from latent to lytic cycle. The
latent viral genome associates with a combination of
both active [acetylated H3 (H3ac) and H3K4me3] and
repressive [H3K9me3 and H3K27me3] histone modi-
fication marks. Upon reactivation, the viral genome
shows a gain of H3 acetylation, H3K4 methylation and
loss of H3K27me3 at genomic region encoding for IE
genes ORF50 and ORF48 (Toth et al. 2010). Reacti-
vation of the lytic cycle dissipates the H3K27me3 mark
ubiquitously deposited on the entire KSHV genome by
methyltransferase EZH2. The reactivation also results
in decreased H3K27me3 and increased IE/E lytic gene
expression (Toth et al. 2010).
The KSHV genome does not show a gain of DNA

methylation upon infection. However, the virus can
manipulate host DNA by altering DNA methylation.
KSHV encoded latency-associated nuclear antigen
(LANA) interacts with DNMT3a, the de novo DNA
methyltransferase, and has been shown to downregu-
late the expression of H-cadherin and TGF-b type II
receptor (TbRII) genes through this interaction. By
decreasing TbRII expression, KSHV targets both the
host anti-proliferative effects as well as the immune
response. Upon infection, KSHV encoded ORF50
mRNA acquires m6A methylation mediated stabiliza-
tion. ORF50 (RTA) serves as a key KSHV lytic switch
(Shamay et al. 2006; Baquero-Perez et al. 2019).

5.2.3 Epstein-Barr virus (EBV): Epstein - Barr virus
has a biphasic viral life cycle of latency and lytic
reactivation. EBV attacks the memory B cells and
epithelial cells for persistent latent infection. EBV
employs epigenetic reprogramming of self as well as
the host cellular machinery to maintain its latency or
switch to reactivation/lytic phase. The Trans activator
protein BZFL1 functions as a switch from latency to
lytic cycle (Bhende et al. 2004; Dickerson et al. 2009).
EBV DNA acquires CpG methylation after the prolif-
eration of infected cells. BZFL1 binds to the methy-
lated promoter of lytic genes but does not bind to
unmethylated DNA efficiently to activate the laten-
t/lytic transition post establishment of latent infection.
The EBV chromatin acquires changes in histone
modifications between the latent and lytic cycle. Dur-
ing latency, the associated genes such as Cp and the
LMP1/LMP2 promoters are associated with active
chromatin marks including H3K9ac, H3K27ac, and
H3K4ac while transcriptionally silenced gene promot-
ers such as BZLF1 and BRLF1 remain enriched for
inactive chromatin marks including H3K9me3 and
H3K27me3. Once activated, BZLF1 and BRLF1
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interact with the methylated promoters of lytic genes
leading to efficient viral replication and progeny pro-
duction (Ichikawa et al. 2018).
EBValso epigenetically manipulates the proliferative

and anti-apoptotic properties of infected cells for per-
sistent latency. EBV infection leads to depletion of the
H3/H4 acetylation marks at the Bim promoter, fol-
lowed by an increase in CpG methylation. Normally,
the promoter of p16 (INK4A) maintains the combina-
tion of the repressive H3K27me3 and activating
H3K4me3 modification. The EBV nuclear protein
EBNA3A increases the H3K27me3 mark at p16
(INK4A) promoter leading to transcriptional silencing
of the gene. The reprogramming of Bim and p16
(INK4A) by EBV inhibits cell death and senescence,
paving the path for the persistence of latent infection
and transformation of host cells. Furthermore, EBV
infection down-regulates DNA repair pathway genes
by modifying the histone bivalent marks H3K27me3
and H3K4me3 in nasopharyngeal epithelial cells
(Leong et al. 2019).

5.2.4 Human immunodeficiency virus (HIV): HIV
infection causes acquired immunodeficiency syndrome
(AIDS). HIV remains transcriptionally silent inside the
cells by employing epigenetic reprogramming of the
viral and host genes. The interplay of HIV and host has
been shown to have an impact on histone modifica-
tions, DNA methylation as well as RNA methylation.
DNA methylation: The HIV infection is concomitant
with changes in host genome CpG methylation and
methyltransferase expression levels. FOXP3, inter-
leukin 2 (IL-2), IGFBP6, and SATB2 and CCR5, genes
associated with immune response and T cell expres-
sion/ activation, gain CpG methylation upon infection
(Pion et al. 2013; Nakayama-Hosoya et al. 2015;
Gornalusse et al. 2015). The methyl-CpG binding
domain protein 2 (MBD2) along with HDAC2 binds to
the CpG flanking the TSS of HIV-1, contributing to
HIV-1 latency in infected Jurkat cells and primary
CD4? cells (Kauder et al. 2009).
RNA methylation and ncRNA: Methylation also

significantly regulates HIV-1 RNA metabolism and
replication. The m5C RNA methyltransferase (MTase)
DNMT2 mediated methylation of the HIV genome
promotes viral infection by providing post-transcrip-
tional stability to HIV-RNA (Dev et al. 2017). How-
ever, the m5C RNA methyltransferase NOP2/NSUN1
restricts HIV provirus transcription and promotes
latency (Kong et al. 2020). Moreover, HIV infection in
CD4? cells has been correlated with increase in m6A
methylation in both HIV RNA and host mRNAs

(Lichinchi et al. 2016a). HIV RNA genome also
acquires host 20-O-MTase FTSJ3 dependent internal 20-
O-methylation that aids the virus in escaping MDA5
mediated immune surveillance (Li 2019). In addition,
HIV encoded antisense ncRNA, ASP, recruits PRC2
complex at HIV promoters, and drives deposition of
H3K27me3 resulting in nucleosome assembly and
suppressing gene expression. On the other hand, the
host ncRNAs MALAT1, uc002yug.2 and HEAL (HIV-
1-enhanced lncRNA) regulates HIV transcription (Za-
pata et al. 2017; Huan et al. 2018; Qu et al. 2019)
Histone modifications: HIV latency has been corre-

lated with CBF-1, c-Myc and Sp1 dependent recruit-
ment of HDAC1 complex to LTR of latent proviruses
that inhibits recruitment of RNAPII (Jiang et al. 2007).
Proviral latency is also linked with HKMTs, EZH2
Suv39h1, and CTIP-2 dependent H3K9me3 and
H3K27me3 modification of HIV-1 promoter (Friedman
et al. 2011). During early and chronic infection, the
polycomb repressive complex 2 (PRC-2) mediates
H3K27 trimethylation of HIV-1 LTR leading to tran-
scription repression heterogeneity (Matsuda et al.
2015).

5.2.5 Coronaviruses (CoV): Coronaviruses have
pathologies in humans as well as in animals with bats
as their natural hosts. CoVs are associated with upper
respiratory tract pandemics: severe acute respiratory
syndrome (SARS), Middle East respiratory syndrome
(MERS) and SARS-COV2. SARS-CoV infection
causes increase in H3K4me3 and H3K27me3 mark at
the promoter of the interferon-stimulated genes
(ISGs), leading to active transcription of ISG. MERS-
CoV infection leads to increased H3K27me3 and
decreased H3K4me3 at ISG promotor (Schäfer and
Baric 2017) and gain of DNA methylation at the
promoters of CIITA, HLA-E, and PSMB9 decreasing
interferon-stimulated genes and antigen presentation
(Menachery et al. 2018). The SARS-CoV-2 evades
zinc-finger antiviral protein (ZAP), a host antiviral
defence, by evolving extreme CpG deficiency (Xia
2020).
Coronaviruses are known to acquire RNA cap

methylation to surpass the host antiviral immune
response by camouflaging its non-self mRNA as host
self mRNA. MERS-CoV encoded SAM dependent 2’-
O-methyltransferase (2’-O-MTase) and the non-struc-
tural protein 16 (nsp16)/nsp10 complex converts
7mGpppG (cap-0) into 7mGpppG2’Om (cap-1) RNA
to escape cellular immune response. SARS CoV-2 has
at least 41 RNA modification sites on CoV-2 tran-
scripts, with AAGAA being the most abundant motif.
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The role in pathogenicity and mechanism of CoV epi-
transcriptome remains to be elucidated (Kim et al.
2020; Viswanathan et al. 2020).

5.2.6 Influenza virus: The influenza virus is catego-
rized into type A, B, and C. Group A virus is associated
with severe pandemics such as H1N1 swine-origin flu.
The influenza virus translates into cytokine surge in
infected host cells. It alters the promoter DNA
methylation profile of pro-inflammatory cytokines
CXCL14, CCL25, CXCL6, and interleukins IL13,
IL17C, IL4R. Cells infected with the HPAI-H5N1 virus
show hypomethylation of IL17C and IL13 genes,
increasing expression of these interleukins (Mukherjee
et al. 2013).
Influenza virus-encoded nonstructural protein 1

(NS1) interacts with DNMT3B and relocates it to
cytoplasm wherein K48-linked ubiquitination results in
DNMT3B degradation. The NS1 mediated depletion of
DNMT3B hypomethylates key suppressor genes of the
JAK-STAT signalling pathway compromising cellular
immunity (Liu et al. 2019). The Influenza virus-en-
coded nucleoprotein (NP) functions as a histone
homolog. Host acetyltransferases GCN5 and PCAF
differentially acetylate NP and regulate viral poly-
merase activity. CAF and GCN5 target Lys-31 and Lys-
90 of NP. Acetylation of Lys-90 of NP favours viral
polymerase activity, however Lys-31 acetylation sup-
presses it, suggesting differential regulation of viral
replication. H5N1 infections deplete the H3K4me3
activation mark on MHC locus and downregulate
antigen presentation gene expression (Hatakeyama
et al. 2018).
Along with these group of viruses, changes in the

epigenetic circuitry by viral encoded factors has also
been reported for Zika, Ebola and SV40. Zika virus
infection of human neural progenitor cells (hNPC) is
associated with host methyltransferase METTL3,
METTL14, and demethylases ALKBH5 and FTO
dependent m6A methylation of viral RNA. (Lichinchi
et al. 2016b). Ebola virus encodes a large protein (L
protein), which functions as a substrate-specific
methyltransferase. It also possesses an internal adeno-
sine-specific 2’O methyltransferase activity. The 2’O
methylation seems to protect the viral RNA from the
host immune system. (Martin et al. 2018). The simian
virus 40, an oncogenic DNA virus, belonging to the
Papovaviridae family, has been shown to acquire
chromatin organisation with specific histone modifica-
tions during infection. SV40 infection is also correlated
with increase in steady-state levels of histone

acetyltransferase (HAT) p300/CBP (Sáenz Robles et al.
2013).

5.3 Fungal epigenetic modulation during host-
pathogen interaction

Fungal infections have a remarkable impact on human
health and survival—with an estimate of 15 million
deaths and over 1 billion people being infected—and is
a life-threatening disease in immunocompromised
patients. Four genera of fungal species contribute to
fungal infections: Aspergillus, Candida, Cryptococcus,
and Pneumocystis. Epigenetic modulation of gene
silencing and switching is one of the evasion mecha-
nisms of the host immune system, but we inadequately
understand it in human fungal pathogens.

5.3.1 Candida albicans: C. albicans localizes to vari-
ous parts of the human body: skin, genitals, gastroin-
testinal tracts, and internal organs. Immunity of host,
environmental factors, and interactions with other
components of resident microbiota influence its
pathogenicity. C. albicans survive in the human body
by extensively adapting to nutrient availability, host
immune system, and interacting with the human
microbiome such as S. epidermidis and P. acnes.
DNA methylation in C. albicans is restricted to

structural genes that modulate transcriptional activities,
whereas repeat sequences and multigene families are
comparatively free of DNA methylation; for instance,
studies report methylation of INP51, MUC1, and LIP8
genes, which are related to pathogenicity and virulence
(Mishra et al. 2011). The cell wall protein b-glucans
induce functional reprogramming of monocytes by
elevating H3K4me3 levels at the promoters of TNF-a,
IL -6, and IL- 18 through dectin - 1/ Raf - 1 pathway.
C. albicans protein Rtt109 acetylates H3K56 and
exhibits a significant role in virulence in the mouse
model (Da Rosa et al. 2010). SUMOylation modulates
virulence by targeting CaSlp3 (Stomatin like protein 3)
that relocates to the plasma membrane and vacuole
(Sahu et al. 2020).
Apart from the Candida species, in Aspergillus

fumigatus, an opportunistic Saccharomycota fungus,
the role of H3K9 methyltransferase ClrD/su(var)3-9
and histone deacetylase Hda1 has been shown (Palmer
et al. 2008). Another opportunistic pathogen, Crypto-
coccus neoformans, has SAGA (Spt3-Ada2-Gcn5)
complex that is involved in the remodeling of chro-
matin through acetylation of histones, and its
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components Gcn5 and Ada2 are essential for virulence.
(O’Meara et al. 2010).

6. Conclusion

Functional integrity of cells in a multicellular organism
is maintained by their epigenetic circuitry. Epigenetic
modifications not only modulate gene expression in a
cell during development and differentiation but also in
response to environmental challenges. The microbes
that surround us or reside within our body can have a
symbiotic relationship or can cause disease. As dis-
cussed in this review, data now exist for several
microbial species, including bacteria, viruses and fungi,
which demonstrates the interaction of microbial factors
with the host chromatin and the epigenetic circuitry.
The extracellular microbial interaction with the host
epigenetic circuitry can be achieved by (i) binding to
the host receptor which can activate downstream sig-
nalling cascade leading to modulation of chromatin

organisation; or (ii) microbial factors secreted in
extracellular milieu which enter host cells and interact
with the chromatin directly or indirectly by binding to
host factors, which in turn can translocate to the
nucleus. Intracellular microbe after entering the host
cells can release factors that can (i) interact with host
factors having capability of modulating chromatin
conformation or (ii) directly interact with chromatin.
This interaction of the host and the microbe can have a
profound effect on epigenetic modifications and chro-
matin conformation of multiple genes in the host cell,
leading to abnormal cellular functions (figure 4).
Multiple microbiome studies (Eloe-Fadrosh and Rasko
2013; Cortese et al. 2016) have brought out the cor-
relation between changes in microbial consortia and
human diseases. We, based on the literature discussed
above, strongly believe dysregulation of epigenetic
circuitry by microorganisms to be the basis of several
of these human diseases.
An organism during its interaction with the envi-

ronment acquires characters, some of which are

Figure 4. Epigenetic interaction of microbes with host cell. A cartoon depicting multiple ways by which microbe-host cell
interaction can influences host epigenetic circuitry. (i) Modulation of chromatin organisation through interaction of the
microbe (extracellular) with the host receptor that activates signalling cascade(s). (ii) Release of factors by extracellular or
intracellular microbe in the host cells can that can interact with host factors having capability of modulating chromatin
conformation. (iii) Secretion of microbial factors in the extracellular or intracellular milieu which upon entry into host cell
nucleus interact directly with the chromatin directly. All these pathways individually or in concert can change both histone
modifications and DNA methylation leading to changes in the chromatin conformation.
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transmitted to subsequent generations. Over the past
few years, several studies have indicated this trans-
mission to be non-genetic, by the inheritance of epi-
genetic marks across multiple generations (Thamban v.
2020). Therefore, it is possible that the epigenetic
changes (sometimes also referred to as epimutations
(Zoghbi et al. 2016)), brought out in a cell due to its
interaction with a microorganism, are inherited. Whe-
ther an epimutation, which is acquired by somatic cells
due to its interaction with a microorganism, could
passed on to the next generation remains an enigma.
However, if this hypothesis is proven to be true, epi-
genetic interface in the interaction between microbes
and human cells could provide a mechanism by which
rapid and dynamic co-evolution of the interacting
species could be achieved.
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Bartfeld S, Brüggemann H and Meyer TF 2009 Heli-
cobacter pylori-induced modification of the histone H3
phosphorylation status in gastric epithelial cells reflects its
impact on cell cycle regulation. Epigenetics 4 577–586

Fournier A, Sasai N, Nakao M and Defossez PA 2012 The
role of methyl-binding proteins in chromatin organization
and epigenome maintenance. Brief. Funct. Genomics 11
251–264

Friedman J, Cho W-K, Chu CK, Keedy KS, Archin NM,
Margolis DM and Karn J 2011 Epigenetic silencing of
HIV-1 by the histone H3 lysine 27 methyltransferase
enhancer of Zeste 2. J. Virol. 85 9078–9089

Fu Y, Luo GZ, Chen K, Deng X, Yu M, Han D, Hao Z, Liu
J, et al. 2015 N6-methyldeoxyadenosine marks active
transcription start sites in Chlamydomonas. Cell 161
879–892
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phosphorylation: A chromatin modification involved in
diverse nuclear events. Epigenetics 7 1098–1108

Roth SY, Denu JM and Allis CD 2001 Histone Acetyltrans-
ferases. Annu. Rev. Biochem. 70 81–120

Rothbart SB and Strahl BD 2014 Interpreting the language
of histone and DNA modifications. Biochim. Biophys.
Acta 1839 627–643

Roundtree IA, Evans ME, Pan T and He C 2017 Dynamic
RNA modifications in gene expression regulation. Cell
169 1187–1200

Ruiz L, Delgado S, Ruas-Madiedo P, Sánchez B and
Margolles A 2017 Bifidobacteria and their molecular
communication with the immune system. Front. Micro-
biol. 8 2345
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