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ABSTRACT

Gliomas are the most common lethal brain tumours and remain great 
heterogeneity in terms of histopathology and clinical outcomes. Among them, 
glioblastomas are the most aggressive tumours that lead to a median of less than 
one-year survival in patients. Despite the little improvement of in diagnosis and 
treatments for last decades, there is an urgent need for prognostic markers to 
distinguish high- and low-risk patients before treatment.Here, we generated a list of 
genes associated with glioblastoma progressions and then performed a comprehensive 
statistical modelling strategy to derive a 10-gene (GLO10) score from genome wide 
expression profiles of a large glioblastoma cohort (n=844). Our study demonstrated 
that the GLO10 score could successfully distinguish high- and low-risk patients with 
glioblastomas regardless their traditional pathological factors. Validated in four 
independent cohorts, the utility of GLO10 score could provide clinicians a robust 
prognostic prediction tool to assess risk levels upfront treatments.

INTRODUCTION

Glioma is among the most common brain tumour 
type. With median survivals of less than a year for patients, 
glioblastoma is considered as a vital cause of cancer 
mortality in both adults and children despite aggressive 
surgery, chemotherapy and radiation [1, 2]. By the year of 
2007, according to the World Health Organization (WHO), 
gliomas were assessed based on histopathological features 
and categorized into astrocytomas, oligodendrogliomas, 
mixed oligoastrocytomas, and ependymomas [3]. 
However, limitations of this grading system were 
addressed, such as high rate of inter- and intra-observer 
variability [4, 5]. Therefore, in 2016, molecular signature 
was introduced in diagnosing tumours due to the explosion 
of genomic information during the last decade [6].

DNA microarrays were introduced two decades 
ago. As this technology provides more comprehensive 
and objective information than traditional microscopic 
morphology, it has revolutionized cancer research. To 
date, there are molecular based diagnostic tests using 
DNA microarrays. Some have been incorporated in 
clinical practice guidelines, including Mamma Print and 
Oncotye Dx [7]. A number of DNA microarray based 
studies have identified prognostically distinct molecular 
subtypes of gliomas [8–12]. These approaches were based 
on unsupervised hierarchical or k-means clustering of 
genes. As reported in these studies, patients belonging to 
various subgroups (clusters) showed significantly different 
prognostic outcomes independent to some known clinical 
factors, such as age and grade. However, the clustering-
based prognostic signatures remain challengeable in clinical 
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practice as the results were dramatically affected by the 
selected genes. Previous studies remain inconsistency in the 
prognostic gene candidates, which increases the difficulties 
in making such methods practical applicable.

Here, we generated a 10-gene (GLO10) score for 
the prediction of glioblastoma overall survival from DNA 
microarray expression datasets. We trained the prognostic 
models in a large cohort (n=470) and demonstrated that the 
GLO10 score successfully distinguished high- and low-
risk groups in other three independent cohorts comprising 
patients with glioblastomas (n=374). Our results unveiled 
novel glioma prognostic biomarkers that could be easily 
applied with great potential in producing robust results in 
clinical practices.

RESULTS

Identification of glioblastoma associated genes

We hypothesized that the prognostic biomarkers 
were associated with tumour genesis and progression. 
In this case, the glioblastoma associated genes were 
identified by comparing gene expression profiles of 

tumour tissues and normal brain samples. The data was 
retrieved from one previously published large scale study 
(n= 256), Repository of Molecular Brain Neoplasia 
Data (Rembrandt)[13]. After data preprocessing and 
differential expression analyses, a total of 723 probe sets 
corresponding to 552 genes were identified as significantly 
differentially expressed genes (DEGs) in glioblastomas. 
Among the DEGs, 137 were up-regulated and 415 were 
down-regulated (Figure 1). The gene functional analyses 
revealed that the glioblastoma associated genes were 
significantly enriched in the Gene Ontology Cellular 
Components including postsynapse (P=1.36×10-27), 
axon(P=8.14×10-23), ion channel complex(P=4.75×10-16), 
asymmetric synapse(P=1.90×10-15), neuron to 
neuron synapse(P=2.33×10-15), exocytic vesicle 
membrane(P=5.92×10-11), extracellular matrix component 
(P=3.34×10-06) and cytoplasmic region (P=5.43×10-03); 
Biological Processes including modulation of synaptic 
transmission(P=3.94×10-15), regulation of neurotransmitter 
levels(P=1.94×10-11), regulation of neuron projection 
development(P=3.24×10-10), regulation of cell-
substrate adhesion(P=5.05×10-04), positive regulation of 
fibroblast migration(P=5.49×10-03); Molecular Functions 

Figure 1: Volcano plot of differentially expressed genes in glioblastomas. The red dots indicate those were considered as 
significant up- and down- regulated genes.
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including gated channel activity(P=1.143×10-13), GABA 
receptor activity(P=8.95×10-09), channel regulator 
activity(P=1.45×10-07), calmodulin binding(P=7.21×10-07), 
ligand-gated anion channel activity(P=1.02×10-05), ion 
channel regulator activity(P=2.50×10-05), ligand-gated 
cation channel activity(P=1.27×10-03) and structural 
constituent of myelin sheath(P=1.54×10-03)(Figure 2). The 
pathway enrichment analysis (Figure 3) revealed that the 
identified glioblastoma associated genes were enriched 
in various pathways that involved in glioblastoma 

progression, for example GABA receptor activation [14], 
Ion channel transport [15, 16] and Extracellular matrix 
organization [17–19].

Univariate prognostic analysis by Cox 
proportional hazards models

To investigate the prognostic potentiality, we 
integrated a larger multi-institutional data set of 470 
glioblastoma patients from the TCGA cohort (Discovery 

Figure 2: Gene set enrichment analysis of glioblastoma associated genes using Gene Ontology (Cellular Component, 
Biological Process and Molecular Function).

Figure 3: Gene set enrichment analysis of glioblastoma associated genes using Reactome Pathway database.
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set). Previously identified glioblastoma associated genes 
were fitted into Cox promotional hazards models. Based 
on the overall survival association significance assessed 
by log rank test, these probe sets were ranked and filtered 
at the cutoff of P < 0.001. A total of 28 probe sets were 
selected for statistical modelling.

LASSSO statistical modelling to derive GLO10 
score

A statistical regression algorithm based on the least 
absolute shrinkage and selection operator (LASSO) was 
applied to relate the 28 probe sets to the patient survival 
in the discovery set. We have optimized a 10-gene (Table 
2) signature (GLO10) as the weighted sum of expression 
levels of the 10 genes for each patient. High GLO10 
scores were significantly associated with shorter overall 
survival times. After the parameter optimization, we have 
categorized the patients into high-, or low-risk groups 
based on the GLO10 score threshold of 3.58. The high- 
and low-risk groups showed significant differences in 
terms of overall survival (Figure 4, Table 1).

To assess the robustness of the GLO10 score, we 
then evaluated its performance in other three independent 
glioblastoma cohorts with GEO accessions GSE13041 
(validation set 1, n=160), GSE16011 (validation set 2, 

n=155) and GSE83294 (validation set 3, n=59). Patients 
with GLO10 scores higher than 3.58 were assigned into 
the high risk group, while those with GLO10 scores 
lower than the threshold were considered as low risk. 
As shown in Figure 4, there are significant differences 
between high-risk and low-risk groups (validation set 1: 
P = 0.044, validation set 2: P < 0.0001, validation set 3: 
P=0.014). Surprisingly, although high-risk patients tended 
to have higher age, the gender ratio showed insignificant 
different patterns (Figure 4, Table 1 ). This indicated that 
the GLO10 score retained prognostic power independent 
of other traditional factors, such as age and gender. The 
dominance of GLO10 score in the prognosis prediction 
revealed the importance of the 10 genes (Table 2) in 
glioblastoma diagnosis and treatment researches.

DISCUSSION

For the prognostic biomarker discovery in 
glioblastomas, there remains discordance among scientific 
publications given various sample requirements, data 
complexity, evolving technologies and lack of golden 
standard practice guidelines [7, 20]. However, due to high 
complexity of genomics in glioma patients, considerable 
challenges still present in implementing such strategies. To 
address these challenges, we applied statistical modelling 

Figure 4: Evaluation of the association of GLO10 score with glioblastoma survival. Left: Kaplan-Mert plot of high- and 
low-risk groups, P value was calculated using the log-rank test. Middle: Comparison of gender ratios in high- and low-groups, P value 
was calculated using Pearson’s chi-squared test. Right: Comparison of the distributions of age in high- and low-risk groups, P value was 
calculated using Wilcoxon rank-sum test.
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approaches and leveraged large scale of gene expression 
profiles from multi-institutional cohorts. The robustness 
of the GLO10 score was demonstrated by successfully 
implemented in more than three independent cohorts.

Functional analyses revealed that genes consisting 
the GLO10 score were involved in the genesis and 
progression of glioblastomas (Figures 2 and 3). Among 
them, the prognostic associations with glioblastoma 
outcomes have already been reported. For example, 
Insulin-like growth factor-binding protein 2 (IGFBP2) 
has been considered as a glioma oncogene [21]. 
Increasing expression of IGFBP2 could associated 

to poor glioma prognosis as it may play major role in 
glioma tumour progression [22–27]. It is also reported 
that in IDH-mutant glioma, IGFBP2 was inhibited 
so that patients’ survival could be improved [28]. The 
expressions of FZD7, along with other two genes, 
SFRP1 and SFRP4, were identified to be associated 
with poor prognosis in glioma patients [29]. The up-
regulated expression of FZD7 could promote glioma 
cell proliferation [30]. However, to our understanding, 
GLO10 the first gene signature that utilize the expression 
data and sum into a unified score that ease its applications 
in clinical practices.

Table 1: Clinical characteristics of discovery and validation sets

Discovery Set: TCGA

Characteristics Overall High risk group Low risk group P-value

(n=470) (n=193) (n=277)

Median overall survival[months]
(range)

10.37 (0.10-127.55) 10.03 (0.10-127.55) 10.58 (0.10-108.81) 0.020§

Female [n (%)] 181 (38.51%) 77 (39.90%) 104 (37.54%) 0.68‡

Median age[years](range) 59.00 (5.00-89.00) 58.00 (10.00-88.00) 59 (5.00-89.00) 0.20†

Validation Set 1: GSE13041

Characteristics Overall High risk group Low risk group P-value

(n=160) (n=24) (n=136)

Median overall survival[months]
(range)

12.84 (0.23-110.22) 9.04 (1.74-72.02) 13.58 (0.23-110.22) 0.044§

Female [n (%)] 63 (39.38%) 7 (29.17%) 56 (41.18%) 0.38‡

Median age[years](range) 51.50 (18.00-86.00) 57.50 (40.00-85.00) 49.50 (18.00-86.00) 0.049†

Validation Set 2: GSE16011

Characteristics Overall High risk group Low risk group P-value

(n=155) (n=89) (n=66)

Median overall survival[months]
(range)

8.76 (0.24-150.72) 7.08 (0.24-66.72) 14.16 (0.48-150.72) <0.0001§

Female [n (%)] 50 (32.26%) 27 (30.34%) 23 (34.85%) 0.67‡

Median age[years](range) 55.00 (14.00-80.00) 58.00 (14.00-79.00) 46.50 (15.00-80.00) 1.45×10-6†

Validation Set 3: GSE83294

Characteristics Overall High risk group Low risk group P-value

(n=59) (n=5) (n=54)

Median overall survival[months]
(range)

7.80 (0.23-41.00 ) 5.03 (1.74-7.80) 9.29 (0.23-41.00) 0.014§

Female [n (%)] 32 (54.24% ) 1 (20.00%) 31 (57.41% ) 0.26‡

Median age[years](range) 47.00 (1.00-82.00 ) 56.00 (39.00-66.00) 44.50 (1.00-82.00) 0.35†

‡ P value calculated using the Pearson’s chi-squared test.
† P value calculated using the Wilcoxon rank-sum test.
§ P value calculated using the log-rank test.
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For the future work, we will collect more datasets 
and re-train the model to improve the robustness and 
predictive power. We would also assess its prognostic 
value by comparing other biomarkers such as IDH1 and 
1p19q status. In summary, our analysis of data from 
different independent cohorts demonstrates that the utility 
of GLO10 score as a tool for glioblastoma prognosis 
prediction. The incorporation of the GLO10 into the 
prognosis prediction for newly diagnosed glioma patients 
will facilitate the development of biomarker and drug 
target discovery.

MATERIALS AND METHODS

Datasets collection and preprocess

In this study, we collected datasets from various 
cohorts including The Cancer Genome Atlas (TCGA)
[31], Repository for Molecular Brain Neoplasia Data 
(Rembrandt)[13] and other published studies. Gene 
expression profiling datasets and clinical information 
of five independent cohorts were retrieved NCBI GEO 
Database with accession numbers: GSE68848 (Rembrandt 
cohort), GSE83130 (TCGA cohort), GSE13041 [11], 
GSE16011 [32] and GSE83294 [8]. Given the complexity 
of data sets, we restricted the samples to grade three and 
four glioblastomas in this study.

For the Rembrandt cohort, a total to 28 normal 
and 228 glioblastoma samples were considered. For the 
glioblastoma prognostic gene signature training, the 
numbers of samples considered for this study were 470, 
160, 155 and 59 for the TCGA cohort (discovery set), 
GSE13041 (validation set 1), GSE16011 (validation set 
2) and GSE83294 (validation set 3). While searching for 
the data sets, Affymetrix HG-U133A and HG-U133 Plus 
2.0 microarrays were considered. Since they are sharing 
22,277 probe sets, the performances of the derived gene 
signatures could be easily evaluated in different studies 
without gene ID mapping.

The raw fluorescence intensity profiles (*.CEL) 
were preprocessed, background corrected and normalized 
with RMA algorithm [33] using Bioconductor package, 
affy [34], in the R environment.

Differential gene expression analysis

We applied the differentially expressed gene 
analysis by using the limma (linear models for microarray 
data, [35]) algorithm. All the gene expression data was 
converted into the log base-2 scale before comparison 
using the Welch's t-test with Benjamini & Hochberg 
correction [36]. The functional analysis was based on 
the gene set enrichment analysis in Gene Ontology and 
Reactome Pathway database [37].

Table 2: List of gens in the GLO10 score

Probeset ID§ Symbol Gene ID* Chromosomal 
location

Description

221898_at PDPN 10630 1p36.21 podoplanin

202133_at WWTR1 25937 3q25.1 WW domain containing transcription 
regulator 1

203706_s_at FZD7 8324 2q33.1 frizzled class receptor 7

201792_at AEBP1 165 7p13 AE binding protein 1

221766_s_at FAM46A 55603 6q14.1 family with sequence similarity 46 
member A

202718_at IGFBP2 3485 2q35 insulin like growth factor binding 
protein 2

203729_at EMP3 2014 19q13.33 epithelial membrane protein 3

212063_at CD44 960 11p13 CD44 molecule (Indian blood group)

203504_s_at ABCA1 19 9q31.1 ATP binding cassette subfamily A 
member 1

201761_at MTHFD2 10797 2p13.1 methylenetetrahydrofolate 
dehydrogenase (NADP+ dependent) 

2, methenyltetrahydrofolate 
cyclohydrolase

§ Affymetrix Human Genome Array probe set identifier.
* NCBI Gene Database https://www.ncbi.nlm.nih.gov/gene.
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Statistical modelling

For the development of prognostic gene signature, 
we used the datasets from the discovery set (TCGA 
cohort, n=470). A linear regression modelling based on the 
LASSO algorithm was implemented by the glmnet [38] 
R package. Briefly, the glmnet package fits a generalized 
linear model via penalized maximum likelihood and 
extract the prognostic gene signature by10-fold cross 
validation approaches. A subset of 10 genes was selected 
as their weighted combined gene expression data was 
significantly correlated to the overall survival outcomes 
of glioblastoma patients in the discovery set.
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