
LWSleepNet: A lightweight attention-based deep
learning model for sleep staging with
singlechannel EEG

Chenguang Yang1,2,# , Baozhu Li3,#, Yamei Li1, Yixuan He2

and Yuan Zhang1

Abstract

Introduction: Sleep is vital to human health, and sleep staging is an essential process in sleep assessment. However, manual
classification is an inefficient task. Along with the increased demand for portable sleep quality detection devices, lightweight
automatic sleep staging needs to be developed.

Methods: This study proposes a novel attention-based lightweight deep learning model called LWSleepNet. A depthwise sep-
arable multi-resolution convolutional neural network is introduced to analyze the input feature map and captures features at
multiple frequencies using two different sized convolutional kernels. The temporal feature extraction module divides the
input into patches and feeds them into a multi-head attention block to extract time-dependent information from sleep
recordings. The model’s convolution operations are replaced with depthwise separable convolutions to minimize its number
of parameters and computational cost. The model’s performance on two public datasets (Sleep-EDF-20 and Sleep-EDF-78)
was evaluated and compared with those of previous studies. Then, an ablation study and sensitivity analysis were performed
to evaluate further each module.

Results: LWSleepNet achieves an accuracy of 86.6% and Macro-F1 score of 79.2% for the Sleep-EDF-20 dataset and an
accuracy of 81.5% and Macro-F1 score of 74.3% for the Sleep-EDF-78 dataset with only 55.3 million floating-point opera-
tions per second and 180 K parameters.

Conclusion: On two public datasets, LWSleepNet maintains excellent prediction performance while substantially reducing the
number of parameters, demonstrating that our proposed Light multiresolution convolutional neural network and temporal
feature extraction modules can provide excellent portability and accuracy and can be easily integrated into portable sleep
monitoring devices.
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Introduction
Human health depends on sleep. The ability to monitor sleep
quality significantly impacts medical research1. The profes-
sional diagnosis of sleep disorders and diseases typically
relies on polysomnography (PSG), which contains multiple
signal channels during sleep, such as electroencephalography
(EEG), electrocardiography (ECG), electrooculography
(EOG), and electromyography (EMG). These signals
typically represent sleep-related events and indicators.2,3

According to the American Academy of Sleep Medicine
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(AASM)manual, complete sleep recording is divided into 30
s epochs and classified into five stages: Wake (W), rapid eye
movement (REM) and three non-REM stages (N1, N2, and
N3).4 Because this is a laborious and inefficient task, auto-
matic sleep staging technology is required to assist physi-
cians. Additionally, it is challenging to implement portable
multi-channel sleep monitoring using PSG. Therefore,
several studies have used single-channel signals (for
example, EEG and EOG) for at-home monitoring to evaluate
the quality of sleep. Additionally, the development of port-
able personal sleep monitoring devices has increased the
demand for long-lasting, highly accurate, and cost-effective
sleep-staging algorithms.

Many previous studies have used traditional machine
learning methods to classify PSG recordings based on
time, frequency, and time-frequency-domain features.
These methods typically include two steps. First, the dis-
criminative features are extracted and connected into a
vector. Next, the vectors are fed into machine learning
models, such as support vector machines5,6, decision
trees,7 and random forests,8 to classify the recordings.
These methods have low hardware requirements and
high computational costs. However, manually capturing
features relies on specialist knowledge, and discriminative
features may vary across different devices and patients.
Therefore, traditional machine learning models require
expertise and perform inconsistently during sleep-stage
classification.

The original time-series EEG recordings contain mul-
tiple discriminative features. Long-term dependencies also
exist in the recording, such as the transition rules that
sleep experts use to identify the next possible sleep stage
from a PSG epochs’ series.4 Recently, numerous studies
have analyzed sleep structures using the powerful feature-
learning capabilities of convolutional neural networks
(CNNs). CNNs were used to extract information from
single-channel EEG spectrograms.9 One-dimensional
CNNs served as feature capture modules with single-
channel EEG signals as inputs.10,11 However, these
studies failed to consider temporal dependencies in sleep
recordings. A few studies have used recurrent neural net-
works (RNNs) in sleep staging to capture time-dependent
features.12,13 For example, 55 time- and frequency-domain
features manually extracted from single-channel EEG
signals have been used as inputs in the model.13 Long short-
term memory (LSTM) was cascaded using an RNN to con-
struct a model to extract temporal features and classify
them. Despite these promising results, these methods still
rely on manually extracted features.

Several studies have combined CNN, RNN, and atten-
tion modules to extract temporal features to capture time-
dependent information in sleep recordings and to improve
the automatic sleep stage classification accuracy.14–18

AttnSleep14 used a multi-resolution CNN (MRCNN) to
extract multi-frequency features, which were then fed

directly into a temporal feature encoder with an attention
mechanism. DeepSleepNet15 employed MRCNN as a
feature extraction block and then fed the features into a
bidirectional LSTM to extract temporal information.
Bidirectional RNN and attention mechanisms were used
as feature extractors in SeqSleepNet16. Then, the sequences
of the epoch-wise feature vectors were modeled using a
bidirectional LSTM block to encode long-term sequence
information between epochs.16 Such a method can automat-
ically complete the feature capture and extraction of time
dependencies without manual operation, resulting in high
accuracy in end-to-end sleep staging. However, such
models with many parameters and excessive computational
costs are difficult to integrate into portable sleep monitoring
devices.

Recently, several lightweight architectures have been
proposed because of the growing demand for portable
sleep monitoring devices.19,20 A CNN and channel shuffle
model were incorporated into a lightweight model
(LightSleepNet)19 for sleep staging to improve accuracy.
TinySleepNet20 is composed of multiple CNN layers
serving as a feature-grasping module and an LSTM
serving as a sequence feature extraction module. These
studies significantly reduced the model parameters and
the computational cost. However, this comes at the
expense of the algorithm’s ability to classify different
sleep stages.

Therefore, the development of portable sleep monitoring
devices still faces three obstacles. First, how to capture
discriminative features from sleep recordings. Second, the
features of sleep recordings have time dependencies, for
which the existing models have insufficient learning
ability. Third, most studies achieved high accuracy with
numerous model parameters and high computational
costs, which cannot be applied to portable and long-term
sleep monitoring devices.

To address these issues, we propose a novel lightweight
sleep staging model, LWSleepNet, and conduct various
experiments on two publicly available datasets to evaluate
the performance of LWSleepNet. The main contributions
of the proposed novel lightweight model are as follows.

1. It improves its accuracy while reducing the computa-
tional cost and number of parameters, enabling it to
be integrated into portable sleep-monitoring devices.

2. It uses multi-headed attention (MHA) to capture tem-
poral dependencies within the feature map.

3. It uses depthwise separable multi-resolution convolu-
tions to extract features of multiple frequencies in the
sleep recording at a low computational cost.

Methods
This section introduces LWSleepNet for automatic sleep
staging using a single-channel EEG.
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Overview of the model

Figure 1 illustrates the components of LWSleepNet. It con-
sists of three components: Representation extraction, tem-
poral feature extraction (TFE), and an output block.

First, the signal is fed into the depthwise separable multi-
resolution convolution module (Light-MRCNN). It uses
two different sizes of convolutional kernels to extract fea-
tures from the signal. Large and small convolutional
kernels extract the low- and high-frequency features,
respectively. The output is concatenated and then recali-
brated using a bottleneck block. Then, the feature map is
fed into the TFE block after representation extraction. It
contains a multi-head attention (MHA) module, from
which the feature map’s temporal features are extracted.
Finally, the output module, which contains a pooling
layer, a fully connected layer, and a Softmax layer, com-
pletes the classification decision. In the following subsec-
tions, the principles and functions of each component are
described in detail.

Representation learning

Depthwise separable convolutions and bottleneck block.
Pointwise and depthwise convolutions (dw Convs) are
combined to form a depthwise separable convolution21. A
pointwise convolution pw Conv, a convolution with a
kernel size of one, generates a new feature map by weight-
ing and summing the input feature maps. The output and the
input feature maps have the same size. A pw Conv can
perform both descending and ascending dimension opera-
tions (changing the dimensionality of the output) with
less computational effort than a standard convolution and
can mix information between channels. dw Conv is differ-
ent from the standard convolution. The number of convolu-
tion kernels in each layer is equal to the number of channels
in the input feature map. After the dw Conv operation, the
number of channels in both the output and input feature
maps is equal. However, this operation performs a

convolution operation independently for each channel of
the input layer, which ineffectively uses the feature infor-
mation from various channels at the same spatial location.
Therefore, pw Conv must generate new feature maps.

Depthwise separable convolution can reduce the number
of parameters and computation required for the model com-
pared with standard convolution. Suppose the size of the
input feature map is Df × Cf and produce a Df × Co

feature map, where Df denotes the length of the input one-
dimensional (1D) feature map, Cf is the number of input
channels, and Co denotes the number of output channels.

A convolution kernel of size Dk × Cf × Co, where Dk

denotes the size of the kernel, Cf denotes the number of
input channels, and Co denotes the number of output chan-
nels, parameterize the standard. Therefore, the computa-
tional cost of the standard convolution is computed as
follows:

Dk × Cf × Co × Df (1)

A combination of dw Conv and pw Conv is operated on the
above inputs to output a feature map of the same size using
depthwise separable convolution. A convolution kernel of
size Dk × Cf , where Dk denotes the size of the kernel and
Cf denotes the number of input channels, is used to param-
eterize the dw Conv. Therefore, the computational cost of
depthwise separable convolution is determined as follows:

Dk × Cf × Df + Cf × Co × Df (2)

Therefore, computation reduction is computed as follows:

Dk × Cf × Df + Cf × Co × Df

Dk × Cf × Co × Df
= 1

Co
+ 1

Dk
(3)

Figure 2 illustrates the structure of the bottleneck block,
which consists of pw Conv, dw Conv, Gaussian error
linear unit (GELU)22 and 1D batch normalization.
Particularly, pw Conv(inp, n×inp) in Figure 2 refers to a
pw Conv with inp input channels and n×inp output channels,
and dwConv(ks) refers to a dwConv with a kernel size of ks.

Figure 1. Overall structure of the proposed model for automatic sleep staging.

Yang et al. 3



The bottleneck block was introduced in MobileNetV223

and has been adopted in MobileNetV324 and many other
studies25,26. The bottleneck block uses an inverted residual
structure, which resembles the structure of common resi-
duals. However, the residual operation switches the des-
cending and ascending dimensions in the bottleneck
block. Pw Conv is used to first increase the number of chan-
nels in the input feature; then, information is extracted using
dw Conv. Finally, the dimensions are descended using pw
Conv. Simultaneously, a shortcut is used to connect the
inputs and outputs. In LWSleepNet, the inverted residual
structure is used for feature extraction and recalibration of
the input 1D feature map, with a GELU22 serving as the
activation function.

Depthwise separable multi-resolution convolution. To extract
features from multiple frequencies, a Light-MRCNN was
developed, as shown in Figure 3. In the proposed feature-
grabbing module, the features of the signals are extracted
using a 1D dw Conv layer and a 1D pw Conv layer, each
of which is followed by 1D batch normalization. The
GeLU is used as the activation function, which has been
demonstrated to be more capable of passing negative
values14 and is suitable for EEG signal processing. After
concatenating the outputs, a bottleneck block was used as
a recalibration to improve the module’s performance, and
dropout layers were used to reduce overfitting.

Inspired by Eldele et al.14 and Supratak et al.15 a two-
branch convolution module, which contains convolution
kernels of different sizes, is implemented to extract the fea-
tures of single-channel EEG signals at different frequencies.
For example, we assumed that the sampling frequency of
the input signal is 100Hz. First, the convolution with a
small kernel (receptive field size of five) has a window of

0.05 s to obtain the feature information of the signal at 20
Hz, which roughly corresponds to the frequency of the
gamma wave in the EEG. Second, a large kernel (receptive
field size of 50) was used to obtain waveform information at
approximately 2 Hz, which corresponds to the frequency
bands of theta and delta waves in the EEG. Additionally,
both large and small convolutional kernels can capture
time- and frequency-domains information.15

Temporal feature extraction

Figure 4 illustrates the structure and working principle of
the TFE block. The TFE block first divides (reshapes) the
input into several patches and then learns the temporal
dependence between each patch using MHA. This was
inspired by several previous studies in the computer
vision field that divided feature maps into patches and
then fed them into multiple heads of attention for feature
extraction27–29. Additionally, before and after the MHA
block, deep and point-by-point convolutions are combined
to capture features and project them into a higher dimen-
sional space.

The MHA block matches the feature information of each
patch in the EEG signal epoch with that of other patches.
First, MHA uses multiple heads, each of which creates a
weight between the different positions in the epoch,

Figure 2. Structure of bottleneck block in LWSleepNet.

Figure 3. Structure of Light-multi-resolution convolutional neural
network (MRCNN).
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allowing for the analysis of the dependencies between the
different positions. Then, the MHA adds up these weights
to obtain the final weight for each position. These weights
were used to encode the patches to obtain information
about the temporal features in the EEG signal.

Particularly, we consider the input to be Xin ∈ Rwin×din .
After extracting the features using convolution, the output
is Xc ∈ Rw×d and the feature map is reshaped into patches
Xp ∈ Rwpw×N×d, where N = w

wpw
. Each patch is fed into the

linear network to generate query (Q), key (K), and value
(V) which are required by the attention block, that is,
Q, K, V = Linear(Xp). The output value of attention can
be calculated as follows:

Attention(Q, K, V) = Softmax(
Q · KT

���
dk

√ ) · V (4)

where i represents the ordinal number of the head in an
MHA, dk represents the dimensions of Q, K, V , and the
operator (·) represents the dot product. This is referred to
as the scaled dot-product attention, which was proposed
in30. To improve the generalization of the model and
extract useful information from the signal, the MHA
based on the method described above was used. The first
patches were divided into h subspaces, where h denotes the

number of heads, that is, Xp = [X1, . . . , Xh], Xi ∈ R
wpw
h ×N×d ,

i ∈ [1, h]. The values in each subspace were then separately
subjected to the attention operation described above.
Finally, the results are concatenated. The output of the
MHA block is calculated as follows:

MHA(Xpw) = Concat(Head1, . . . , Headh) (5)

where Headi = Attention(Linear(Xi)), i ∈ [1, h], and h
denotes the number of heads.

This module extracts temporal information from the
intra-EEG epoch for two distinct reasons. Firstly, extracting
information from the 30-second epoch enables the capture of
more nuanced features, which enhances sleep staging reli-
ability. Second, the division of the input features into differ-
ent patches increases the representation subspace compared

to mapping the feature map sequences to vector inputs into
the temporal feature capture module, for the MHA used by
the TFE blocks. This division increases the representation
subspace, resulting in attention weights that more accurately
reflect the importance of each partition. Cascading these
representations leads to a more comprehensive representation,
which improves classification accuracy14. Additionally, in
the experiments presented herein, we endeavored to
capture inter-EEG epoch information. However, our
results indicate a decrease in performance and an increase
in the number of parameters of the model.

In LWSleepNet, the TFE module cuts the input into
patches 25 in length and feeds them to the MHA. This
module is set to repeat 3 times to extract enough temporal
dependencies.

Training method

LWSleepNet was built and trained using Pytorch 1.1231.
The hyperparameters of the model were derived based on
the training results. The batch size was set to 120, and the
unit length sequence was 30 s. We used AdamW32 as the
optimizer and set the beta 1, beta 2, and weight decay
values to 0.9, 0.999, and 1×103, respectively.
Cross-entropy loss was used as the loss function, and
label smoothing was set to 0.05 to reduce the effect of
sample imbalance. We observed that the performance of
the model stabilized as it approached 100 epochs.
Therefore, the number of epochs was set at 100. A multi-
step learning rate scheduler was used to divide the entire
training process into three stages: Learning rates at 1–10,
11–90, and 91–100 and epoch were 1×10−3, 1×10−4, and
1×10−5, respectively. The dw Conv kernel size in all bottle-
neck blocks was set as nine. For the TFE module, we set the
number of MHA module heads to eight and the input chan-
nels to 64.

Statistical analysis

The model was evaluated epoch-by-epoch by calculating
performance metrics, such as staging accuracy. This study
assessed the agreement between PSG-based manual
scoring and LWSleepNet automated scoring results using
Cohen’s kappa coefficient (κ)33. Confusion matrices were
presented to account for scoring accuracy at each sleep
stage, and precision, recall rate, and macro-F1 scores
were calculated.

To further explore the performance and necessity of
modules of the model, ablation experiments were con-
ducted by replacing or removing certain modules. The
accuracy and macro-F1 scores of the individual models
were cross-validated on publicly available datasets, and a
t-test was used to explore their variability compared to the
original models. Therefore, as shown in Table 5, the statis-
tical significance of differences between the performance of

Figure 4. The structure of proposed temporal ature extraction (TFE)
block.
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the replaced or disassembled models and the original model
was examined.

Results

Datasets

In our experiments, we used the Sleep-EDF-20 and
Sleep-EDF-78 public datasets34 obtained from the
PhysioBank35. Table 1 demonstrate the detail information
including the distribution of epoch labels. Sleep-EDF-20
contained sleep PSG data files containing sleep data from
20 subjects, whereas Sleep-EDF-78 was an extended
version containing sleep PSG data from 78 individuals
over several nights. The data collected from the subjects
included two channels of EEG signals (from the Fpz-Cz
and Pz-Oz electrode locations), an EOG signal (horizontal),
an EMG signal (chin), and an event marker. Additionally,
both the EOG and EEG signals were sampled at 100Hz.
The data for the whole night were recorded in two files: a
SC*PSG.edf file contained the data for each channel and
a *Hypnogram.edf file contained the stage classification
markers for each 30 s signal as described in the
Rechtschaffen and Kales manual4. In the experiments,
marker files and EEG signals from the Fpz-Cz channel
were used as training and validation data, respectively.

Performances

The model’s performance was accurately evaluated using
subject-wise 20-fold cross-validation. The Sleep-EDF-20
dataset was divided into 20 groups based on the subjects.
For 20 rounds, 19 data points were used as the training set
and the remaining one as the test set. Finally, we com-
bined the predicted sleep stages from all 20 rounds of
the test sample to calculate the various performance
metrics.

We evaluated the model using the following metrics:
Accuracy (ACC), precision (PR), recall (RE), macro-
averaged F1 score (MF1), Cohen Kappa (κ), number of
parameters (Param), and floating point of operations
(FLOPs). Given the true positives (TPi), false positives

(FPi), true negatives (TNi), and false negatives (FNi) of
class i, the following metrics: ACC, PR, RE, and MF1,
can be calculated as follows:

ACC =
∑L

i=1 TPi

S
(6)

MF1 = 1
L

∑L

i=1

2 × PRi × REi

PRi + REi
(7)

where PRi = TPi
TPi+FPi

and REi = TPi
TPi+FNi

.

The LWSleepNet was cross-validated on Sleep-EDF-20
and Sleep-EDF-78 datasets. The confusion matrix was
counted and calculated for both datasets along with the cor-
responding PR, RE and F1 scores (F1) for each classifica-
tion and the results are shown in Tables 2 and 3. Finally,
the overall performances were calculated as follows.
LWSleepNet had an ACC of 86.6% and MF1 of 79.2%
for the Sleep-EDF-20 dataset and an ACC of 81.5% and
MF1 of 74.3% for the Sleep-EDF-78 dataset.

To validate the proposed model in assisting medical
diagnosis, we selected the first fold of the model in a cross-
validation of two datasets as well as the test dataset to
output sleep staging results and predict sleep latency
(SL), REM sleep latency (RSL), and total sleep time
(TST). Subsequently, the predicted and true parameters
were used to calculate the root mean squared error
(RMSE), as shown in Table 4. Based on the data presented
in the table, it is evident that the model’s predictions for SL
and TST are relatively accurate, with a negligible error of 0
for SL in Sleep-EDF-20. However, in Sleep-EDF-78, the
model’s prediction error on RSL is considerably higher.
This disparity may be attributed to the shorter duration
the first REM period and the model’s less capability of pre-
dicting the REM stages, which is indicated by Tables 2 and
3. Nevertheless, the model’s capability to compute clinical
relevant parameters has the potential to assist in clinical
diagnosis. Therefore, it can be inferred that the model pro-
vides a valuable tool in the assessment of sleep-related
disorders.

To further demonstrate the above findings, a visualiza-
tion of the output for a subject from the Sleep-EDF-20

Table 1. Details of the datasets.

Datasets W N1 N2 N3 REM #Total samples

Sleep-EDF-20 8285 2804 17,799 5703 7717 42,308

19.6% 6.6% 42.1% 13.5% 18.2%

Sleep-EDF-78 65,951 21,522 69,132 13,039 25,835 195,479

33.7% 11.0% 35.4% 6.7% 13.2%

6 DIGITAL HEALTH



dataset is shown in Figure 5. Figure 5(a) shows the prob-
ability curves for each category, Figure 5(b) shows the
output Hypnogram predicted by the model while
Figure 5(c) shows the classification results of the data by
the sleep experts in the dataset. The × in Figure 5(b) indi-
cate the prediction results that differ from the experts. In
Figure 5(a), the threshold value of confidence is 0.5. The
majority of errors are observed during the transition
period and at low confidence levels, while they occur less
frequently throughout the duration of a stage.

Ablation study

LWSleepNet integrates depthwise separable convolution,
Light-MRCNN, and TFE blocks. Ablation experiments
were conducted on the Sleep-EDF-20 dataset to validate
the need for each module. We evaluated the LWSleepNet
model, the model with all depthwise separable convolutions
replaced with normal convolutions, the model without the
TFE block, and the model without the Light-MRCNN. To
further explore the superiority of intra-EEG epoch informa-
tion in LWSleepNet, we added one model to the ablation
experiment – replacing the TFE block with a LSTM
module to capture the inter-EEG epoch features.
Additionally, unlike other models’ training methods, the
input sequences of the MRCNN with LSTM model will
not be shuffled and the cell states of the LSTM are reset
for each subject. The models’ performance was evaluated
using the following metrics: ACC, MF1, and number of
parameters (Figure 6).

According to the ablation study shown in Table 5, signifi-
cant statistical differences can be found in the performance
of these models (p < 0.001), and the following conclusions
can be drawn. First, the depth-separable convolution drastic-
ally reduces the number of parameters in the model, which
improves the portability of the model while having almost
no impact on its accuracy. Second, the TFE block is adept
at extracting temporally dependent information, which
increases stage classification accuracy. Third, the automatic
feature capture capability of the light-MRCNN improves the
accuracy of the model. It can extract recording information
from two frequencies to capture the most discriminative fea-
tures. Moreover, we find that combining the MRCNN
module with the LSTM model results in lower performance
and portability compared to the originalmodel,which demon-
strates the superiority of our TFE block and the distinguish-
ability of the intra-epoch information. In conclusion, the

Table 2. Confusion matrix on Sleep-EDF-20.

Predict Performance

W N1 N2 N3 R PR RE MF1

W 7745 258 85 20 177 91.3 93.5 92.4

N1 472 923 648 4 757 55.5 32.9 41.3

N2 111 258 16389 469 572 88.3 92.1 90.2

N3 17 0 769 4913 4 90.9 86.2 88.4

R 139 225 667 2 6684 81.6 86.7 84.0

PR: precision; RE: recall; MF1: macro-averaged F1 score.

Table 3. Confusion matrix on Sleep-EDF-78.

Predict Performance

W N1 N2 N3 R PR RE MF1

W 58312 2945 771 83 3840 96.4 88.4 92.2

N1 1604 7775 6177 1060 4906 45.4 36.1 40.2

N2 278 4190 62541 470 1653 83.6 90.5 86.9

N3 37 800 2518 9468 216 85.2 72.6 78.4

R 261 1422 2812 29 21311 66.8 82.5 73.8

PR: precision; RE: recall; MF1: macro-averaged F1 score.

Table 4. The measurement RMSE for several clinically relevant
parameters.

Datasets SL (min) RSL (min) TST (min)

Sleep-EDF-20 0.0 0.5 24.2

Sleep-EDF-78 9.8 80.1 9.7

RMSE: root mean squared error; SL: sleep latency; RSL: rapid eye movement
sleep latency; TST: total sleep time.

Table 5. Accuracy, MF1 (average ± standard deviation), and
number of parameters of the algorithms in ablation study.

Blocks ACC MF1 Param

LWSleepNet 86.6±2.7 79.2±2.6 1.8×105

w/o depthwise separable
convolutions

86.5±2.9 79.4±2.8 6.0×105

w/o Light-MRCNN 81.7±2.5* 69.9±2.2* 1.6×105

w/o TFE block 76.6±3.5* 62.4±3.1* 7.9×104

MRCNN with LSTM block 81.3±1.8* 75.9±2.3* 6.6×105

MRCNN: multi-resolution convolutional neural network; TFE: temporal
feature extraction; LSTM: long short-term memory; MF1: macro-averaged F1
score; Param: number of parameters.
*p < 0.001

Yang et al. 7



Light-MRCNN, TFE block, and depthwise separable convo-
lution are crucial components of the model.

To further validate the impact of each newly proposed
component, we replaced the representation extraction
module and temporal information extraction module in
AttnSleep14 with Light-MRCNN and TFE block,

respectively. Then, we trained and validated the combined
model on Sleep-EDF-20, and the results were presented
in Table 6. According to the table, it was evident that the
proposed modules were not only applicable to
LWSleepNet, but they could also improve the classification
accuracy of models of the same type. Meanwhile, although
these combined models have slightly higher accuracy than
LWSleepNet, the proposed model still leads substantially
in terms of number of parameters and MF1. Additionally,
when Light-MRCNN was employed for AttnSleep, the
number of parameters of the combined model substantially
decreased due to the inclusion of depthwise separable con-
volutional layers. Notably, replacing the components did
not result in a obvious change in the MF1 score of the
model. Therefore, to address the problem of data imbalance
in the future, it will be necessary to consider additional
learning methods and loss functions.

Sensitivity analysis for number of TFE blocks

As TFE block is a key component of our model, we
repeated it to capture more temporal dependencies, and

Figure 5. Visualization of the output of one subject of Sleep-EDF-20.

Figure 6. The result visualization of sensitivity analysis for number
of temporal feature extraction (TFE) blocks.
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thus it is essential to study how the number of TFE blocks
(NTFE) affects the model’s accuracy and portability. In par-
ticular, we fix the other parameters and test different NTFE.
With the other parameters set as described above, the model
was trained in Sleep-EDF-20with NTFE from 1 to 7. The
figure shows the variation of thousands of parameters
(KParam), million FLOPs, and accuracy with the number
of TFE blocks. As NTFE increases in the range of [1, 7],
we can observe that the number of parameters and computa-
tional cost of the model increase substantially, while the
accuracy only increases very slightly after NTFE is greater
than 3. Therefore, to balance the portability and performance
of the model, we set the number of TFE blocks to 3.

Discussion
Due to the development of portable sleep monitoring
devices, the demand for lightweight sleep algorithms
increase. In this study, we propose a novel lightweight
sleep staging algorithm with single channel EEG,
LWSleepNet. In this model, we use Light-MRCNN to
capture discriminative features and use the TFE module
to capture association between features. Therefore, the
model is able to effectively extract features from EEG
signals and temporal dependencies to accomplish
86.6% and 81.5% accuracy on Sleep-EDF-20 and
Sleep-EDF-78 datasets, respectively. Finally, the neces-
sity and performance of each module in the model are
verified by ablation study and the optimal number
of TFE modules from 1 to 7 is explored by sensitivity
study.

Table 7 compares and analyzes LWSleepNet and previ-
ous work on raw single-channel EEG or PSG-based auto-
mated sleep staging. Additionally, we normalized the data
in Table 7 to obtain the radar map, as shown in Figure 7.
All of these studies were based on deep learning networks
for five classifications. Most of the researchers used CNN
for feature extraction followed by extraction of temporal
dependencies using RNN or MHA. A small number of
studies used only CNNs for classification. Also, only a
small part of these studies are exploring lightweight

models. DeepSleepNet15 implemented a multi-branch
CNN, LSTM, and a residual connection for sleep staging.
Also, SleepEEGNet36 used the same CNN feature extraction
structure as DeepSleepNet, followed by a coder-decoder
structure with attention for sleep stage classification.
Additionally, TinySleepNet20 used the structure of
DeepSleepNet and removed the CNN bypass to reduce the
computation and number of parameters, which enabled light-
weight sleep staging. AttnSleep14 used a CNNwith two reso-
lutions as the automatic feature extraction module, followed
by a temporal information encoder containing an attention
mechanism to classify sleep stages. LightSleepNet19 used
CNN with a residual connection to construct a lightweight
sleep stage classification model.

According to the result of comparison, the proposed
model employs fewer parameters and computations while
achieves higher accuracy. It is noteworthy that the model
exhibits superior accuracy compared to the majority of
existing models, owing to the utilization of Light
MRCNN and TFE block, and it has better performance in
discriminating the W and N2 sleep stages. Additionally,
because of the depth-separable convolution, LWSleepNet
allows both accuracy and portability (number of parameters
and FLOPs), indicating that the model achieves a better
balance between the number of parameters and performance.
However, the model tended to misclassify the N1 periods as
W and N2, as indicated by the performance comparisons in
Table 7 and the confusion matrices in Tables 2 and 3.

LWSleepNet has a similar structure to AttnSleep14, but
has several differences in performance. First, the main
reason is that all CNN layers are replaced with depthwise
separable convolution layers in this study, which ensures
that the model extracts features accurately while reducing
the computational cost and the number of parameters.
Second, the proposed model cuts the feature maps into
several equal length patches and inputs them into the
MHA before the temporal correlation extraction.
Meanwhile, the training of AttnSleep14 utilizes a
class-aware cost-sensitive loss function to deal with the
data imbalance problem. This illustrates the balanced per-
formance of its model on each class. Meanwhile, Table 7
shows that LightSleepNet19 has the best portability. The
model was constructed using only several layers of
CNNs, but the use of unsupervised learning for training
allowed the model to improve its classification perform-
ance. However, the model could not achieve a higher accur-
acy because it did not consider the temporal dependence
information present in the EEG signal. Furthermore,
although the majority of the LWSleepNet’s performance
metrics are inferior to those of TinySleepNet20, which
also aimed to enhance the model’s portability.
LWSleepNet substantially decreases the number of model
parameters, while preserving fine performance metrics.

Despite the promising results, our study also has some
limitations. First, the databases used in our experiments

Table 6. Analysis of proposed components with AttnSleep.

Blocks ACC MF1 Param

AttnSleep 84.4 78.1 5.2×105

AttnSleep (with TFE block) 87.2 78.5 5.6×105

AttnSleep (with Light-MRCNN) 86.8 77.8 1.8×105

MF1: macro-averaged F1 score; ACC: accuracy; MRCNN: multi-resolution
convolutional neural network; TFE: temporal feature extraction; Param:
number of parameters.
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are from retrospective studies with biased sets of recordings
collected by specific hardware. Therefore, we should use
new recorded data in a prospective way in further studies.
Secondly, the model is not sufficiently capable of handling
imbalanced data where N1 stage is underrepresented. Data
balancing and improved loss functions should be used to
solve the problem. Finally, the portability of the model
should be further improved to better suit the needs of
mobile sleep monitoring devices. This can be achieved by
reducing the number of modules and using methods such
as semi-supervised and self-supervised learning.

Conclusion
We propose an automatic sleep staging model,
LWSleepNet, which is based on a Light-MRCNN and a
TFE block. The Light-MRCNN was used to automatically
extract features, and the TFE block was used to extract tem-
poral information. Depthwise separable convolution and
bottleneck blocks were used to perform recalibration,
dimensionality operations, and feature extraction opera-
tions. Cross-validation experiments were used to evaluate
the model’s performance and compare it with previous
studies. The results demonstrate that our model substan-
tially improve mobility while maintains the performance
of the model and improves certain metrics to a certain
extent. Finally, an ablation experiment was performed to

Table 7. Performance comparison among LWSleepNet and previous work.

Model Dataset

Overall Metrics Per-class F1-Score

Param FLOPsACC MF1 κ W N1 N2 N3 REM

DeepSleepNet Sleep-EDF-20 81.9 76.6 0.76 86.7 45.5 85.1 83.3 82.6 2.6×106 -

Sleep-EDF-78 77.8 71.8 0.70 90.9 45.0 79.2 72.7 71.1

SleepEEGNet Sleep-EDF-20 81.5 76.6 0.75 89.4 44.4 84.7 84.6 79.6 2.1×107 -

Sleep-EDF-78 74.2 69.9 0.66 89.8 42.1 75.2 70.4 70.6

TinySleepNet Sleep-EDF-20 85.4 80.5 0.80 90.1 51.4 88.5 88.3 84.3 1.3×106 -

Sleep-EDF-78 83.1 78.1 0.77 92.8 51.0 85.3 81.1 80.3

AttnSleep Sleep-EDF-20 84.4 78.1 0.79 89.7 42.6 88.8 90.2 79.0 5.2×105 60.9 M

Sleep-EDF-78 81.3 75.1 0.74 92.0 42.0 85.0 82.1 74.2

LightSleepNet Sleep-EDF-20 83.8 75.3 0.78 90.0 31.0 88.0 89.0 78.0 4.3×104 45.8 M

Ours Sleep-EDF-20 86.6 79.2 0.81 92.4 41.3 90.2 88.4 84.0 1.8×105 55.3 M

Sleep-EDF-78 81.5 74.3 0.75 92.2 40.2 86.9 78.4 73.8

REM: rapid eye movement; Param: number of parameters; ACC: accuracy; MF1: macro-averaged F1 score; FLOPs: floating-point operations.

Figure 7. Radar map for comparison.

10 DIGITAL HEALTH



verify the necessity and functionality of each module in the
model.

In the future, we intend to explore ways to achieve
higher accuracy while minimizing the number of model
parameters and FLOPs to achieve a highly accurate
sleep staging algorithm suitable for portable devices.
Furthermore, we shall endeavor to find and employ larger
datasets which is correspond to criterion adopted in sleep
centers for the purpose of training and validating our
models, thereby enabling our model to be applied in
medical scenarios.
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