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Treatment with ionizing radiation (IR) remains the cornerstone of therapy for multiple
cancer types, including disseminated and aggressive diseases in the palliative setting.
Radiotherapy efficacy could be improved in combination with drugs that regulate the
ubiquitin-proteasome system (UPS), many of which are currently being tested in clinical
trials. The UPS operates through the covalent attachment of ATP-activated ubiquitin
molecules onto substrates following the transfer of ubiquitin from an E1, to an E2, and
then to the substrate via an E3 enzyme. The specificity of ubiquitin ligation is dictated
by E3 ligases, which select substrates to be ubiquitylated. Among the E3s, cullin ring
ubiquitin ligases (CRLs) represent prototypical multi-subunit E3s, which use the cullin
subunit as a central assembling scaffold. CRLs have crucial roles in controlling the cell
cycle, hypoxia signaling, reactive oxygen species clearance and DNA repair; pivotal
factors regulating the cancer and normal tissue response to IR. Here, we summarize
the findings on the involvement of CRLs in the response of cancer cells to IR, and we
discuss the therapeutic approaches to target the CRLs which could be exploited in
the clinic.

Keywords: cullins, ionizing radiation (IR), double-strand breaks (DSBs), DNA-damage, cullin ring ligases (CRLs),
E3-ligases

INTRODUCTION: THE CULLIN RING UBIQUITIN LIGASES

Ubiquitylation is a versatile post-translational modification to control protein levels in cells and
modulate cellular states to allow adaptation under stress. Indeed, this secondary modification
is crucial for the cellular response to DNA damaging agents including (Ionizing Radiation) IR
(Schwertman et al., 2016). The classical process of ubiquitylation is based on the activation
of a ubiquitin molecule by ATP, followed by its covalent attachment to an E1 enzyme,
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then its transfer from the E1 enzyme to an E2 enzyme, and
finally its transfer from the E2 enzyme onto selected substrates
(Hershko et al., 1983; Finley et al., 2004). Selection of substrates
is operated by the E3 enzymes, which bridge substrates to the
E2 enzyme for ubiquitin transfer. The human genome codes
for 2 E1s, ∼35 E2s and more than 700 E3 ubiquitin ligases.
The organization of the system is hierarchical which allows
for substrate specificity and, at the same time, diversity in
substrate modification.

Cullin ring ubiquitin ligases are multi-subunit E3 ubiquitin
ligases which use a specific cullin as a central scaffold to bridge
an E2 enzyme to the substrate. All the cullin complexes use
a cullin C-terminal portion to recruit a RING-Box protein
(Rbx1 or Rbx2), required for the interaction with an E2. The
N-terminal portion of the cullin binds to a different adaptor
protein containing a domain that interacts with a range of
variable substrate recruitment subunits, specific to that culllin
class. In general, an adaptor protein, different for each cullin,
links the cullin N-terminus to the aforementioned variable
substrate recruitment subunit (Sarikas et al., 2011). The specific
complexes formed by Cul1, Cul2, Cul3, Cul4, Cul5, Cul7,
and Cul9 are highlighted in Figure 1 and are individually
discussed below.

The prototypical multi-subunit E3s are Cullin1-based E3s,
which assemble an SCF complex composed of Skp1, Cul1, and

Abbreviations: APOBEC3G, apolipoprotein B mRNA editing enzyme catalytic
subunit 3G; ARE, antioxidant response element; ATF, activating transcription
factor; ATM, ataxia telangiectasia-mutated; ATR, ataxia telangiectasia and
Rad3-related; BACK, BTB and C-terminal kelch; BRCA, breast cancer
susceptibility gene/protein; BTB, bric-a-brac/tramtrack/broad complex; β-TrCP,
beta transduction repeat-containing protein; Cdc25, cell division cycle 25;
Cdt, chromatin licensing and DNA replication factor; CDK, cyclin-dependent
kinase; Chk, checkpoint kinase; CkIα, casein kinase Iα; CRBN, cereblon; CRL,
cullin-RING ligase; Cul, cullin; DCAF, Ddb1 and Cul4-associated factor; Ddb1,
UV-damaged DNA-binding protein 1; DDR, DNA damage response; dNTPs,
deoxyribonucleotides; DSB, double-strand break; Emi1, early mitotic inhibitor
1; EST, expressed sequence tag; Exo1, exonuclease 1; FDA, US Food and Drug
Administration; Gsk3β, glycogen synthase kinase 3 Beta; Hif, hypoxia-inducible
factor; HIV, human immunodeficiency virus; HPV, human papilloma virus; HR,
homologous recombination; IR, ionizing radiation; Jak2, Janus kinase 2; Jfk, just
one F-box and kelch domain-containing protein; Kdm4A, lysine demethylase 4A;
Keap1, kelch-like ECH-associated protein; Klhl, kelch-like protein; Ku, Ku70/Ku80
heterodimer; MAPK, mitogen-activated protein kinase; MATH, meprin and TRAF
homology; MDM2, mouse double minute 2, human homolog of; P53-binding
protein matrix extracellular; Mepe/Of, phosophoglycoprotein/osteoblast factor;
MRN, Mre11-Rad50-Nbs1 complex; Nek11, NIMA (never in mitosis gene A)-
related kinase 11; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B
cells; NHEJ, non-homologous end joining; NLS, nuclear localization signal; Nrf2,
Nf-E2-related factor 2; ODD, oxygen-dependent degradation; PALB2, partner and
localizer of BRCA2; PARP, poly-ADP-ribose polymerase; PCNA, proliferating cell
nuclear antigen; Pd-1, programed cell death protein 1; PDGF, platelet-derived
growth factor; Pd-L1, programed cell death 1 ligand 1; Plk1, polo like kinase
1; PML, promyelocytic leukemia; PROTAC, proteolysis-targeting chimera; Rbx,
RING-box protein; Rnf, RING-finger protein; RNR, ribonucleotide reductase;
ROS, reactive oxygen species; RRM, ribonucleotide reductase family member;
SCCHN, squamous cell carcinoma of the head and neck; SCF, Skp1/Cul1/F-
box protein; Skp1, S-phase kinase-associated protein 1; SOCS, suppressor of
cytokine signaling; Spop, speckle-type poxvirus and zinc-finger protein; SRM,
substrate recruitment motif; SSB, single-strand break; STAT, signal transducer
and activator of transcription; Tip60, 60 kDa tat-interactive protein; TOP3, TAT-
ODD-procaspase-3; UPS, ubiquitin-proteasome system; Usp11, ubiquitin specific
peptidase 11; VEGF, vascular endothelial growth factor; VHL, von-Hippel-Lindau;
Vif, viral infectivity factor; Wsb1, WD repeat and SOCS box-containing protein 1;
Xrcc4, X-ray repair cross complementing 4.

an F-box protein. In this particular E3 machinery, the Cul1
N-terminus binds to Skp1 (adaptor subunit), which in turn binds
to a variable F-box protein (Figure 1A). F-box proteins derive
their name from cyclin F in which the F-box domain, required for
interaction with Skp1, was first discovered (Bai et al., 1996). After
the discovery of cyclin F, about 69 F-box proteins were identified
in the human genome based on their interaction with Skp1 and
sequence homology within the F-box domain (Cenciarelli et al.,
1999; Winston et al., 1999). F-box proteins were further sub-
classified according to the protein domains they use to recruit
substrates. Three F-box subfamilies exist; a subfamily that has
a WD-40 domain (Fbxws), another that has a Leucine zipper
(Fbxls) and finally one that has other variable domains (Fbxos)
(Jin et al., 2004) (Figure 1A).

Work in the nematode C. elegans revealed the presence of
cullin genes highly related and similar to Cul1. A search for
EST in the human database identified Cul1, Cul2, Cul3, Cul4A,
Cul4B, and Cul5 genes (Kipreos et al., 1996). Although the
general organization of Cul2, Cul3, Cul4A, Cul4B, and Cul5
resemble the SCF assembly, structural studies have revealed
substantial differences in the assembly and use of adaptors. These
different features likely reflect different biochemical properties
and mechanisms of action/ubiquitylation, however, studies on
the kinetics of action comparing Cul1 to Cul2, Cul3, Cul4A,
Cul4B, and Cul5 are lacking.

Cul2 and Cul5 are the most structurally related among the
cullins and use elongins B and C as adaptors to engage a variable
substrate recruitment protein. Among the most well-studied
substrate recruitment proteins are the VHL tumor suppressor
protein and VHL-like proteins, which use Cul2 as scaffold.
Cul5 also recruits elongins B and C as adaptors but assembles
with SOCS proteins to form a functional E3 (Figure 1B). The
difference in specificity between Cul2 and Cul5 is related to
the presence of a Cul2 and a Cul5 box, and these two distinct
sequences mediate the interaction with the substrate recruitment
subunits (Kamura et al., 2004).

In Cul3 complexes several BTB domain-containing
proteins assemble directly with Cul3 and act as both an
adaptor and a substrate recognition subunit. The BTB
domain-containing proteins recognize substrates with
their MATH (Meprin and TRAF homology) motif and
Kelch beta-propeller repeats (Pintard et al., 2004; Genschik
et al., 2013). A characteristic of these complexes is their
intrinsic capacity for assembling homo-dimers through
the BTB (Figure 1C). A quality control system regulating
homo-heterodimerization of Kelch like proteins (Klhls)
has recently been unveiled and depends on the activity of
another E3 ubiquitin ligase of the F-box clade (Fbxl17)
(Mena et al., 2018).

Cul4 machineries, which comprise Cul4A and Cul4B, use
Ddb1 as an adapter. Ddb1 contains three WD40 propeller
domains (BPA, BPB, and BPC) and assembles with a large
family of DCAF (Ddb1 and Cul4 Associated Factor) proteins
using a WDXR motif within the substrate recruitment factors
(Figure 1D) (Jin et al., 2006).

Cul7 is similar to Cul1 in using Skp1 as an adaptor and
recruiting Fbxw8 as a substrate receptor (Dias et al., 2002), but
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FIGURE 1 | Diagram representing E3 ubiquitin ligase complexes of the cullin family of E3 ligases. (A) Cul1-based E3 ligase. (B) Cul2/5-based E3 ligase.
(C) Cul3-based E3 ligase. (D) Cul4-based E3 ligase. (E) Cul7-based E3 ligase. (F) Cul9-based E3 ligase.

it can only assemble with Fbxw8 and not other F-box proteins
(Figure 1E). The last member of the family and the most recently
identified is Cul9 for which features of a cullin assembly are less
clear (Figure 1F).

An attribute of the majority of the substrate recruitment
subunits of the CRLs is that they recognize modified or
unmodified short and unique amino acid sequences in substrates
to initiate substrate engagement and ubiquitylation. These
are collectively termed “degrons,” as they mark proteins for
proteasomal degradation by the respective cullin machinery.
Degrons are well-established but only for a small fraction
of CRLs and novel insights have been recently made in
deciphering the degron code at a system-wide level (Koren
et al., 2018). Although the general organization of CRLs
is conserved across different cullins there are substantial
differences in complex assembly, which could dictate
diverse modes of substrate engagement and modification.
As more details of substrate engagement and ubiquitin
chain specificity emerge, it will be important to compare the
kinetics of action as well as the specificities of the different
CRL complexes.

CRL complexes have been linked to many aspects of
tumorigenesis as they participate in multiple biological processes.
This review focuses specifically on the role of CRLs in the cellular
response to IR covering also aspects of IR responses not related
strictly to DSB repair.

IONIZING RADIATION-INDUCED
DAMAGE

IR can induce a wide variety of biological effects within the cells
and tissues and there is strong evidence to suggest that DNA
damage is a major consequence. Indeed, a typical 2 Gy X-ray
fraction used in clinical radiotherapy will result in approximately
80 DSBs, 2,000 SSBs, and over 4,000 base damages (Shrieve
and Loeffler, 2011). Interestingly, the number of DNA lesions
produced is low in comparison to the background level of
endogenous DNA damage which corresponds to the order of
50,000 DNA lesions per day as a result of Reactive Oxygen Species
(ROS) and other reactive metabolites (De Bont and van Larebeke,
2004). A critical feature of all types of IR is the deposition of
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energy in the form of highly structured tracks of ionization and
excitation events and is therefore highly heterogeneous in space
and time (Hill, 2018). This results in clusters of events not only
on the nanometer scale, but in some cases on the micrometer
scale, which could be responsible for the effectiveness of IR in
treating cancers.

Damage to DNA is produced either by direct ionization
of constituent atoms or indirectly as a result of free radicals
produced close by in the surrounding water. This indirect damage
is dominated by the hydroxyl (OH) radical which has a lifetime of
∼ 4 ns and a diffusion distance of ∼6 nm within the cell (Roots
and Okada, 1975). As a result of clustering, these events not
only produce simple isolated lesions such as base damage, abasic
sites, SSBs, DNA-protein cross-links, but importantly are also
efficient at producing combinations of these, including complex
SSBs, DSBs, or complex DSBs. The increase in complexity of these
DSBs results in an increase in the lifetime of these lesions and a
decrease in overall repairability (Eccles et al., 2011). The relative
proximity of these breaks can subsequently result in a wide range
of chromosome aberrations including deletions, and for many
cell types is an important driver of cell death as a result of a
mitotic catastrophe.

While DNA damage produced is likely to dominate the
response following clinical exposures, it is also known that IR
can perturb existing intra- and inter-cellular signaling which
may result in a change in the background level of ROS. These
changes may be temporary but can often result in a persistent
change in homeostasis of this signaling, and associated changes
in oxidative stress can lead to a modulation of the background
rate of endogenous DNA damage induction. Almost all solid
tumors contain oxygen-deficient regions and as a result oxygen,
or more specifically the absence of it, can play a significant role
in the radiation response of tumors. The presence of oxygen
at the time of irradiation results in an enhancement in the
yield and complexity of the initial damage produced over that
produced under hypoxia, as a result of the oxygen chemically
“fixing” the damage thereby making it permanent (Rockwell
et al., 2009). In addition to modulating the initial DNA damage
produced by radiation, hypoxia results in the dysregulation
of oxygen homeostasis and activates pathways which alter the
phenotype of the cell, adapting the cell to the stress associated
with low oxygen levels.

ROLES OF Cul1 IN THE CELLULAR
RESPONSE TO IR

Cul1 and IR-Induced Cell Cycle Arrest
Cells entering the cell cycle duplicate their DNA in S phase and
complete cell division in M phase. The presence of checkpoints
allows fidelity of cell cycle transitions. For instance, when cells
are exposed to IR, the DNA damage generated promotes the
activation of a checkpoint response. Cell cycle progression
restarts only when the DNA damage is repaired.

The progression from one cell cycle phase to the next is
promoted by the periodic oscillations of cyclins that partner with
CDKs to phosphorylate target substrates (Murray, 2004). The

activity of CDKs is halted by phosphorylation of the CDK subunit
on tyrosine 15 mediated by the tyrosine kinase Wee1 and reverted
by the Cdc25A phosphatase. The presence of DNA damage
induced by IR activates checkpoint kinases (Chk1 and Chk2)
whose role is to prevent the activity of CDKs and arrest cell cycle
progression to allow DNA repair. Chk1 performs this function
by controlling the ubiquitylation and subsequent degradation
of the Cdc25A phosphatase (Busino et al., 2003; Jin et al.,
2003). Cdc25A activates CDKs by removing the Wee1-mediated
inhibitory phosphorylation on Tyr15 of CDKs. Therefore, upon
activation of Chk1, the degradation of Cdc25A prevents CDK
activity which in turn restrains DNA replication and progression
of the cell cycle (Bartek and Lukas, 2003).

Beta Transduction Repeat-Containing Proteins
β-TrCP1/Fbxw1 and β-TrCP2/Fbxw11, jointly referred to
as β-TrCP, are the two Cul1 E3 ubiquitin ligases promoting the
degradation of Cdc25A (Busino et al., 2003; Jin et al., 2003).
A feature of the SCFβ-TrCP ubiquitin ligase is that it recognizes
substrates containing the degron sequence DSGXXS in which
both serines need to be phosphorylated (Guardavaccaro et al.,
2003). Chk1 promotes the phosphorylation of Cdc25A and its
subsequent degradation but the specific kinases responsible
for Cdc25A degron phosphorylation are not completely clear.
A number of kinases have been proposed to phosphorylate
Cdc25A in addition to Chk1. Cdc25A, unlike the majority
of other β-TrCP substrates that have the consensus degron
DSGXXS, has the alternate degron 76SSESTDSG83 with serines
Ser76, Ser79, and Ser82 phosphorylated (Busino et al., 2003; Jin
et al., 2003). CkIα was shown to phosphorylate Ser76 of Cdc25A
(Honaker and Piwnica-Worms, 2010), while Nek11 was shown
to phosphorylate Ser82 (Melixetian et al., 2009). Gsk3β can carry
out the priming phosphorylation of Ser76 on the Cdc25A degron
(Kang et al., 2008).

The choice of kinase could be influenced by the cell cycle
phase, for example Nek11-phosphorylation of Cdc25A is most
active in S and G2 phases and is required for the establishment
of a G2/M checkpoint promoted by IR, whereas Gsk3β and
Chk1 are active in G1 and S phases. The control of Cdc25A
by β-TrCP following DNA damage is crucial for normal cell
cycle progression and the checkpoint response. Therefore, it
represents a node with multiple control points. The lack of
β-TrCP and Cdc25A degradation forces cells to undergo DNA
replication in the presence of DNA damage, giving rise to a
subsequent mitotic catastrophe and cell death (Busino et al., 2003;
Jin et al., 2003).

In addition to Cdc25A, β-TrCP regulates other crucial
components of the checkpoint response: Claspin and Wee1.
Wee1 counteracts the activity of Cdc25A on CDK1. It follows
that since β-TrCP is simultaneously acting on Wee1 and Cdc25A,
the net effect of blocking β-TrCP should have no overall impact
on cell cycle progression. However, the consequences of β-TrCP
knockdown are significant. The discrepancy could be explained
by the different-timed action of β-TrCP on Cdc25A and Wee1
dictated by the kinases responsible for phosphorylating the
respective degrons. The kinases phosphorylating Cdc25A are
acting when the checkpoint is operating, whereas the kinases
phosphorylating Wee1 are Polo Like Kinase 1 (Plk1) and CDK1
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itself, whose activity marks mitotic entry and, thus, checkpoint
resolution (Watanabe et al., 2004).

An important sensor of DNA damage functioning to sustain
the checkpoint response is Claspin. Claspin is required for Chk1
activity prompted by the ATR kinase, which detects the presence
of DNA damage. Claspin levels are also regulated by β-TrCP, and
Plk1 kinase triggers Claspin degradation (Mailand et al., 2006;
Peschiaroli et al., 2006). This β-TrCP-mediated degradation of
Claspin prevents any further activation of Chk1 during recovery
from genotoxic stress. The process facilitates the restart of the cell
cycle once the DNA damage has been resolved. The leftover active
Chk1 is targeted for degradation by the F-box protein Fbxo6.
Fbxo6 regulates Chk1 degradation to terminate the checkpoint
response in S phase (Zhang et al., 2005; Zhang Y.-W. et al., 2009).
From the regulation of Cdc25A, Wee1, Claspin and Chk1 by
β-TrCP and Fbxo6, a temporally-ordered picture of checkpoint
activation and resolution emerges where the action of kinases
is enforced and coordinated by E3 ubiquitin ligases to promote
irreversible cell cycle phase transitions.

Interestingly, Liu and colleagues reported that Matrix
Extracellular Phosphoglycoprotein/Osteoblast Factor 45
(Mepe/Of45) is a co-factor of Chk1. Upon knocking down
Mepe/Of45 in transformed rat embryo fibroblasts, Chk1 levels
decrease which sensitizes cells to IR and other DNA damaging
agents. It is suggested that the way Mepe/Of45 achieves that is
by competing with the E3 ubiquitin ligases binding to Chk1,
therefore decreasing the degradation of Chk1 by the UPS (Liu
et al., 2009). However, more detailed mechanistic insights are
necessary to derive a clear picture of the role of Mepe/Of45.

Another Cul1 adaptor with important roles in the IR-induced
checkpoint response is cyclin F (Fbxo1). It has been shown
that cyclin F prevents mitotic entry after IR by enforcing a G2
checkpoint. The mechanism relies on the capacity of cyclin F to
competitively inhibit B-Myb. B-Myb activates the transcription
of a number of genes required for mitotic entry, therefore the
inhibition of transcriptional activity of B-Myb by cyclin F enables
cyclin F to control mitotic entry after IR (Klein et al., 2015). Our
laboratory has shown that the levels of cyclin F are reduced by
β-TrCP at mitotic entry to facilitate the transition from G2 to M
phase of the cell cycle (Mavrommati et al., 2018). However, it is
yet unclear whether the regulation of cyclin F by β-TrCP has a
role in the checkpoint response induced by IR in G2 as well.

It is also important to note that cyclin F ubiquitylates Exo1
which is a 5′ to 3′ exonuclease with a significant role in DNA
repair after IR (Elia et al., 2015). One of the major forms of
DNA damage induced by IR is the formation of DSBs. DSBs
could be repaired by two main pathways: (1) simply ligating the
broken ends together by non-homologous end joining (NHEJ);
(2) by using a second copy of DNA as a template to initiate
homologous recombination (HR). HR includes a number of
steps which enable the engagement of a second copy of DNA
to use as a template. An important part of the process that
commits the cells to repair through HR is the resection of
the broken ends of DNA to facilitate strand invasion of the
homologous template. Exo1 controls long-range resection at
DSBs upon IR, a process that needs to be tightly regulated
to avoid hyper or hypo activity of Exo1. Thus, Exo1 levels
are regulated by both phosphorylation and ubiquitylation after

IR (Tomimatsu et al., 2017). Cyclin F was shown to mediate
ubiquitylation of Exo1 after cells were challenged with 4NQO,
a radio-mimetic drug (Elia et al., 2015), however it is unclear
whether cyclin F is participating in regulating Exo1 levels and
activity (and therefore resection) after IR.

Exo1 is not the only substrate of cyclin F involved in
maintaining genome stability; there is also RRM2. RRM2
assembles with the RRM1 subunit to form a functional RNR,
an essential enzyme in the production of deoxyribonucleotides
(dNTPs) which are the building blocks of DNA (Nordlund
and Reichard, 2006). The activity of RNR must be regulated
in accordance with the cell cycle to maintain balanced levels
of dNTPs for optimal DNA replication and DNA repair
(D’Angiolella et al., 2012).

Abnormal dNTP levels have a negative effect on genomic
stability and are known to promote transformation as well as an
increase in the frequency of spontaneous mutations (Kunz et al.,
1994). Accordingly, the overexpression of RRM2 promotes the
development of lung cancer in mice (Xu et al., 2008), and elevated
levels of RRM2 are often linked to poor prognosis in different
cancer types (Morikawa et al., 2010a,b; Jones et al., 2011). RRM2
is targeted for degradation by cyclin F after phosphorylation
of RRM2 on Thr33 by cyclin A/CDK1. This phosphorylation
of RRM2 by CDK1 represents a failsafe mechanism to destroy
RRM2 only in G2/M when the bulk of DNA replication has been
completed (D’Angiolella et al., 2012). RRM2 alterations have been
shown to impact DSB repair by HR in yeast (Moss et al., 2010) and
mammalian cells (Gustafsson et al., 2018), thus cyclin F could also
impact IR response by regulating RRM2.

Two other F-box proteins involved in checkpoint activation in
response to IR are Fbxo4 and Fbxo31. This is due to their ability to
regulate cyclin D1 levels following IR. Cyclin D1 promotes entry
into the cell cycle from G0, and the regulation of cyclin D levels
is important after the genotoxic stress induced by IR to promote
cell survival (Lukas et al., 1994; Pagano et al., 1994; Agami and
Bernards, 2000). It has been shown that the phosphorylation
of Thr286 of cyclin D1 promotes the degradation of cyclin D1
by Fbxo4 in a cell cycle-dependent manner both in the absence
of genotoxic stress, and in response to DNA damage (Pontano
et al., 2008). Cell cycle-linked degradation of cyclin D1 by Fbxo4
requires RAS/RAF as its upstream pathway, whereas the DNA
damage-induced degradation of cyclin D1 requires the ATM
pathway (Pontano et al., 2008). Similarly to Fbxo4, Fbxo31 targets
cyclin D1 for degradation after phosphorylation of Thr286, but
in this case the presence of DNA damage is central to promote
its degradation. The levels of Fbxo31 increase after DNA damage,
unlike the levels of Fbxo4. Evidence indeed suggests that Fbxo31-
mediated degradation of cyclin D1 following DNA damage may
explain the prompt implementation of G1 arrest for checkpoint
control (Santra et al., 2009).

Cul1 and p53-Mediated Checkpoint
Response
Arguably, the most important regulator of cell fate upon
checkpoint responses is the tumor suppressor and transcription
factor p53. Upon IR, p53 is activated to promote the transcription
of thousands of genes required for multiple cellular functions
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that range from activation of cell death and immune responses
to checkpoint control and DNA repair. The major E3 ubiquitin
ligase for p53 is MDM2, which targets p53 for ubiquitylation
to maintain it in an inactive state (Momand et al., 1992; Oliner
et al., 1993). However, given its central role, p53 is regulated
by a myriad of other mechanisms. Such complex regulation
is necessary, because p53 represents a central hub for cell
survival, thus, multiple diverse pathways converge to regulate
its function. For instance, numerous studies uncovered links
between p53 and NF-κB, a family of transcription regulators
with roles in regulating proliferation, apoptosis, inflammation,
and the DDR (Wang et al., 2017). Interestingly, one study
showed that IκB Kinase 2 (IKK2/IKKβ) phosphorylates p53
on Ser362 and Ser366, and stimulates the SCFβ-TrCP-mediated
degradation of p53 (Xia et al., 2009). This is required to
enforce inactivation of p53 in addition to the role of MDM2,
however, biological consequences of this regulation are not yet
fully elucidated.

The literature is somewhat confusing with regards to the
regulation of p53 as another study suggests that MDM2 can be
targeted for degradation by β-TrCP. MDM2 is phosphorylated
by CkIα on multiple putative β-TrCP degrons (Inuzuka et al.,
2010). This mechanism of regulation of MDM2 could be relevant
after repeated DNA damage insults to control the transcriptional
activity of p53. It is important to note that other researchers
pointed out that what seems to be the degradation of MDM2
could just be epitope-masking by phosphorylation which blocks
the epitope for the most commonly used MDM2 western blotting
antibodies (Cheng and Chen, 2011).

Besides β-TrCP and MDM2, several ubiquitin ligases also
target p53 for degradation like the Kelch domain-containing
F-box protein, Jfk (Fbxo42). Jfk was found to inhibit p53-
dependent transcription, and the depletion of Jfk was found
to stabilize p53 and hence sensitizes cells to IR-induced DNA
damage (Sun et al., 2009).

Among the transcriptional targets of p53, p21 has the most
significant function in promoting cell cycle arrest. p21 acts as a
direct inhibitor of CDKs and is required to enforce checkpoint
control. Fbxl1, more widely-recognized as Skp2, targets p21 and
p27 (the two CDK inhibitors) for ubiquitin-mediated proteolysis
(Carrano et al., 1999). Skp2 has been linked to the regulation of
a p53-dependent checkpoint response in melanoma cells through
the control of p27 (Hu and Aplin, 2008). It is less clear whether
Skp2 has a role in controlling checkpoint resolution through p21
degradation in G2, although Cul4-mediated degradation of p21
could also play a role (the roles of Cul4 are discussed in more
detail later in this review).

Some F-box proteins are direct transcriptional targets of
p53 like Fbxo22 (Vrba et al., 2008), however, the function of
Fbxo22 as a p53 transcriptional target is yet unclear. It has been
shown that Fbxo22 targets KDM4A for degradation. KDM4A
is a histone demethylase that regulates the demethylation of
histone H3 at positions K9 and K36 (Tan et al., 2011). However,
a different study pointed out that Fbxo22 ubiquitylates p53 by
forming a complex with KDM4A. In this case Fbxo22 was shown
to recognize a methylated form of p53 and to promote the
degradation of methylated p53. The degradation of p53 operated

by Fbxo22 is required for the induction of senescence after DNA
damage induced by IR (Johmura et al., 2016). Overall, multiple
F-box proteins have been shown to regulate p53, and diversity
in p53 regulation could simply reflect redundancy. However, it is
also plausible that the regulation of p53 by each ligase depends
on the input DNA damage signal and could lead to different
transcriptional outputs and consequences for cell survival.

Cul1 and DSB Repair
Breast Cancer Type 1 Susceptibility Protein (BRCA1) is a tumor
suppressor that has a significant role in HR following DNA
DSBs. BRCA1, with its obligate binding partner BARD1, has
been shown to act as a marker for sister chromatid availability
(Nakamura et al., 2019) and to serve as a scaffold at DSB sites
to recruit several proteins involved in the DNA damage repair
pathway (Huen et al., 2009). BRCA1 forms a complex with
BRCA2 which is facilitated by PALB2 (Sy et al., 2009; Zhang
F. et al., 2009). This complex recruits the recombinase Rad51
to DSB sites and promotes the loading of Rad51 onto single-
strand DNA, ultimately leading to the repair of DSBs by HR
(Bhattacharyya et al., 2000; Zhang et al., 2012). The loss of
BRCA2 and BRCA1 function is frequent in breast and ovarian
cancers. Cancers bearing inactivating mutations in these genes
are defective in the repair of DSBs by HR. It follows that forcing
the use of HR by promoting the formation of unrepairable SSBs
and DSBs triggers cell death. This principle is at the basis of the
synthetic lethality observed between the loss of BRCA and the
use of PARPi (Helleday, 2011). The striking sensitivity of tumors
lacking BRCA1 and BRCA2 is exploited in the treatment of breast
and ovarian cancers with PARPi.

The regulation of BRCA1 and BRCA2 is complex and far
from being fully elucidated. Lu and colleagues proposed that
the F-box protein Fbxo44 targets BRCA1 for its UPS-mediated
degradation through the SCFFbxo44 E3 ligase complex (Lu et al.,
2012). However, Fbxo44 did not localize= at damaged DNA sites
and PARPi sensitivity was not tested after Fbxo44 depletion.

The F-box protein Emi1, also known as Fbxo5, has been
recently discovered to be involved in controlling the BRCA1-
BRCA2-Rad51 axis. In cell lines with inactivating BRCA1
mutations, SCFEmi1 was found to target Rad51 for its ubiquitin-
mediated degradation. However, under genotoxic stress Chk1
was found to inhibit Rad51 degradation by Emi1 through
phosphorylation. The phosphorylation of Rad51 increases its
affinity to BRCA2 and hence results in a surplus of Rad51,
which restores HR in cells with faulty BRCA1 (Marzio et al.,
2018). Given its role in regulating Rad51 proteolysis in cells
lacking BRCA1, Emi1 was identified as a regulator of PARPi
sensitivity in BRCA1-deficient triple-negative breast cancer
(Marzio et al., 2018).

The Ku70/Ku80 heterodimer (Ku) is the initiating factor
of the NHEJ pathway of DSB repair. Ku recognizes the ends
of DSBs and recruits other components of the DNA damage
repair pathway to the site of the break. After serving its role,
Ku needs to be removed from the repaired DSB site but the
mechanism of its removal is not clearly understood. Studying
the egg extract of Xenopus laevis (African clawed frog), Postow
et al. (2008) demonstrated that Ku80 is degraded in response
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to DSBs in a ubiquitin-dependent manner, and postulated
that an SCF complex is the E3 ligase responsible for this
ubiquitylation. It was shown that the K48-linked ubiquitylation
step, but not the proteasomal degradation step that follows
it, is required for removing Ku80 from repaired DSB sites
(Postow et al., 2008). Fbxl12 was found to be the F-box protein
responsible for the recruitment of the Ku80-ubiquitylating SCF
complex to sites of DSBs, resulting in the degradation of Ku80
(Postow and Funabiki, 2013).

In mammalian cells other E3 ubiquitin ligases, which are not
members of the CRL clade of E3s, have been shown to contribute
to Ku80 removal from DSB sites. RING-Finger Protein 8 (RNF8)
(Feng and Chen, 2012) and RNF126 (Ishida et al., 2017) were
shown to be essential for the ubiquitylation and degradation
of Ku80. RNF138 also promotes the ubiquitylation but not the
degradation of Ku80 (Ismail et al., 2015).

Another F-box protein involved in DNA repair through
Ku is Fbxw7. Fbxw7 has been previously found responsible
for the ubiquitylation and subsequent degradation of a set
of oncoproteins such as cyclin E, c-Jun and c-Myc via K48
linkage, which earned Fbxw7 recognition as a tumor suppressor
(Nakayama and Nakayama, 2006; Welcker and Clurman, 2008).
Adding to the functions of Fbxw7, it was recently discovered
to promote DNA repair through NHEJ. Following exposure to
IR, the ATM kinase phosphorylates Fbxw7 at Ser26 allowing the
recruitment of the F-box protein to the DSB sites. Once at the
DSB sites, Fbxw7 proceeds to K63-ubiquitylate the protein Xrcc4
at Lys296, which enhances the association of Xrcc4 with Ku and
in turn promotes NHEJ. Given the ability of Fbxw7 to regulate
NHEJ, inactivation of Fbxw7 promotes increased sensitivity of
cancer cells to IR (Zhang et al., 2016).

ROLES OF Cul2 AND Cul5 IN THE
CELLULAR RESPONSE TO IR

Cul2: Crucial Regulator of Hypoxia
Response
Hypoxia-inducible factor 1 is a transcriptional factor expressed
in hypoxic tumor cells and transiently induced in tumors
as a result of oxidative stress following radiation (Semenza,
1999). Hif-1 transactivates several hypoxia-responsive genes,
which results in the tumor acquiring malignant properties
such as apoptotic resistance, enhanced tumor growth, invasion
and metastasis (Semenza, 2003). Additionally, Hif-1 activates
VEGFs and PDGFs which promote resistance to radiotherapy in
endothelial cells, and also promote cell proliferation and blood
vessel growth around tumors (Gorski et al., 1999; Moeller et al.,
2004). Hif-1 is a heterodimer that consists of α and β subunits,
and oxygen is responsible for the regulation of the α subunit
(Hif-1α) at a post-translational level (Huang et al., 1998). In
normoxia, proline residues in the ODD domain of Hif-1α get
hydroxylated by oxygen-dependent prolyl hydroxylases (Bruick
and McKnight, 2001; Epstein et al., 2001). The hydroxylation of
Hif-1 serves as a signal to initiate the binding of Hif-1α to VHL.
VHL is a Cul2 E3 ligase that assembles with Cul2, elongins B and

C, and Rbx1, resulting in the proteasomal degradation of Hif-
1α subunits. Under hypoxic conditions, the prolyl hydroxylases
are inhibited, hindering the recognition of Hif-1α by the VHL
protein and resulting in Hif-1 accumulation and a transcriptional
response to hypoxia (Maxwell et al., 1999).

Given the contribution of Hif-1α and hypoxia to malignant
and radiotherapy-resistant phenotypes in cancer, researchers
have been trying to eliminate Hif-1α-active cells using strategies
that hijack E3 ubiquitin ligases. One strategy worth noting
is the development of the fusion protein TOP3 (TAT-ODD-
procaspase-3) (Figure 2A) (reproduced from Harada et al., 2002).
In this three-domain protein, the first domain is constituted
by the HIV-Tat protein-transduction domain, required for the
efficient delivery of TOP3 to cells and tissues in vitro and
in vivo. The second domain is ODD (the VHL-mediated
protein destruction motif of human Hif-1α), which promotes
the stabilization of the peptide in hypoxia and its degradation
in normoxia. The last domain is the proenzyme form of the
human caspase-3, which endows TOP3 with cytocidal activity.
The caspase 3 domain is activated following accumulated-TOP3
cleavage by endogenous caspases and triggers apoptosis. TOP3
is actively eliminated by VHL in normoxic cells but is stable
in hypoxic cells where it promotes cell death. Since this design
enables TOP3 to target hypoxic cells for elimination while sparing
normoxic cells, and IR effectively targets normoxic cells but is
less effective against hypoxic cells (Brown, 1999; Vaupel, 2004),
the group suggested that the combination of IR and TOP3
could be a valuable therapeutic strategy. They proceeded to test
their hypothesis, and found that this combinatorial approach
efficiently reduces the population of tumor cells with Hif-
1α induced by both hypoxia and IR, resulting in long-term
suppression of tumor growth and angiogenesis compared to
treatment by either IR or TOP3 alone (Harada et al., 2002).

While additionally investigating the role of Hif-1 in the IR
response, it was discovered that exposing cells to IR results in the
p38 MAPK-mediated stabilization of Hif-1 under both hypoxic
and normoxic conditions. It was found that upon IR, Hif-1α is
stabilized by the decreased half-life of its E3 ligase subunit VHL
and of its hydroxylating enzymes prolyl hydroxylases 2. Findings
from this study suggest that, in combination with IR, targeting
Hif-1α through its MAPK-mediated stabilization possibly has
the potential to increase the efficacy of IR treatment in glioma
(Kim et al., 2014). Hypoxic IR-resistant cells tend to spread,
often resulting in relapse after treatment, therefore inactivation
of Hif-1α could have a significant therapeutic response in glioma.

Roles of SOCS Boxes in Signaling and as
Viral Adaptors
In addition to VHL, Cul2 or Cul5 can assemble with SOCS-
box and ‘ankyrin repeat and SOCS box (ASB)’ proteins to
form E3 ubiquitin ligase complexes that target proteins for
proteasomal degradation. In complex with Cul2, elongin
BC subcomplex, and Rbx1, SOCS1 accelerates the UPS-
mediated degradation of Jak2 (Kamizono et al., 2001), a
STAT3-activating tyrosine kinase which when inhibited
using a small-molecule inhibitor sensitizes lung cancer cells
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FIGURE 2 | Examples of therapeutic approaches that exploit CRL complexes. (A) TOP3 technology; in normoxic tumor cells CRL2VHL targets TOP3 for degradation
while in hypoxic tumor cells TOP3 is stabilized, caspase-3 is activated, and apoptosis is induced (adapted from Harada et al., 2005). (B) Degradation of a target
protein through bringing it in close proximity to an E3 ligase using a PROTAC (represented as X∼Y where X is the target-binding ligand, Y is the E3-binding ligand,
and ∼ is the linker molecule).

to radiotherapy (Sun et al., 2011). Furthermore, SOCS1
has been shown to directly regulate the p53 response and
apoptosis in T cells after IR by modulating STAT signaling
(Calabrese et al., 2009). SOCS1 was also found to act as
a substrate-binding motif targeting the HPV oncoprotein
E7, inducing its ubiquitylation and subsequent degradation

(Kamio et al., 2004). HPV is implicated in the formation
of a subgroup of head and neck cancers that display high
sensitivity to radiotherapy both in vitro and in vivo (Kimple
et al., 2013; Dok et al., 2014; Sorensen et al., 2014). Therefore,
the inhibition of SOCS1 could further enhance E7 levels to
promote radiosensitivity.
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Some SOCS-box-containing viral proteins such as the HIV-
1 Vif have the capacity to hijack Cul5 E3 ubiquitin ligase
complexes through which they acquire the ability to degrade
host proteins (Yu et al., 2003). Acting as the substrate-
specificity subunit of a CRL5 complex, the HIV-1 Vif protein
targets the cellular intrinsic restriction factor APOBEC3G
for proteasomal degradation (Yu et al., 2004). It has been
reported that the inhibition of APOBEC3G activity using a
Vif-derived peptide (Vif25-39) hinders DNA DSB repair in
lymphoma cells, and hence sensitizes the cells to IR. The
results from this study suggest that the peptide-mediated
inhibition of APOBEC3G may be a potential radiosensitizing
strategy (Prabhu et al., 2016), however, the mechanisms
through which APOBEC3G affects DNA repair are not
fully elucidated.

Another elongin BC-box protein is Wsb1. Kim et al. (2015)
discovered that Wsb1 binds VHL and mediates its ubiquitylation
and its subsequent proteasomal degradation. Hence, Wsb1
stabilizes Hif-1α by promoting the degradation of VHL under
both hypoxic and normoxic conditions (Kim et al., 2015). Given
that Hif-1 promotes resistance to radiotherapy, it is plausible
that Wsb1 negatively influences the cellular response to IR
by regulating Hif-1α, however, the role of Wsb1 in radiation
sensitivity remains to be investigated.

Interestingly, it was found that in glioblastoma (GBM)
cell lines, SOCS1 and SOCS3 are regulated reciprocally and
SOCS3 is highly expressed in GBM, while SOCS1 is not.
Expressing SOCS1 promotes radiosensitivity, while SOCS3
expression activates prosurvival signals in cancer cells through
STAT-signaling, specifically STAT3 (Zhou et al., 2007; Sitko
et al., 2008). Baek et al. (2016) evaluated the effect of the
drug Resveratrol, a known suppressor of STAT3 signaling, on
apoptosis induction and radiosensitization in SCCHN. They
found that Resveratrol induces the expression of the SOCS1
protein and also its mRNA, which blocks the STAT3 signaling
pathway, induces apoptosis and even enhances the rate of
apoptosis when combined with IR (Baek et al., 2016). However,
the functions of SOCS1 and SOCS3 in regulating STAT3 signaling
in terms of their capacity to form Cul5 complexes are yet
to be unraveled.

ROLES OF Cul3 IN THE CELLULAR
RESPONSE TO IR: DNA REPAIR AND
ROS REGULATION

Bric-a-brac/tramtrack/broad complex -domain proteins serve as
substrate-recruitment motifs of E3 ubiquitin ligase complexes
and function as bridges to connect Cul3 and substrates. They have
crucial roles in regulating two aspects of the IR response: DNA
repair and ROS quenching.

An important aspect of DNA repair at DSBs is the choice
between HR and NHEJ. While NHEJ is considered a fast and
error prone repair mechanism, HR is considered error-free.
However, while NHEJ can occur throughout the cell cycle, HR
can only be carried out if a homologous template is present
and thus is restricted to S and G2 phases of the cell cycle.

Multiple mechanisms controlled by the ubiquitin system exist
to control repair choice at specific phases of the cell cycle.
For instance, Klhl15, a Cul3 adaptor, was found to accelerate
the UPS-mediated degradation of the DNA endonuclease CtIP
(Ferretti et al., 2016). CtIP together with the Mre11-Rad50-
Nbs1 (MRN) complex control the choice of DNA DSB repair
pathway by initiating DNA end-resection, which commits
cells to HR by inhibiting NHEJ as processed DSB ends can
no longer be targeted by the NHEJ pathway (Sartori et al.,
2007; Chapman et al., 2012; Ceccaldi et al., 2016). Since IR
induces DSBs, and CtIP is an essential factor of the DDR,
the regulation of CtIP turnover by CRL3-Klhl15 is required to
fine-tune the balance between HR and NHEJ in the cellular
response to IR. Depletion of Klhl15 sensitizes cells to IR
by disrupting the balance between these two repair pathways
(Ferretti et al., 2016).

Another BTB protein that is crucial for responses to IR
is Kelch-like ECH-Associated Protein 1 (Keap1). Keap1 has
been directly implicated in the control of DSB repair; Keap1
ubiquitylates the BRCA1-interacting site of PALB2, preventing
the interaction of PALB2 and BRCA1 and hence prohibits
HR. The ubiquitylation by Keap1 does not lead to PALB2
proteolysis but restricts the interaction with BRCA1. The
ubiquitylation of PALB2 is counteracted by USP11 during
G2. This mechanism prevents the execution of HR in G1
(Orthwein et al., 2015).

The most well-studied function of CRL3-Keap1 is the
regulation of the transcription factor Nf-E2-Related Factor 2
(Nrf2), a master mediator of the cellular defenses against
ROS (Cullinan et al., 2004; Kobayashi et al., 2004; Zhang
et al., 2004). Nrf2 binds to the ARE found within the
promoters of several genes encoding proteins that have crucial
roles in the anti-oxidation responses (Kensler et al., 2007).
Under oxidative stress, several cysteine residues in Keap1
are covalently modified by thiol intermediates activated by
the ROS radicals. The chemical modifications in Keap1
prevent the binding to Nrf2, which, as a consequence, is
stabilized and can transcribe the genes required for the anti-
oxidation response.

As oxidative stress is a key player in carcinogenesis,
the Keap1-Nrf2 pathway serves a chemopreventive role and
protects healthy cells from carcinogenesis. However, cancer
cells have the ability to hijack this pathway to acquire
survival advantages under high ROS, which are common events
in cancer tissues (Chen and Chen, 2016). It was indeed
found that Nrf2 overexpression in cancer cells decreases their
sensitivity to IR and chemotherapy, while Nrf2 knockdown
sensitizes the cells to such treatments (Shibata et al., 2008a;
Wang et al., 2008; Solis et al., 2010; Zhang et al., 2010).
Nrf2 is aberrantly overexpressed in many cancers, and one
reason for this is the presence of mutations in Keap1,
the ligase targeting Nrf2 (Shibata et al., 2008b; Yoo et al.,
2012). Loss-of-function mutations in Keap1 were found in
human lung carcinoma, NSCLC, gallbladder, ovarian, and
liver cancers (Singh et al., 2006; Ohta et al., 2008; Shibata
et al., 2008a; Konstantinopoulos et al., 2011; Yoo et al.,
2012), whereas gain-of-function mutations in Nrf2 were
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found in lung, head and neck, and esophageal carcinoma
(Shibata et al., 2008a, 2011).

Mutations in Nrf2 prevent binding to Keap1, leading
to an increase in protein stability and constitutively high
levels of Nrf2 (Tong et al., 2006). The mutational status
of Keap1 and of Nrf2 have been directly connected
to the success of localized radiotherapy in lung cancer
(Jeong et al., 2017), underscoring the crucial role of this
E3 ubiquitin ligase-substrate axis in the cellular response
to IR.

Another protein worth noting is the chromatin-modifying
enzyme Tip60; it is essential for DNA repair and apoptosis
after IR (Ikura et al., 2000), its inhibition abolishes IR-
induced G1 cell-cycle arrest (Berns et al., 2004), and it
was also found to activate ATM following genotoxic stress
(Sun et al., 2005). The stability and activity of Tip60 is
reportedly tightly regulated by the combined action of Activating
Transcription Factor-2 (ATF2) and CRL3, however, since ATF2
lacks a BTB domain, it is speculated that an unidentified
BTB domain-containing protein is part of this CRL3 complex
(Bhoumik et al., 2008).

ROLES OF Cul4A AND Cul4B IN THE
CELLULAR RESPONSE TO IR:
CONTROLLING DNA REPAIR AND DNA
REPLICATION

Cul4 and Ddb1, the substrate adapter for CRL4 complexes
(Bondar et al., 2006; Sugasawa, 2009), are conserved from yeast
to humans (Holmberg et al., 2005; Bondar et al., 2006; Kim and
Kipreos, 2007). In lower organisms, the Cul4 protein is encoded
by a single gene, but in mammals Cul4A and Cul4B proteins are
encoded by two highly homologous genes (Iovine et al., 2011).
Cul4A and Cul4B are 82% identical, and the difference between
the two proteins is highlighted at their N-terminals; Cul4B is
149 amino acids longer than Cul4A as it has an N-terminal
extension that contains an NLS. The NLS in Cul4B is believed
to mediate the nuclear localization of Cul4B whereas Cul4A is
mostly located in the cytoplasm (Zou et al., 2009; Hannah and
Zhou, 2015).

Cul4A is reportedly aberrantly expressed in a plethora
of cancers including breast cancer, squamous cell carcinoma,
pleural mesothelioma (Shinomiya et al., 1999; Yasui et al.,
2002; Melchor et al., 2009; Hung et al., 2011), and lung
cancer (Wang et al., 2014), and its overexpression contributes
to tumor progression, metastasis and poor prognosis (Wang
et al., 2014). Compared to Cul4A, findings linking Cul4B to
cancer are less common, however it was still found to be
overexpressed in colon cancer (Jiang et al., 2013), cervical cancer,
lung cancer, esophageal cancer, and breast cancer (Hu et al.,
2012), with its overexpression closely related to tumor stage,
invasion and metastasis.

Again as a leitmotiv of all E3 ubiquitin ligases, it was reported
that Cul4A associates with MDM2 to degrade p53 (Nag et al.,
2004), however, dissecting the role of Cul4 from all its adaptors

is quite difficult and the emerging picture is that the observed
activation of p53 is likely indirect.

One role of Cul4 complexes is to recognize UV-induced
pyrimidine photodimers in DNA. In this case, the Ddb1
is bound to Ddb2 and directly recognizes DNA lesions.
The ubiquitylation events mediated by Ddb1-Ddb2 following
recognition subsequently help recruit the required proteins for
the repair of the DNA lesion. A detailed explanation of the role
of Cul4 complexes in UV-irradiation is outside the scope of
this review and there are excellent reviews on the topic (Scrima
et al., 2011). However, it is important to mention other important
Cul4 adaptors that regulate genome stability, in particular Cdt2.
Cdt2 is a Cul4 substrate-recognition subunit that targets p21
(Abbas et al., 2008), p27 (Li et al., 2006), Cdt1 (Jin et al., 2006)
and the histone methyl-transferase Set8 (Abbas et al., 2010) for
degradation. The mode of substrate engagement that Cdt2 uses is
unique: Cdt2 couples substrate degradation to DNA replication
by interacting with a modified PCNA Interacting Peptide (PIP)
box in the substrate.

Proliferating cell nuclear antigen is an essential DNA clamp
which travels with the DNA replication fork and acts as a scaffold
for the recruitment of proteins required for DNA replication
completion and fidelity. Proteins that interact with PCNA have in
common a PIP-box motif consisting of the following amino-acid
residues: Qxxψxxϑϑ. Substrates of Cdt2 contain an equivalent
PIP box, but with modifications that increase the affinity for
PCNA and favor a concomitant interaction with Cdt2. Thus,
the recognition of Cdt2 substrates is mediated through the
PIP degron: QxxψTDϑϑxxxK/R (Havens and Walter, 2009;
Michishita et al., 2011). This strategy is important to control
degradation of substrates present on the chromatin and traveling
with DNA replication. Indeed, Cdt2 targets chromatin-bound
p21 for degradation (Abbas et al., 2008; Kim et al., 2008) whilst
the soluble p21 is targeted for degradation by Skp2 (Fbxl1)
(Carrano et al., 1999).

Cdt2 also targets Cdt1 for degradation during S phase. Cdt1
is an important component of the Pre-RC, which defines DNA
replication origins in G1. The Cdt2-dependant degradation of
Cdt1 in S phase is one of several redundant mechanisms that
prevent the re-initiation of DNA replication from regions of the
genome which have already been replicated (Ralph et al., 2006).
Interestingly, it was previously reported that Cdt1 is degraded by
a CRL4 complex upon IR. This may contribute to the inhibition
of replication in response to IR, although the majority of DNA
replication inhibition is ascribed to checkpoint activation (Higa
et al., 2003). The turnover of Cdt2 itself is also UPS-dependent
and is mediated by the E3 ligase SCFFbxo11. This hints at an
interesting crosstalk between CRL1 and CRL4 ligases (Abbas
et al., 2013; Rossi et al., 2013).

Literature linking CRL4 complexes to IR is limited, but
evidence from lower eukaryotes suggests that Cul4 based
machineries could play a significant role in processing
DSBs (Moss et al., 2010). More recently, Zeng et al. (2016)
identified WDR70, a conserved DCAF that is recruited to
DNA DSBs. WDR70 is part of a Cul4-Ddb1 ubiquitin ligase
complex and promotes HR by stimulating long range resection
(Zeng et al., 2016). Interestingly, knockdown of WDR70

Frontiers in Physiology | www.frontiersin.org 10 October 2019 | Volume 10 | Article 1144

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-01144 September 30, 2019 Time: 16:48 # 11

Fouad et al. CRLs and Ionizing Radiation

sensitizes HEK293T cells to IR and is comparable to the survival
observed upon Ddb1 depletion.

Whilst the hijacking of cullin machinery has been previously
discussed, about 50% of human hepatocellular carcinomas
are associated with chronic hepatitis B infection, and risk of
carcinogenesis increases with viral load (El-Serag, 2011). The
hepatitis B virus encodes an oncoprotein, Hepatitis B x protein
(HBx) that can hijack the Cul4-Ddb1 machinery by displacing
WDR70 (and likely other DCAFs) to form viral CRL4HBx.
Disassembly of the CRL4WDR70 complex by HBx compromises
DNA end resection and results in HR deficiency (Ren et al.,
2019). Understanding the target of the CRL4WDR70 machinery
may provide insights into new targets for sensitizing cancer
cells to IR.

TARGETING CRL COMPLEXES FOR
CANCER THERAPY

Given the central role that CRLs have in regulating cancer
pathogenesis and therapy responses, inhibitors of CRLs
with limited specificity have been developed (Jang et al.,
2018). MLN4924 (pevonedistat), a small-molecule inhibitor
that selectively inhibits NEDD-8, was shown to inactivate
CRL complexes and suppress tumor growth both in vitro
and in vivo (Soucy et al., 2009). TAS4464 is another
NEDDylation inhibitor, and most clinical trials involving
either MLN4924 or TAS4464 are still restricted to phase I
and II trials (Jang et al., 2018). The mechanism of action
of MLN4924 is not selective as MLN4924 inhibits all the
NEDDylation reactions in the cells. NEDDylation is essential
for ubiquitylation operated by CRLs and thus NEDDylation
inhibitors are effectively blocking the action of more than
400 enzymes in the cells. Despite the limited specificity,
MLN4924 was shown to sensitize cancer cells to several
chemotherapeutic drugs, so several of the ongoing trials
are testing this small-molecule inhibitor in combination
with DNA-damaging drugs such as carboplatin (Jang et al.,
2018). MLN4924 was shown to act as a radiosensitizer
in a mouse xenograft model of human pancreatic cancer
(Wei et al., 2012), and in the human colorectal cancer cell
lines HT-29 and HCT-116 (Wan et al., 2016). It was also
found that MLN4924 radiosensitizes SCCHN in culture, and
enhances IR-induced suppression of SCCHN xenografts in mice
(Vanderdys et al., 2018).

It is possible to specifically inhibit individual CRLs or CRL-
interacting proteins such as CRL substrates or CRL substrate-
recruitment units, as opposed to global CRL- or proteasomal-
inhibition, and this has in fact been attempted in a number
of studies. For example, targeting CRL substrates that enhance
the resistance of cells to radiotherapy, or targeting CRLs whose
substrates sensitize cells to IR could potentially prove as an
effective strategy to radiosensitize cancer cells. Substrates and
substrate-recruitment members of CRLs that are involved in
the cellular response to IR are summarized below in Table 1.
An alternative emerging possibility to exploit CRL roles in
cancer therapy is to use PROTACs (Figure 2B). PROTACs are

heterobifunctional molecules made up of two different ligands
and a linker; one of the two ligands binds to the target protein,
and the other binds to an E3 ubiquitin ligase (An and Fu,
2018). Upon the formation of the E3 ligase-PROTAC-protein
complex, E2 enzymes ubiquitylate the target protein marking
it for proteasomal degradation (An and Fu, 2018). Thereby, a
PROTAC molecule increases the proximity between the target
protein and an E3 ligase, and acts catalytically to induce the
proteolysis of this substrate.

TABLE 1 | Summary of the subunits of E3 ligase complexes of the cullin family
that are involved in the IR response.

Cullin
family
member

CRL substrate-
recruitment
subunit

Substrate(s) References

Cul1 β-TrCP (Fbxw1/11) Cdc25A Busino et al., 2003

Claspin Mailand et al., 2006;
Peschiaroli et al., 2006

p53 Isoda et al., 2009

Wee1 Watanabe et al., 2004

Cyclin F (Fbxo1) Exo1 Elia et al., 2015

RRM2 D’Angiolella et al., 2012

Emi1 (Fbxo5) Rad51 Marzio et al., 2018

Fbxl12 Ku80 Postow and Funabiki,
2013

Fbxo4 and Fbxo31 Cyclin D1 Lin et al., 2006;
Santra et al., 2009

Fbxo6 Chk1 Zhang F. et al., 2009

Fbxo11 Cdt2 Abbas et al., 2013

Fbxo22 p53 Vrba et al., 2008

Fbxo44 BRCA1 Lu et al., 2012

Fbxw7 Xrcc4 Zhang et al., 2016

Jfk (Fbxo42) p53 Uchida et al., 2009

Mepe/Of45
(co-factor of Chk1)

Liu et al., 2009

Skp2 (Fbxl1) p21 and p27 Carrano et al., 1999

Cul2 SOCS1 HPV-E7 Kamio et al., 2004

Jak2 Kamizono et al., 2001

SOCS1, SOCS3
in GBM

Zhou et al., 2007

VHL Hif-1α Maxwell et al., 1999

Cul3 Keap1 Nrf2 Zhang et al., 2004

PALB2 Orthwein et al., 2015

Klhl15 CtIP Ferretti et al., 2016

Klhl20 PML (TRIM19) Yuan et al., 2011

Spop Zhang et al., 2014

Tip60 Bhoumik et al., 2008

Cul4 Ddb1-Cdt2 Cdt1 Higa et al., 2003

p21 Stuart and Wang, 2009

Ddb1-WDR70 Zeng et al., 2016

Cul5 HIV-1 Vif APOBEC3G Yu et al., 2003

Wsb1 VHL Kim et al., 2015
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Proteolysis-targeting chimeras were designed to overcome
several of the limitations that face their predecessors, small-
molecule inhibitors. Small-molecule inhibitors are the most
common targeted treatment method for intracellular proteins,
however, they have several shortcomings. One example of
such shortcomings is that small-molecule inhibitors are mainly
engineered to target proteins with active sites (ex., enzymes
or receptors), whereas the majority of the proteome lacks
active sites and is therefore not targetable using this method
(Toure and Crews, 2016). Target protein-binding ligands
in PROTACs overcome this through binding to crevices
on the surface of target proteins as opposed to active
sites, making a much wider range of proteins druggable
(An and Fu, 2018).

Through this design, and due to the nature of PROTAC-
substrate binding being transient and reversible, PROTACs are
also less prone than small-molecule inhibitors to drug resistance
arising from mutations at the active site of the target protein
(An and Fu, 2018).

Additionally, in contrast to the relatively high concentration of
small-molecule inhibitors required to reach therapeutic capacity
which often leads to off-target effects, PROTACs are required
at much lower concentrations for two reasons. The first is that
PROTACs act sub-stoichiometrically so they are involved in
multiple rounds of protein degradation as opposed to small-
molecule inhibitors that act in a 1:1 ratio to the substrate
(Bondeson et al., 2015; Lu et al., 2015; Olson et al., 2018). And
the second reason is that the hook effect applies to PROTACs,
which entails that at high PROTAC concentrations the protein
degradation efficiency decreases due to the direct inhibition of
the E3 target (An and Fu, 2018).

Another advantage of PROTACs over small-molecule
inhibitors stems from the fact that PROTACs exploit the
intracellular UPS to degrade target proteins so the whole protein
is lysed, as opposed to only disrupting the activity of a single
domain in a protein by small-molecule inhibitors, which leaves
the other domains in a multi-domain protein fully functional.

The concept of PROTACs was first introduced in 2001
(Sakamoto et al., 2001), and the first cell-permeable PROTAC
was designed a few years later in 2004 (Schneekloth et al.,
2004). At their infancy, PROTACs were peptide-based but
that soon changed due to the poor permeability as well as
low potency of the high-molecular weight peptide ligands,
and the first small-molecule PROTAC was reported in 2008
(Schneekloth et al., 2008; Lai and Crews, 2017). It was reported
that immunomodulatory drugs thalidomide, lenalidomide, and
pomalidomide have the ability to hijack the ubiquitin ligase
CRL4CRBN so small-molecule PROTACs with thalidomide
(and derivatives)-based CRBN binding ligands were developed
(An and Fu, 2018). Since 2015, the number of small-
molecule PROTACs reported is more than 30, most of them
utilizing VHL and cereblon (CRBN, a substrate recognition
subunit of CRL4) E3 ligases (An and Fu, 2018). Currently,
several pharmaceutical companies have programs for developing
PROTACs, such companies include Arvinas, C4 Therapeutics,
Kymera Therapeutics, and Captor Therapeutics (An and Fu,
2018). A large expansion of small molecules targeting E3 ligases

is predicted given the significant investment from both pharma
companies and academia.

CONCLUSION AND FUTURE RESEARCH
DIRECTIONS

Given the specific roles of E3 ligase adaptors in regulating
multiple aspects of the cellular responses to IR, it is possible
to envision that alteration of the CRLs could be exploited to
improve radiotherapy response in cancer cells. For instance, the
development of PROTACs targeting CRL adaptors in the DNA
damage could lead to drugs that are only activated upon IR or
under a specific stimulus like hypoxia. In the future it will be
important to dissect the roles of the diverse CRLs at a system-
wide level. It is important to emphasize the fact that studies
on some subfamilies of CRLs (like CRL4 and CRL3) and DNA
damage are quite limited and require further investigations that
take into consideration the role of the adaptor, the alteration in
selected cancer types and the impact in therapy response with
radiotherapy and other DNA damaging agents.

In the search for new approaches to improve patient response
to radiotherapy, all possible ways IR affects the cell need to be
considered. The effect of IR is not limited to DNA damage by
DSBs and SSBs, it also affects the immune system. It was recently
noted that IR treatment could facilitate the immune responses by
activating a cGAS/STING pathway to initiate immune signaling
(Harding et al., 2017). This observation is likely at the basis
of a well-known phenomena in the clinic called the abscopal
effect. The abscopal effect, first defined in 1953, is the ability
of localized radiotherapy to induce off-target anti-tumor effects
leading to tumor regression at non-irradiated metastatic sites
(Mole, 1953). Following this discovery, researchers began looking
into the mechanisms guiding such effect and only 50 years later
were able to make the breakthrough proposition that it was
immune-system mediated (Demaria et al., 2004). With a plethora
of recent studies reporting successful oncological applications
of immune checkpoint inhibitors in clinical trials, researchers
are becoming increasingly interested in the effects of combining
immunotherapy with localized radiotherapy to best exploit the
abscopal effect (Ng and Dai, 2016; Liu et al., 2018). The cullin
family of E3 ligases is involved in several pathways of immune
responses (Kawaida et al., 2005; Bibeau-Poirier et al., 2006;
Kuiken et al., 2012; Mathew et al., 2012; Saucedo-Cuevas et al.,
2014), therefore they could also be exploited to modulate the
abscopal effect and/or cGAS/STING activation in combination
with radiotherapy. A recent example of the involvement of E3s
in immune checkpoint responses is represented by the E3 ligase
Spop. In its E3 ligase complex with Cul3, Spop targets the ligand
of the immune checkpoint Pd-L1 for its ubiquitin-mediated
degradation (Zhang et al., 2018). Based on this mechanism,
inhibiting Spop was found to result in an abundance of Pd-L1,
and in combination with anti-Pd-1 immunotherapy was found
to improve tumor regression and overall survival rates in murine
models (Zhang et al., 2018).

In the future, CRL adaptors could be targeted with PROTACs
to enhance the response of tumors to radiotherapy and elicit
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a systemic immune response. Given the large expansion of
PROTAC- like-molecules in the last years, it is conceivable
that further studies on CRLs might improve patient survival
by changing the clinical approaches to cancer treatment
with radiotherapy.
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