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Autoimmune diseases are disorders of immune regulation where the mechanisms
responsible for self-tolerance break down and pathologic T cells overcome the protective
effects of T regulatory cells (Tregs) that normally control them. The result can be the initiation of
chronic inflammatory diseases. Systemic lupus erythematosus (SLE) and other autoimmune
diseases are generally treated with pharmacologic or biological agents that have broad
suppressive effects. These agents can halt disease progression, yet rarely cure while carrying
serious adverse side effects. Recently, nanoparticles have been engineered to correct
homeostatic regulatory defects and regenerate therapeutic antigen-specific Tregs. Some
approaches have used nanoparticles targeted to antigen presenting cells to switch their
support from pathogenic T cells to protective Tregs. Others have used nanoparticles targeted
directly to T cells for the induction and expansion of CD4+ and CD8+ Tregs. Some of these T
cell targeted nanoparticles have been formulated to act as tolerogenic artificial antigen
presenting cells. This article discusses the properties of these various nanoparticle
formulations and the strategies to use them in the treatment of autoimmune diseases. The
restoration and maintenance of Treg predominance over effector cells should promote long-
term autoimmune disease remission and ultimately prevent them in susceptible individuals.

Keywords: nanoparticles, regulatory T cells, systemic lupus erythematosus, autoimmunity, treatment, antigen-
presenting cell, dendritic cell
INTRODUCTION

Amajor unmet need in chronic immune-mediated inflammatory diseases that include autoimmune
diseases, graft versus host disease and allograft graft rejection is to achieve long-term remission.
Most current approaches use agents that are only partially effective because they not only suppress
pathologic cells but also the cells that are required to control those pathologic cells. Moreover, the
broad immunosuppressive effects of pharmacological and/or biological agents are often
accompanied by toxic side effects. Fortunately, novel strategies with more selective cellular
targets (and thus more effective and less toxic) are being developed.
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Autoimmune diseases are generally T cell-dependent
disorders of the immune regulation. The immune system is
constitutively highly active with a rapid turnover of T
regulatory cells (Tregs) and antigen-presenting dendritic cells
(DCs). Homeostatic regulatory mechanisms control immune
cells with dual functions: 1) they fight infectious agents and
2) also prevent the emergence of potentially pathologic self-
reactive cells not eliminated at birth. In health, regulatory
populations of CD4+ and CD8+ Tregs keep these cells
dormant, and interactions between tolerogenic DCs and Tregs
maintain immune tolerance. In autoimmune diseases, instead,
homeostasis becomes dysregulated and immunogenic DCs enable
pathogenic T effector cells to predominate over the Tregs (1). A
prototypical disorder of immune regulation is systemic lupus
erythematosus (SLE), a multisystem autoimmune disease (2). In
SLE both CD4+ and CD8+ Treg function is decreased (3).

Several therapeutic approaches have been developed to
restore normal numbers and/or function of Tregs when
abnormal. One approach that has reached clinical trials has
been to isolate and expand the small numbers of Tregs present
in the peripheral blood. The adoptive transfer of expanded
autologous CD4 Tregs has been used to treat various
autoimmune diseases, graft versus host disease and to prevent
solid organ graft rejection (4). Adoptive CD4+ T cell therapy in
one case of lupus with skin disease revealed evidence of T reg
activation (5). Although the adoptive transfer of expanded
polyclonal CD4 Tregs appears to be safe, the cost and technical
complexity to expand autologous Tregs have limited this
approach (6). An alternative strategy has been the induction/
expansion of Tregs ex vivo. The cytokines interleukin (IL)-2 and
transforming factor-beta (TGF-b) are essential for the
generation, function and survival of CD4 Tregs (7, 8). In SLE,
the production of IL-2 and TGF-b is decreased (9, 10). To treat
SLE and other autoimmune diseases with low IL-2 production,
one could induce and expand autologous SLE CD4 Tregs ex vivo
with IL-2 and TGF-b for subsequent adoptive transfer of these
cells back to the donor (11). Although this Treg-based
therapeutic approach has been successful in mouse models, it
has not yet reached the clinic. The possibility to induce and
expand in vivo Tregs has recently been considered through the
use of nanoparticles (NPs). Formulated NPs with the potential to
reset the homeostatic mechanisms restoring Treg predominance
are discussed here. Since DCs control T cell differentiation, one
approach is to switch disease-associated immunogenic DCs to
tolerogenic DCs (which induce and expand Tregs). Another
approach directly targets T cells and increases functional CD4+
and CD8+ Tregs. We discuss how the immunotherapeutic use of
NPs could lead to the reversal, long-term remission, and
ultimately, prevention of autoimmune diseases.
NANOPARTICLES IN IMMUNOTHERAPY

Nanoparticles engineered to target specific cells or tissues with a
high drug loading capacity represent a new generation of drug
delivery systems for many biomedical indications. Nanoparticles
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are constructed using natural or synthetic materials with well-
established safety record and have a typical diameter ranging from
0.1 to 1000x10-9 m (1 nanometer, which is 10x the size of an
atom). The motivation for using such systems derive from the fact
that viruses and pathogens that elicit or subvert immune responses
are, in essence, small particles endowed with the ability to interact
with - or avoid - immune cells in a variety of ways. Nanoparticles
currently used consist of both organic or colloidal NPs that can be
taken up by cells of the reticuloendothelial system. These include
the phagocytic cells of the innate immune system such as
macrophages, DCs and neutrophils. Other NPs can be surface-
modified to target specific lymphocyte populations.

Advantages of NPs over traditional drugs include: 1) markedly
decrease the amount of a biological agent delivered by 100 to 1000-
fold when targeted to specific cells (by increasing the local
concentration following release). This reduces the side effects
as well as the cost. 2) improve the delivery of insoluble drugs
and maximize bioavailability; 3) combine therapeutic agents with
a diagnostic, resulting in “theranostic” agents. The durability
of the concept is an indication of its appeal in developing
immunomodulatory strategy technologies. The potential to
assemble such materials on nanoscale dimension facilitates
circulation in the blood, biodistribution to lymph nodes,
interaction with extracellular receptors (if targeted appropriately)
and intracellular accumulation without compromising normal
physiologic functions. We focus here on the application of
nanoparticles in the size range 100-500 nm (Figure 1).

Nanoparticles are currently being tested for the treatment of
autoimmune disease because they can be engineered for three
distinct uses: 1) they can function as carriers of biologic agents
and small molecule drugs, 2) they can be anti-inflammatory, or
3) tolerogenic (12, 13). Taking advantage of the fact that they are
phagocytosed by macrophages, NPs can encapsulate agents that
polarize those cells to become anti-inflammatory. These agents
include cytokines such as IL-10, statins, angiotensin receptor
blockers, or peroxisome proliferator-activated receptor-g
(PPARg) agonists (14). Nanoparticles loaded with biological
agents such as tumor necrosis factor antagonists ameliorate
inflammatory arthritis (15). Here we concentrate on the use of
NPs to induce and expand Tregs.

The effects of NPs are determined by their size,
biodistribution and route of administration. Particles smaller
than 6 nm drain to the blood while particles larger than 9 nm
drain preferentially to lymphatics. Particles 20 to 100 nm are
taken up by liver sinusoidal cells or macrophages. Particles 100 to
200 nm traffic to the spleen and liver, and those up to 5 µm will
accumulate in the spleen. NPs delivered by intravenous injection
target APCs in the spleen and liver. Those delivered by
subcutaneous injection are preferentially taken up by DCs in
draining lymph nodes.

The materials used for the preparation of NPs can include
metals, liposomes and synthetic and natural polymers (16–19).
Specifically, polymers fabricated from polylactides (PLA) and
copolymers of lactide and glycolide (poly-lactic-co-glycolic acid,
PLGA) have established commercial use in humans and have a
long safety record (20, 21). These systems have several features
June 2021 | Volume 12 | Article 681062
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that make them ideal materials for the fabrication of anti-
inflammatory or tolerogenic nanosystems: 1) control over the
size range of fabrication, down to 100 nm and potentially even
lower (an important feature for passing through biological
barriers); 2) reproducible biodegradability without the addition
of enzymes or cofactors; 3) capability for sustained release of
encapsulated, protected cytokines or other agents that may be
tuned in the range of days to months by varying factors such as
the PLA to polymers of glycolic acid (PGA) copolymer ratios,
potentially abrogating repetitive administrations, 4) well-
understood fabrication methodologies that offer flexibility over
the range of parameters that can be used for fabrication,
including choices over the polymer material, solvent, stabilizer,
and scale of production and 5) control over surface properties
facilitating the introduction of targeting ligands on the surface
(18, 22).

While other materials can be considered such as metal oxide
NPs - which can be conjugated with antigens, targeting ligands
and immunomodulators on the cell surface - these do not
facilitate sustained release and are limited to applications that
do require biodegradability. Renal clearance is the major
clearance pathway with such systems and requires them to be
ultra-small (<50 nm). Given the potential safety issues with long-
term use, liposomes that carry antigen, NF-kB inhibitors, or
immunosuppressive drugs are often safer options and do not
require stringent size engineering criteria. They have been used
to suppress arthritis and lupus (23, 24) and variants of liposomes
with a hydrogel interior (to facilitate sustained release) have been
developed and utilized for the delivery of biologics and small
molecule drugs in lupus therapy (24).

The appeal of biodegradability of NPs for controlled release of
encapsulant together with safety requirements have led to the
wide use of synthetic biopolymers as materials for construction
of biodegradable NPs. The most widely used NPs are synthetic
polymers, such as PLA or PLGA. Unlike liposomes, which burst
release unless lipids are cross-linked or the interior is modified
Frontiers in Immunology | www.frontiersin.org 3
with a hydrogel (12), these solid biodegradable polymer particles
are stable over time in aqueous media, releasing encapsulant
slowly and, in addition, they can be manufactured by a number
of methodologies and facilitate encapsulation of hydrophobic
moieties such as rapamycin, mycophenolic acid, vitamin D3 and
dexamethasone (25) through an entanglement with the
hydrophobic polymer core (24, 26–28). One group compared
the tolerogenic effects of PLGA NPs with TMC-TPP (N-
trimethyl chitosan tripolyphosphate) NPs. They found that
PLGA NPs enhanced production of retinal dehydrogenase by
APCs. This enzyme increases retinoic acid which enhanced
CD4+Foxp3+ Tregs induced by TGF-b (29). Clinically, this is
of interest because IL-2 and TGF-b induce human naïve CD4
cells to express FoxP3 but, unlike mice, these cells lack strong
suppressive effects. Adding all-trans retinoic acid to IL-2 and
TGF-bmarkedly increased the protective properties of the Tregs
to levels equivalent to mouse Tregs (30). PLGA NPs also increase
the stability of induced CD4 Tregs. As will be discussed below,
mouse CD4+ cells induced to become CD25+Foxp3+ Tregs with
IL-2- and TGF-b-loaded PLGA NPs were more stable than Tregs
induced with soluble IL-2 and TGF-b (31).
RATIONALE FOR THE USE
OF NANOPARTICLES

In the steady state, rapidly turning over immature DCs become
tolerogenic and induce Tregs that maintain immune tolerance.
In autoimmune diseases, instead, immature DCs become
immunogenic and support pathogenic effector cells, with
resulting predominant pathogenic T cells over the regulatory
cells that should control them. The therapeutic objective, then, is
to formulate NPs that can reset a dysregulated immune system
back to normal and restore autoantigen specific Treg
predominance. Since in some autoimmune diseases such as
FIGURE 1 | Nanoparticle carriers offer a unique set of characteristics that have inspired significant interest in their use in engineering novel immunotherapies in the
field of tolerance induction.
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SLE, type 1 diabetes (T1D) and multiple sclerosis, specific
autoantigen peptides have been identified, the goal is to induce
antigen-specific Tregs. However, in diseases such as rheumatoid
arthritis and inflammatory bowel disease where specific
autoantigens are unclear, the goal is to target NPs to disease
sites to switch immunogenic DCs to tolerogenic DCs and
switch local macrophages from inflammatory to anti-
inflammatory cells.

To restore Treg predominance, two approaches are possible:
1) NPs targeted to DCs or other antigen-presenting cells (APCs),
to induce them to become tolerogenic, or 2) NPs targeted directly
to T cells for the induction and expansion of Tregs. Figures 2
and 3 summarizes these approaches. It has been established that
CD4 Tregs require IL-2, TGF-b, and continuous T cell receptor
stimulation for function and survival (7, 32, 33). Nanoparticles
can provide these agents and, where possible, the antigen for the
generation of antigen-specific Tregs. Also, although most
investigators have focused on CD4 Tregs, CD8 Tregs have as
Frontiers in Immunology | www.frontiersin.org 4
well important tolerogenic roles (34, 35). In human SLE, like
CD4 Tregs, CD8 Tregs can inhibit anti-DNA autoantibodies
(36, 37). Therefore, attention should be given to inducing CD8
as well as CD4 Tregs.
NANOPARTICLES THAT GENERATE
TOLERANCE THROUGH MODULATION OF
ANTIGEN PRESENTING CELLS (APCs)

Delivering Pharmacological Agents to
Promote Tolerogenic APCs
The liver and the intestinal immune system are enriched in APCs
with high tolerogenic potential (38, 39). It is well known that
oral administration of protein antigens can result in non-
responsiveness to those antigens. Oral tolerance can prevent
certain autoimmune diseases in animals but, unfortunately,
A

B

FIGURE 2 | Nanoparticles targeted to antigen-presenting cells can switch immunogenic dendritic cells to tolerogenic. (A). While immature dendritic cells (DCs)
normally mature to tolerogenic in the steady state, in untreated autoimmune disease these cells can become immunogenic and induce pathogenic T cell effector
cells (CD4+ Th1, Th2 and Th17, and CD8+ T cells). (B). Different formulations of nanoparticles (antigen non-specific, peptide-containing, or peptide plus drug) have
been designed to switch the maturation of DCs from immunogenic back to tolerogenic. These DCs expand one or more populations of regulatory cells (antigen-
specific and non-specific CD4+ and CD8+ Tregs, Tr1 cells, and B regulatory cells) and reset the immune system to restore a predominance of regulatory cells over
pathogenic effector cells.
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multiple attempts to translate that to human therapeutics has not
been successful (39). Nanoparticles have been used to amplify
tolerogenic effects (40). Repeated oral delivery of chitosan-DNA
NPs can prevent antibodies blocking functional FVIII in mice
with hemophilia A (41). Oral gene application using chitosan-
DNA NPs induce transferable tolerance (42). Orally delivered
nanoparticle-curcumin has been reported to ameliorate
experimental colitis via modulation of gut microbiota and
the induction of Tregs (43, 44). Curcumin is a hydrophobic
polyphenol prepared from the root of the perennial herb
Curcuma longa, a member of the ginger family. Curcumin
possesses a wide variety of biological functions, such as anti-
inflammatory, anti-cancer, antioxidant, antimicrobial, wound-
healing and hypoglycemic activities. Curcumin inhibits cell
signaling pathways that include nuclear factor k light-chain-
enhancer of activated B cells (NF-kB), signal transducer and
activator of transcription proteins (STAT)3, nuclear factor
erythroid 2-related factor 2 (Nrf2), reactive oxygen species
(ROS), cyclooxygenase (COX)-2, and phosphatidylinositol 3-
kinase (PI3K) (43). Strong cell signaling through NF-kB and the
PI3K/Akt/mTOR pathway generates inflammatory cells or T
effector cells, respectively, while weaker signals induce anti-
inflammatory cells or Tregs. It is likely that modulating signaling
from strong to weaker contribute to the many effects of curcumin
(44). A recent breakthrough in the development of NPs capable of
delivering biologicals orally will be described below.

Delivering Disease-Relevant Antigens
to APCs Through Naturally
Tolerogenic Mechanisms
In the steady state, a variety of APCs in the liver are in a
tolerogenic state and maintain local and systemic immune
tolerance to self and foreign antigens. These APCs include DCs,
macrophage-like Kupffer cells (KCs), liver sinusoidal endothelial
cells (LSECs), and hepatic stellate cells (HSCs). Even hepatocytes
Frontiers in Immunology | www.frontiersin.org 5
can express low levels of major histocompatibility complex
(MHC)-I/MHC-II and co-stimulatory molecules that maintain
tolerance (38). Investigators have taken advantage of NPs that
accumulate in tolerogenic liver APCs to treat autoimmune
diseases (45–47). One group has used PLGA NPs targeted to
the liver to induce antigen-specific immune tolerance in a
pulmonary allergen sensitization model (48). Others have used
nanoparticle-based autoantigen delivery to Treg-inducing liver
sinusoidal endothelial cells to control autoimmunity in mice (49).

Various approaches have been investigated that combine
antigen delivery with a strong tolerogenic signal. The objective
is to induce rapidly turning-over immature dendritic cells (DCs)
to differentiate into tolerogenic APCs. In subjects with
autoimmune diseases, immature DCs become immunogenic
cells which perpetuate the disease. Here one must switch their
differentiation of immunogenic cells to tolerogenic. One
approach is to take advantage of the tolerogenic effects of
clearing cells that died of apoptosis. Macrophages and
immature APCs that phagocytose apoptotic cells produce
TGF-b, which has tolerogenic effects (50–52). One group
used the tolerogenic effects of apoptotic cells as a starting
point for immunotherapy using the experimental allergic
encephalomyelitis (EAE) mouse model of multiple sclerosis,
characterized by T helper type 1 (Th1) and/or Th17 effector
cells. The authors found that intravenous administration of
peptides crosslinked to syngeneic splenic leukocytes safely and
efficiently induced antigen-specific immune responses, and that
the tolerance by apoptotic antigen-coupled leukocytes was
induced by PD-L1+ and IL-10-producing splenic macrophages
and maintained by Tregs (53). The same group then switched
from antigen-labeled cells to antigen-bearing NPs. They
observed that intravenous delivery of negatively charged PLGA
NPs were taken up by splenic macrophages that express the
scavenger receptor MARCO. These NPs prevented/treated EAE
and T1D (54, 55), and the apoptotic effect of NPs carrying
FIGURE 3 | Nanoparticles can be formulated as tolerogenic artificial antigen-presenting cells that directly target specific lymphocyte subpopulations to become
regulatory cells. Three examples are shown that induce one or more subsets of regulatory cells.
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antigen taken up by phagocytic immature APCs led to the
production of and TGF-b and IL-10. These cytokines matured
the APCs into tolerogenic, with the ability to induce Tregs. Most
recently, it has been shown that PLGA NPs carrying single or
multiple peptides could induce CD4+Foxp3+ Tregs that
suppressed CD4 and CD8 cells (56).

Macrophage recognition of phosphatidylserine, a component
of the cell membrane, is another strong apoptotic signal that can
increase tolerogenic IL-10 and TGF-b. Liposomes containing
peptide antigen and phosphatidylserine were given to patients
with T1D to determine their tolerogenic effects on DCs. These
liposomes decreased the autologous T cell proliferation.
However, likely because of variability of the DC responses,
liposomes did not affect the profile of pro-inflammatory or
anti-inflammatory cytokines released by the cells (57).

Delivering Drug-Antigen Combinations
to Drive Antigen Specific
Tolerogenic Skewing
Nanoparticles that carry antigen-peptides and pharmacological
agents have been studied for their capacity to generate Tregs.
These agents attached to the surface or encapsulated in the PLGA
NPs include TGF-b (58) and dexamethasone (59). Various
immunomodulators have been used together with antigen-
peptides to induce Tregs. Colloidal gold NPs have been
engineered to deliver both a tolerogenic aryl hydrocarbon
receptor (AHR) ligand and a proinsulin peptide to induce
tolerogenic DCs that promote CD4+Foxp3+ Treg generation
in vivo and prevent T1D in mice (60). These NPs induce
monocyte-derived DCs to develop a tolerogenic phenotype by
inhibiting NFkB signaling. The strength of cell signaling plays an
important role in cell differentiation. The development of mature
immunogenic DCs requires strong NFkB pathway signaling (61).
By contrast, weaker NF-kB signaling is important in the
establishment of immune tolerance, including both central
tolerance and the peripheral function of Tregs (62). This AHR
effect depends upon the induction of the suppressor of cell
cytokine-2 (SOCS2) protein (60). These AHR-ligand
containing NPs have been previously shown to induce Type 1
(Tr-1) Tregs and B regulatory cells (63). More recently this group
has used nanoliposomes carrying an AHR ligand to treat
EAE (64).

PLGA NPs containing antigen and an inhibitor of the PI3K/
AKT/mTOR pathway have also been extensively studied for their
tolerogenic effects. The PI3K pathway is the chief signaling
pathway that T cells use to transmit antigen stimuli from the
TCR to the nucleus (65). Similar to NFkB, strong TCR signals
result in T effector cell differentiation, whereas weaker signals
results in Treg differentiation (66). Rapamycin (rapa) inhibits
signaling through mTOR. Although rapa has immunosuppressive
effects, the combination of this agent and IL-2 promotes the
induction of CD4+CD25+Foxp3+ cells (65). Rapa packaged in
PLGA NPs has much stronger immunomodulatory properties
than its soluble form (67). Nanoparticles containing antigen and
rapamycin induce CD4+Foxp3+ Tregs and prevent EAE (67, 68).
Many of the biological agents now in use for the treatment of
human autoimmune diseases are antigen and can elicit antibodies
Frontiers in Immunology | www.frontiersin.org 6
that block their therapeutic effects. Tolerogenic polylactide NPs
that block the production of these antibodies can have useful
beneficial effects and are in clinical trials (69).

It is desirable to have antigen in the NP, yet antigen non-
specific microparticles can also be useful. Blocking the positive
co-stimulatory effects immunogenic DCs can be therapeutic. In
T1D, three antisense oligonucleotides contained in microspheres
were targeted to the primary transcripts of CD40, CD80 and
CD86 co-stimulatory molecules. The result was attenuated T cell
signaling that induced CD4+Foxp3+ Tregs which reversed
hyperglycemia (70). In a lupus-like disease model resulting
from a CD4 helper cell-driven chronic graft versus host
disease, NPs induced CD4 and CD8 polyclonal Tregs that
prevented the disease (31) Here the antigen source was non-
self MHC peptides. Thus, with persistent endogenous antigen
stimulation, polyclonal Tregs can have therapeutic effects.
NANOPARTICLES WITH DIRECT
TOLEROGENIC EFFECTS ON
LYMPHOCYTE SUBSETS

Delivering Small-Molecule Drugs or
miRNA to T Cells
Nanoparticles can have direct effects on T cells and B cells. NPs
have been used to correct decreased T cell production of IL-2 and
increased production of IL-17 in SLE (2). Calcium/calmodulin
protein kinase IV has a role in both abnormalities. KN93, a small
molecule inhibitor of this kinase, was encapsulated in a
nanolipogel that was targeted to CD4+ cells. Previously, this
group had reported that the soluble form of this inhibitor
increased CD4+ Foxp3+ Tregs (71). Here the NPs markedly
reduced murine EAE and SLE (72). T cells were not depleted, but
Th17 cells were effectively blocked. In SLE lupus prone mice,
targeted delivery of a CaMK4 inhibitor to podocytes preserved
their ultrastructure, prevented immune complex deposition and
crescent formation, and suppressed proteinuria. In animals
exposed to adriamycin, podocyte-specific delivery of a CaMK4
inhibitor prevented and reversed podocyte injury and renal
disease (73).

Aberrant DNA demethylation in T cells leads to T cell
abnormalities in SLE and correlates with disease activity (74). 5-
azacytidine, (5-azaC) a DNAmethyltransferase inhibitor can correct
these abnormalities. However, generalized hypomethylation can
have many adverse side effects. Therefore, 5-azaC was packaged in
liposomes that were targeted to either CD4 or CD8 cells. Each of
these liposomes markedly improved nephritis in a mouse model of
lupus. The mechanism of action on each T cell subset was different.
The CD4-targeted liposomes increased Foxp3 expression,
expanded CD4 Treg numbers and enhanced function. The CD8-
targeted liposomes enhanced cytotoxicity of these cells and
restrained the expansion of pathogenic TCR-ab+CD4–CD8–

double-negative T cells. Importantly, systemic azaC delivery did
not have these positive therapeutic effects (75). Thus, established
disease could be reversed in a mouse model, underlining the
importance of targeting NPs to specific cells.
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In addition to T cells, liposome NPs have been used to target
antigen directly to B cells. Antigenic liposomes displaying CD22
ligands induce antigen-specific B cell tolerance (76) and
apoptosis (77).

Nanoparticles packaged with microRNA-125a (miR-125)
have been reported to ameliorate a mouse model of lupus by
restoring the balance between effector and Tregs. A miRNA is a
small non-coding RNAmolecule that functions in RNA silencing
and post-transcriptional regulation of gene expression. miRNAs
regulate approximately 90% of protein-coding genes (78). MiR-
125 may have an important role in immune tolerance. One group
reported that miR-125 is decreased in SLE patients (79). To
repair this defect and increase stability of this RNA, miR-125 was
packaged into ~150 nM NPs consisting of polyethylene glycol,
PGLA, and poly (L-lysine). These NPs were endocytosed into
activated T cells that became Tregs when cultured with TGF-b.
Comparative in vivo studies in lupus mice with free miR-125
revealed that the NPs increased RNA concentration in the spleen
and prevented splenomegaly and renal disease. This was
accompanied by increased percentages of CD4 Tregs and
decreased percentages of CD4 Th17 cells. Thus, in SLE, these
NPs appear to have major effects on restoring normal immune
regulation (80). However, miR-125 may have different properties
in other diseases. In rheumatoid arthritis, levels of miR-125a are
high and correlate with other inflammatory markers (81). In
bacterial sepsis, high levels of this miRNA correlate with acute
respiratory distress syndrome (82).
NANOPARTICLES THAT FUNCTION
AS TOLEROGENIC ARTIFICIAL
ANTIGEN-PRESENTING CELLS (aAPCs)
THAT PROVIDE ACTIVATING,
COSTIMULATORY, AND
CYTOKINE SIGNALS

Several groups have tried to substitute DCs or other APCs with
NPs to make artificial antigen presenting cells (aAPCs). While
previously immunogenic aAPCS had been formulated to
enhance immunization (83), two approaches were undertaken
to generate tolerogenic aAPCs. One provided both CD4+ and
CD8+ cells the T cell receptor stimulation and cytokines to
become Tregs. The other used NPs to present peptide-MHC
complexes directly to T cells to induce CD8+ and CD4+ Tregs.

In 2011, it was shown that PLGA NPs coated with anti-CD4
antibodies and loaded with Leukemia Inhibitory Factor (LIF)
induced mouse CD4+ cells to become CD4+ Foxp3+ Tregs
(84). These NPs blocked the ability of IL-6 to induce CD4+
cells to become pro-inflammatory IL-17-producing cells. NPs
encapsulated with LIF have used as neuroprotective in multiple
sclerosis to repair myelin in vivo (85, 86). This work was followed
up in 2015 by loading CD4-targeted PLGA NPs with IL-2 and
TGF-b, the cytokines that induce Foxp3 Tregs. These NPs
induced mouse CD4+ cells to become Tregs that, unlike those
induced with soluble IL-2 and TGF-b, were stable in the presence
Frontiers in Immunology | www.frontiersin.org 7
of IL-6. The percentage of nanoparticle-induced CD4 Tregs and
their suppressive activity in vitro was much greater than those
induced ex vivo by soluble IL-2 and TGF-b. Since CD4 Tregs
need continuous IL-2 exposure to maintain Foxp3 expression
(87), a single dose of NPs sustained Foxp3 expression for 10 days.
By contrast, those CD4 cells stimulated with soluble IL-2 and
TGF-b had completely lost Foxp3 expression by this time (13).
At present, clinical trials are underway with low dose IL-2 to treat
SLE. One has been completed: NCT 02084238. Ongoing trials
include: NCT02955615, NCT03312335, NCT03451422,
NCT03782636, and NCT02411253. While increases in Foxp3
quickly fall after each dose of IL-2, one might anticipate that NPs
targeted to CD4+ cells that are loaded with this cytokine will
sustain Foxp3 expression longer.

PLGA NPs targeted to both CD4 and CD8 cells and
encapsulated with IL-2 and TGF-b have been used to prevent a
lupus-like syndrome (chronic graft versus host disease) (31). In
their studies with Tregs induced ex-vivo, this group had
documented that the combination of CD4 and CD8 Tregs was
more effective than CD4 Tregs alone in preventing this lupus-like
syndrome (88). Their objective, therefore, was to expand CD4 and
CD8 Tregs in vivo. To do so, they coated the NPs with both anti-
CD2 and anti-CD4 antibodies. Anti-CD2 antibody was chosen
since it had been reported that these antibodies can also target
natural killer (NK) cells (89). This model was chosen because of
its rapid read-out. It involves the transfer of mouse DBA/2 T cells
into (C57BL/6 × DBA/2) F1 (BDF1) mice. Unlike most mouse
strains, DBA/2 mice lack T cells that can kill CD8 cells and the
ensuing graft versus host disease, therefore, is characterized by
unopposed T cell help for antibody production. The result is a
rapid onset of anti-DNA autoantibody production and a rapidly
lethal immune complex-induced glomerulonephritis. In this
model, the administration of these T cell and NK cell-targeted
NPs containing IL-2 and TGF-b markedly suppressed disease.

In addition to mouse cells, tolerogenic aAPC NPs containing
IL-2 and TGF-b have induced human CD4+ and CD8+ cells
become Foxp3+ Tregs that were functional both in vitro and
modulated systemic autoimmunity in humanized NOD/SCID
immunodeficient mice. For the in vitro studies, the NPs were
coated with anti-CD3 and anti-CD28 antibodies. For the in vivo
studies, the NPs were anti-CD3 antibody-coated NPs containing
IL-2 and TGF-b. After the transfer of human PBMC to the
immunodeficient mice, treatment with aAPC NPs for three
weeks resulted in increased CD4+ and CD8+ Foxp3+ cells that
persisted until the termination of experiment. This was
accompanied by increased survival of the human anti-mouse
GVHD (90).

Another approach to use NPs as aAPCs is to present peptide-
MHC complexes directly to T cells. In 2010 one group used NPs
that carried peptide-MHC class I complexes to delete a subset of
diabetogenic CD8+ cells in NOD mice. Although these NPs did
restore blood sugar to normal levels in mice with new-onset
diabetes, they unexpectedly expanded a subset of CD8+ cells that
were autoregulatory cytotoxic cells that suppressed polyclonal
autoimmune responses by killing autoantigen-loaded APCs in
target tissue and draining lymph nodes (91). These workers then
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turned their attention to disease-relevant peptide-MHC class II
complexes to expand therapeutic CD4 Tregs. They identified
pMHC complexes that reversed diabetes, EAE and collagen
arthritis in mice (92). The NPs targeted antigen-experienced
pathogenic IFN-g producing T helper 1 (Th1) cells and switched
these cells into T regulatory type 1-like (Tr1-like) cells that
produce predominantly anti-inflammatory IL-10. The Tr1 cells
induced B cells to become IL-10-producing B regulatory cells.
They documented ten pMHC class II complexes that had similar
effects. Subsequently, they have identified complexes of non-
organ peptides from mitochondria, nuclear or cytoplasmic
proteins with MHCII have that induced therapeutic Tr1 cells
in mouse models of liver diseases. These included primary biliary
cirrhosis, primary sclerosing cholangitis and autoimmune
hepatitis (93).

Another group engineered tolerogenic NPs co-coupling a
myelin peptide-MHC complex, anti-Fas antibody, PD-L1-Fc
and encapsulated with TGF-b These NPs decreased Th1, Th17,
and Tc17 cells and increased Tregs. In EAE, mice that were
treated early after disease onset responded well, but those treated
with more advanced disease did less well (94). In addition to
EAE, a study in skin transplantation with similar NPs co-
coupling MHC class I dimers, CD47 and regulatory molecules
showed that the NPs bound and induced apoptosis of CD8 cells,
induced Tregs and improved transplant survival (95). Like the
aAPC study described above, the work was conducted on mice
with a C57/BL background. Since human autoimmune diseases
occur in subjects with a much more diverse genetic background,
obstacles remain for clinical translation as well as for
manufacturing challenges.
NANOPARTICLES THAT INDUCE
TOLEROGENIC TGF-b-DEPENDENT
REGULATORY NK CELLS

Nanoparticles coated with anti-CD2 antibodies target NK cells as
well as T cells. Studies were, therefore, undertaken to determine
whether NK cells had a role in the protective effects of anti-CD2
antibody-coated NPs loaded with IL-2 and TGF-b in the lupus-
like disease discussed above (96). Surprisingly, depletion of NK
cells attenuated the NP-mediated increase in CD4+ and CD8+
Foxp3+ Tregs and exacerbated the resulting renal disease above
the baseline of untreated mice (96).

Previously, anti-CD2 antibodies had been reported to induce
NK cells to produce TGF-b (10, 97). This finding raised the
possibility that TGF-b produced by NK cells could eliminate the
need for this cytokine encapsulated in the anti-CD2 antibody-
coated NPs. Additional studies were conducted with anti-CD2
antibody-coated NPs loaded with only IL-2 revealed that these
NPs had equivalent protective effects on the renal disease as NPs
containing both IL-2 and TGF-b. However, antagonizing TGF-b
in the NP-treated mice by anti-TGF-b antibodies or with an Alk5
TGF-b signaling inhibitor abolished the protective effects. Thus,
the protective effects of NPs loaded with only IL-2 were TGF-
b-dependent.
Frontiers in Immunology | www.frontiersin.org 8
Interestingly, NK cells harvested from the spleens of anti-CD2
antibody-coated NPs treated mice had equivalent protective
effects on the lupus-like glomerulonephritis as the anti-CD2
antibody-coated NPs loaded with IL-2. Moreover, transfecting
these NK cells with a silent RNA (sRNA) to inhibit TGF-b
production completely abolished their protective effects. These
studies provide evidence that the TGF-b produced by the NK
cells may help in the maintenance and function of the CD4
and CD8 Tregs and, therefore, may play a major role in their
protective effects (96).
NANOPARTICLES DELIVERED ORALLY
WITH INHERENT ANTI-INFLAMMATORY
AND TOLEROGENIC PROPERTIES

Orally delivered NPs have been used to treat T1D in nonobese
diabetic (NOD) mice. Oral polyethylene glycol (PEG)-PLGA
loaded with insulin lowered glucose in T1D rodent models (98,
99). Orally delivered PLGA NPs with al-trans retinoic acid and
TGF-b induced therapeutic Tregs in T1D (increased PD-1 and
CTLA4 but not Foxp3) (100). However, the oral bioavailability of
these NPs is only 1-2% because of intestinal degradation (101).

Recently, it has been reported that NP polymerization of
ursodeoxycholic acid (pUDCA), a bile acid with well-known
anti-inflammatory and immunomodulatory effects, markedly
enhanced its therapeutic properties. In addition, pUDCA NPs
had the capability to deliver insulin orally without intestinal
degradation. These NPs were rapidly absorbed intact and taken
up by monocytes and intestinal macrophages that highly express
bile acid TGR5 receptors. This interaction results in their
differentiation to M2 anti-inflammatory macrophages, an effect
which had important therapeutic consequences. Two different
mouse models of Type 1 diabetes were successfully treated with
pUDCA NPs. Cyclophosphamide-induced diabetes was
prevented with pUDCA NPs containing rapamycin. Treatment
of hyperglycemic NOD mice with PUDCA NPs containing
insulin lowered blood glucose, reversed inflammation, and
increased survival. In both models the ratio of cytotoxic CD8
cells and CD4 Tregs in draining lymph nodes was reversed, a
finding suggesting that immunogenic dendritic cells had been
switched to tolerogenic. Thus, pUDCANPs appear to be a first in
class orally ingestible carrier with remarkable therapeutic
properties applicable to a wide variety of immune-mediated
inflammatory diseases (102).
DISCUSSION AND CONCLUDING
REMARKS

We have reviewed various approaches that use NPs to generate
and expand Tregs by targeting APCs or directly targeting T cells
and these approaches are summarized in Table 1. To induce and
expand therapeutic polyclonal Tregs, NPs can be targeted to the
large numbers of tolerogenic APCs present in the liver and in the
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intestinal immune system. Antigen-specific Tregs can be induced
by including peptide antigens carried by the NPs. In
autoimmune diseases approaches are directed to switch the
differentiation of rapidly turning-over immature dendritic cells
from immunogenic to tolerogenic. These include peptide-loaded
NPs formulated to mimic the tolerogenic effects of particle
apoptosis. A pharmacologic agent can be attached to or
encapsulated in these NPs to enhance their tolerogenic
properties. Alternatively, tolerogenic NPs can be formulated
that directly target T cells or NK cells. NPs coating with
peptide/MHC complexes target Th1 T cells and can switch
Frontiers in Immunology | www.frontiersin.org 9
them to become Treg1 cells in MHC compatible subjects. NPs
coated with anti-CD2 or anti-CD3 antibodies can act as artificial
APCs that target CD4 and CD8 cells that provide the T cell
receptor stimulation, IL-2 and TGF-b that induce and/or expand
polyclonal Tregs. These NPs have the potential to repair defects
in IL-2 and/or TGF-b production associated with SLE and other
autoimmune diseases and, thus, normalize Treg function. Since
these anti-CD2 and anti-CD3 antibody-coated NPs have the
additional property to induce their targeted lymphocytes to
provide TGF-b in the local environment. These NPs therefore,
contain only IL-2 (96). Because of the pleotropic activities of
TABLE 1 | Different approaches employing nanoparticles therapies for tolerance induction.

Tolerogenic action through modulation of antigen-presenting cells

Category NP Description Mechanism References

Delivery of
pharmacological agents
to promote tolerogenic
APCs

Multiple polymer- (PLGA) or lipid-based (liposome) NP
formulations encapsulating immunomodulatory agents such as
rapamycin, dexamethasone, vitamin D3 and curcumin

Induction of tolerogenic dendritic cell phenotype that can
promote tolerance through a variety of mechanisms
including Treg expansion and anti-inflammatory cytokine
production. No antigen-specificity

40, 43, 44,
70

Delivery of disease-
relevant antigen to APCs
through naturally
tolerogenic mechanisms

PLGA or chitosan NPs with encapsulated antigen Oral delivery ! Oral Tolerance 41, 42,
98–101

Antigen-loaded pUDCA NPs (additional immunosuppressive
property of polymer material)

102

Antigen-loaded NPs designed to display signatures of
apoptotic cells to exterior; examples include surface-bound
phosphatidylserine and negative surface charge to promote
internalization by MARCO receptor

Mimicry of apoptotic cells/bodies 53–57

Antigen-loaded PLGA coated with ligands for mannose/
scavenger receptors on LSEC

Targeting of naturally tolerogenic environments (liver
sinusoidal endothelial cells, LSEC)

48

Polymer-coated iron oxide nanocrystals or quantum dots with
conjugated peptide antigen

49

Delivery of drug-antigen
combination to APCs

PLGA NPs with co-encapsulated rapamycin and antigen or
rapamycin only (delivered with free antigen)

Antigen delivery to APCs which are skewed tolerogenic by
codelivery of immunomodulatory agents.

15, 67–69

Gold NPs with conjugated peptide antigen and tolerogenic aryl
hydrocarbon receptor agonist (later work with liposomes)

60, 63, 64

Direct tolerogenic action on lymphocyte subsets

Category NP Description Mechanism References

Delivery of small
molecules to T cells

Nanolipogel system encapsulating CaMK4 inhibitor, KN93 Selective inhibition of CaMK4 in targeted CD4 T cells blocks
Th17 differentiation

72, 73

Nanolipogel system encapsulating DNA methyltransferase
inhibitor, 5-aqzacytidine

Targeted demethylation leads to expansion and enhanced
function of Tregs (CD4) cells and restrains expansion of
pathogenic double-negative T cells (CD8)

75

Delivery of miRNA to T
cells

Pegylated PLGA-b-poly(l-lysine) NP encapsulating miR-125a Corrects imbalance of effector/regulatory T cells present in
model of SLE

80

Delivery of cytokines to T
cells

PLGA NPs encapsulating Leukemia Inhibitory Factor Targeted delivery to CD4 T cells blocks IL-6 induced Th17
differentiation and favors upregulation of Tregs

84–86

CD4/8-targeted PLGA NPs encapsulating TGF-b and IL-2 Paracrine delivery of cytokines promotes the induction and
sustained expansion of CD4/8 Tregs with stable Foxp3
expression

13, 31, 90

CD2-targeted PLGA NPs encapsulating TGF-b and IL-2 Targeted delivery of IL-2 to NK cells via anti-CD2 promotes
expansion and upregulation of native TGF-b production

96

Peptide-MHC
presentation to T cell
receptors

pMHC complexes bound to surface of metal-oxide NPs pMHC signal in the absence of costimulation promotes
differentiation of IL-10 producing Tr1 cells and triggers
deletion of pathogenic effector populations

91–93

Antigen delivery to B cells Liposomes displaying both antigen and glycan ligands of CD22 Antigen exposure in the presence of CD22 engagement
initiates tolerogenic programming that promotes antigen
specific B cell tolerance as measured by decreased
autoantibody formation

76, 77

Combination of multiple
approaches

PLGA NPs decorated with pMHC, CD47, and multiple
regulatory molecules with encapsulated TGFb

Inhibition of T cell proliferation with selective decreases in
effector Th1/Th17. Upregulation of regulatory T cells.
Increased TGF-b and IL-10 in CNS and spleen.

94, 95
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TGF-b, the possible adverse side effects of NPs containing TGF-b
can be avoided. As indicated above, coating the NPs with anti-
CD2 antibodies has recently been reported to induce NK cells to
produce the TGF-b needed for the maintenance of Tregs.

There are significant challenges to be confronted in
developing NN-based therapies for autoimmune diseases. First,
the translation of laboratory formulations of therapeutic NPs up
to large scale clinical grade numbers will be formidable (103).
There are manufacturing challenges in standardization and
quality control of large batches of NPs. Secondly, not only
autoimmune diseases diverse in type, but the individual
presentation of a given disease can vary considerably. The
therapeutic effects can vary between the initial time of onset
and the chronic phase of the disease. We believe the optimal time
to treat these diseases will be early before organ damage occurs.
We are also optimistic that NP treatment of highly susceptible
subjects before the onset of clinical disease may be beneficial. For
example, treatment of rheumatoid arthritis early with tumor
necrosis factor antagonists had the best likelihood of achieving
remission (104). Thirdly, the dose, timing and frequency of
administration of the therapeutic NP must be carefully
evaluated. Fourthly, in achieving the objective to induce
antigen-specific Tregs, the causal peptide can differ in that
patients affected. Finally, in clinical trials the concurrent use of
other immunosuppressive drugs can greatly influence the
therapeutic outcome.

Clinical trials using tolerogenic nanoparticle formulations
have begun. The first indication has been to prevent the
emergence of antibodies to biological agents that can interfere
with their beneficial effects. Human proof-of concept for the
mitigation of anti-drug antibodies has been demonstrated in a
phase II study in patients with refractory gout with NPs that are
that loaded with pegadricase, a pegylated formulation of uricase,
an enzyme that breaks down uric acid. Since pegadricase is
strongly immunogenic, the NPs also contain rapamycin which
converts strong immunogenic signals mediated by the PI3K/Akt/
mTOR pathway to weaker tolerogenic signals (69). In addition,
Frontiers in Immunology | www.frontiersin.org 10
clinical trials using low dose IL-2 to repair and enhance Treg
function are in progress for the treatment SLE and other
autoimmune diseases. In one of these studies patients with SLE
and other chronic immune-mediated diseases were treated with
intermittent doses of low dose IL-2 for 6 months with persistent
increases in CD4 Tregs and clinical improvement of disease
activity and severity (105).

Although the results with low dose IL-2 have been
encouraging, it is likely that NPs directly targeted to T cells
which are able to provide them the stimulation and small
amounts of both IL-2 and TGF-b in the local environment for
them to become Tregs can have even more beneficial therapeutic
effects with additional safety. The judicious use of these NPs can
possibly achieve long-term remission and, ultimately, prevent
SLE and other chronic immune-mediated inflammatory diseases
in highly susceptible individuals.
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