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Cystic fibrosis (CF) is a common disorder of autosomal recessive inheritance, that once

conferred a life expectancy of only a few months. Over recent years, significant advances

have been made to CF therapeutic approaches, changing the face of the disease, and

facilitating the partial restoration of pancreatic function. This mini review summarizes the

current landscape of exocrine pancreaticmanagement in CF and explores areas for future

direction and development.
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INTRODUCTION

Cystic fibrosis (CF) is one of the most common recessive genetic disorders worldwide, with wide-
ranging health implications. While CF is characterized as an illness of pulmonary morbidity and
mortality, it is a multisystem disorder encompassing sequelae in the gastrointestinal, hepatobiliary,
and pancreatic systems (1). CF occurs due to mutations in the cystic fibrosis transmembrane
conductance regulator (CFTR) gene. Over 2,000 mutations, with varying functional consequences,
have been identified to date, resulting in a spectrum of disease phenotypes. The CF gene encodes the
CFTR protein responsible for driving chloride, bicarbonate and fluid secretion in affected epithelial
surfaces. Dysfunction in the CFTR protein results in thick, inspissated secretions which in turn
leads to obstruction, infection, inflammation and ultimately destruction of affected organs (2).
These processes result in clinical manifestations such as chronic sinopulmonary diseases, exocrine
and endocrine pancreatic diseases, intestinal obstruction, cirrhosis and obstructive azoospermia
from atrophic or absent vasa deferens (3). This mini-review will focus on the exocrine pancreatic
disease in CF, and how presentation and management has evolved with the introduction of
CFTR-modulating therapies.

PATHOPHYSIOLOGY OF CYSTIC FIBROSIS IN THE PANCREAS

Pancreatic dysfunction in CF is a result of ductal obstruction from early in life. The specific
mechanisms behind this process are multifactorial and incompletely understood, but are thought
to hinge on dysregulated bicarbonate buffering, altered chloride flux and the production of
pro-inflammatory pancreatic secretions. Our understanding of the pathophysiology has evolved
exponentially in recent years, and is continuing to expand rapidly. The first pathological
descriptions of “fibrocystic disease” of the pancreas were published by Dr. Dorothy Andersen in
1938 (4), but it was not until 1989, almost four decades later, that the CFTR gene was first recognized
by Riordan and colleagues, demonstrating the clear genetic basis for the multisystem phenotype of
CF (5).
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In the 30 years since, our understanding of the role of CFTR
in pancreatic function has deepened, guiding CF management
beyond a “blanket” approach and toward more directed therapy.
Today, CFTR has been established as a key modulator of chloride
and bicarbonate transport, with downstream implications for
several organ systems. In the small pancreatic ducts, this
ionic flux is crucial in the production of alkaline fluid, the
neutralization of gastric acid and the maintenance of a functional
environment for digestive enzymes (2).

In the pancreatic ductal epithelia, defective CFTR results
in ductal secretions with a lower pH (secondary to reduced
bicarbonate buffering), a lower volume (secondary to reduced
sodium chloride-driven osmosis) and an increased viscosity
(secondary to protein hyperconcentration) (6, 7). This process
begins in utero, resulting in early acinar plugs consisting
mainly of zymogen material. As exocrine atrophy progresses,
the ability of the pancreas to produce zymogens decreases, and
these plugs come to contain a higher proportion of mucins
secondary to ductal metaplasia (8). Ultimately, the end effects
of CFTR dysregulation have been widely observed to result
in pancreatic ductal obstruction and zymogen accumulation,
leading to fibroinflammatory changes and parenchymal injury
(2, 9).

GENOTYPE-PHENOTYPE CORRELATIONS
OF THE EXOCRINE PANCREAS IN CF

The spectrum of phenotypic presentation of exocrine pancreatic
disease in CF closely correlates with individual genotype. While
>2,000 mutations have been identified to date, with more
expected to be uncovered with time, they can be broadly
categorized into six classes in relation to the degree of CFTR
protein production and function. These classes are summarized
in Table 1 below.

Genotype classes I, II and III are commonly associated
with pancreatic insufficiency, due to a greater degree of CFTR
deficiency and dysfunction. Genotype classes IV, V, and VI or
compound heterozygous individuals with one less severe allele,
tend to retain some level of exocrine function as CFTR is still
produced to some extent (Table 1). Response to therapeutic
interventions varies between genotype classes, and varies further
within each class itself. While genotype provides one method of
classifying CF disease to guide investigation and management, it
is important to recognize that outcomes in CF are also influenced
by a number of other determinants including epigenetic factors,
genetic modifiers, environmental factors and socioeconomic
status (11).

CFTR MODULATOR THERAPY OVERVIEW

The identification of CFTR as the genetic basis for CF disease
has turned scientific research toward precision medicine, and
the early 2000s saw the introduction of CFTR modulator
drugs. CFTR modulators are designed to support or restore the
functionality of CFTR, and are classified into five key groups

based on mechanism: potentiators, correctors, stabilizers, read-
through agents, and amplifiers (3). Currently, only four agents
have been made available on the pharmaceutical market, and are
approved for use only in specific genotypes.

Potentiators
Potentiators restore or augment the cAMP mediated CFTR
gating, allowing for some degree of CFTR-dependent transport
to occur. Approximately 5% of CF mutations are a gating or
conductance deficit, and it is this proportion of the CF population
that will benefit from potentiator therapy. These mutations tend
to fall within Classes III and IV (Table 1). Currently, the only
available potentiator is ivacaftor, which is approved use either as
a monotherapy, or as combination therapy with the correctors
tezacaftor or lumacaftor. While the mechanism of action is yet
to be fully elucidated, clinical outcomes demonstrate significant
improvement amongst eligible patients commenced on therapy,
ranging from decreased frequency of pulmonary exacerbations,
to nutritional improvement and rescued pancreatic function
(14, 15). While there are several other potentiators currently
under clinical evaluation, ivacaftor remains the only potentiator
available for patient use.

Correctors
Correctors (e.g., tezacaftor, lumacaftor, and elexacaftor) assist
CFTR protein structuring and trafficking. While the specifics
of activity vary between individual agents, the mechanism of
the corrector class is considered to be either direct (binding
to the misfolded protein itself and “chaperoning” it through
the endoplasmic reticulum) or indirect (through proteostasis
regulation) (3). Mistrafficking is themost commonmutation type
in CF, notably including the F508del mutation.

Stabilizers
Stabilizing therapies target Class VI mutations, wherein the
CFTR protein is present at the plasma membrane but has
reduced availability due to increased lysosomal degradation.
Stabilizers function to anchor the protein at the cell surface,
preventing premature removal and destruction. While
lumacaftor has been shown to transiently increase CFTR
stability, ongoing investigation into agents with longer-term
benefits are ongoing (16).

Read-Through Agents
One of the more severe phenotypes in CF results from defective
CFTR synthesis in the first instance, usually due to the
introduction of a premature termination codon (PTC) into the
protein mRNA (Class I mutations). Read-through agents allow
the protein translation process to “skip over” the PTC through
recruiting an alternative amino acid in its place, facilitating
the production of a full-length protein (17). Aminoglycosides
such as gentamicin have demonstrated read-through capabilities
in early experimental studies, but the practical application of
these properties is limited by the toxicity profile seen with
longer-term dosing. While some trials are currently examining
aminoglycoside derivatives with stronger read-through capability
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TABLE 1 | An overview of the genotype classes in CF, with their associated pancreatic phenotype (11–13).

Class CFTR function Pancreatic status Example Mutations

I

“Protein synthesis

defect”

No CFTR is synthesized due to stop codons or splicing defects. Insufficient G542X, W1282X, R553X, 3950delT

II

“Maturation defect”

CFTR is synthesized but in an immature form which is degraded

intracellularly.

Insufficient F508del, N1303K

III

“Gating defect”

Despite synthesis of CFTR, activation and regulation by ATP or

cAMP are disrupted.

Insufficient G551D, G178R, S549N, S549R,

G551S, G970R, G1244E, S1251N,

S1255P, G1349D

IV

“Conductance defect”

CFTR is synthesized and expressed at the plasma membrane, but

chloride conductance is reduced.

Insufficient R334W, G314E, R347P, D1152H

V

“Reduced quantity”

CFTR synthesis is normal but produced in quantities too small to

be effective at the cell surface.

Sufficient 3849+ 10 kb C→ T, 3272-26 A→ G,

2789+5G→ A

VI

“Reduced stability”

CFTR stability is reduced so protein synthesis at the cell surface

cannot occur in quantities high enough to be effective.

Variable c. 120del123, rPhe580del

Unclassified All other mutations, including those

unknown

and less toxicity, nothing has been approved for use in CF to date
(18, 19).

Amplifiers
Class V mutations encompass those genotypes resulting in
reduced synthesis or maturation of the CFTR protein. Amplifiers
target this class of mutation, increasing the expression of
CFTR mRNA and the downstream protein production load
(20). Nesolicaftor is currently in the midst of phase 3 trials
(Proteostasis Therapeutics), having shown promising results
throughout earlier studies with significantly higher CFTRmRNA
levels when used in combination with existing corrector and
potentiator therapies (21, 22).

THE EXOCRINE PANCREATIC
PHENOTYPES IN CF

Two key clinical manifestations present themselves as hallmarks
of exocrine pancreatic disease in CF: (1) pancreatic insufficiency,
and (2) symptomatic pancreatitis among a subset of people with
pancreatic sufficient (PS) CF. Each of these confer a distinct
disease burden and occur within a specific subset of the CF
population, shaping presentation and management.

Pancreatic Insufficiency
Approximately 85% of people with CF are pancreatic insufficient
(PI) from early in life (23). A near absolute loss in exocrine
output results in a disease of maldigestion, characterized
by steatorrhoea, failure to thrive, and fat-soluble vitamin
deficiencies. Left unrecognized, this population historically died
in early infancy from malnutrition, before the now-familiar
pulmonary manifestations of CF even took root (24). Under-
or malnutrition (as measured by BMI) has been shown in
epidemiological studies to be closely linked with poor pulmonary
and survival outcomes in CF (25). Nowadays, the appropriate
and timely initiation of pancreatic enzyme replacement therapy
(PERT), coupled with a high energy diet, allows these individuals

to facilitate nutritional digestion and maintain adequate growth
and development; hence early recognition and management are
essential. Even with PERT treatment, the clinical consequences of
PI are ongoing and continues to represent a large proportion of
CFmorbidity andmortality, leading tomalnutrition, poor weight
gain and a decreased ability to withstand intercurrent clinical
insults (26).

The PI status should always be confirmed on testing. Fecal
elastase is the most commonly utilized test in clinical practice
for assessing exocrine pancreatic function. Traditionally, a
fecal elastase cutoff of <200µg/g as indicative of PI is used
although a lower cutoff of 100µg/g has been reported to be
of greater predictive value for ruling out PI and minimize
false positive results due to dilution of feces caused by non-
pancreatic intestinal causes (e.g., short gut syndrome) (27).
Other indirect measures of exocrine pancreatic function include
fecal chymotrypsin and serum trypsinogen. These latter two
tests have a lower sensitivity and specificity than fecal elastase,
and their use in the diagnostic setting is curbed by some
key clinical limitations. Fecal chymotrypsin is a commercially
available enzyme, so it cannot be reliably measured in patients
prescribed PERT (28). Serum trypsinogen is not specific for
exocrine pancreatic function, and can be elevated in other states
of disease including acute pancreatitis and is not widely available
(29). Direct tests of pancreatic function, such as secretin or
cholecystokinin testing (using a dreiling tube or endoscope),
are more sensitive and specific, but less commonly used due to
their technical nature and poor patient tolerance and/or need for
general anesthesia (in children) (30).

CFTR-Related Pancreatitis
Approximately 15% of the CF cohort are PS, born with at least
2% of residual pancreatic reserve, enough to adequately digest
and absorb nutrients (26). While PS individuals tend to exhibit
a less severe phenotype overall, it is in this population that
symptomatic pancreatitis may occur, at a proportion of ∼20%.
It is thought to result from an altered ratio of acinar reserve and
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FIGURE 1 | The development of pancreatitis in the context of CFTR-related

contributors. Adapted from Ooi et al. (10).

ductal obstruction, as conceptualized in Figure 1. Compounding
this process, impaired bicarbonate secretion leads to altered
luminal pH, promoting ongoing acute tissue inflammation and
the perpetuation of pancreatitis in the chronic period (31). This
pathology relies on a degree of acinar function to be preserved in
the presence of significant ductal obstruction, hence a negligible
prevalence of pancreatitis amongst the PI group.

As well as genotype being a key determinant, risk of
pancreatitis is also amplified in the context of cigarette or alcohol
use, both of which independently decrease CFTR function (32,
33). Pancreatitis in the CF cohort is diagnosed with classical
criteria of archetypal symptomatology, serum amylase/lipase
greater than three times the upper limit of normal, and/or
consistent findings on imaging (34).

It is also worth noting that in the context of the progressive
nature of pancreatic disease in CF, a percentage of PS individuals
will become PI later in life. The likelihood of this level of
pancreatic destruction is largely informed by genotype (e.g.,
carriage of classes I, II or III mutations on both alleles) and
previous bouts of symptomatic pancreatitis (10). This suggests
that recurrent attacks of symptomatic pancreatitis heralds
progressive deterioration in exocrine function, underscoring
the importance of serially monitoring function amongst the
PS group.

THREE DISTINCT CFTR MODULATOR
TREATMENT GROUPS IN CF PANCREATIC
DISEASE

CFTR modulator treatment eligibility and planning is generally
based on genotype classing (as described in Table 1). However,
this patient classification system does not incorporate likely
pancreatic response into the decision-making process. As CFTR
modulator use has increased, longitudinal evidence comes forth,

describing three different patient groups with distinct pancreatic
presentations and response to therapy.

Pancreatic Insufficient Individuals May
Recover Pancreatic Function
Pancreatic dysfunction in CF begins in utero, and while PERT
prescription can assist in mitigating some of the clinical
ramifications, exocrine disease persists throughout life (35). As
CFTR modulators have become established as a key tenet of
CF management, their wide-ranging effects on health beyond
pulmonary capacity have been brought to the fore. Emerging
evidence has demonstrated improvement and recovery in
exocrine pancreatic function, with implication for growth and
nutritional outcomes later in life. The ARRIVAL trial noted
improvements in measured pancreatic markers such as fecal
elastase (FE) and immunoreactive trypsinogen (IRT) when
ivacaftor was introduced in young children between 12 and 24
months (36), and the KIWI/KLIMB studies demonstrated similar
improvements amongst a group in early childhood (aged 2–
5 years) (37, 38). However, the magnitude of these benefits is
curbed as the introduction age of ivacaftor increases, and ferret
models have demonstrated that withdrawal of therapy reinstates
exocrine disease (39, 40). Ultimately, these findings support the
concept that the “window of opportunity” to rescue exocrine
pancreatic function in CF occurs early in life, hinging on early
and sustained modulator therapy.

The “window of opportunity” in initiating CFTR modulator
treatment is likely to be from as early in life as possible.
However, a recent ivacaftor study in ferret models demonstrated
partial protection from disease progression when the therapy
was commenced in utero. Ferrets in the treatment group
demonstrated similar growth rates as wild-type animals, and
continued on a normal growth trajectory while nursing
even without PERT treatment (40). Corroborating this proof-
of-concept, a recent human case report provides details
of a child born to a F508del homozygous mother on
elexacaftor/tezacaftor/ivacaftor treatment. Despite inheriting a
F508del homozygous genotype themselves, this child did not
meet the laboratory criteria for the IRT CF newborn screening,
and was born PS with growth tracking along the 85th centile
(41). Together, these studies support the finding that pancreatic
disease begins in utero, and raises the possibility that modulator
treatment commenced even prior to birth may slow or perhaps
prevent exocrine disease from taking hold. Currently, no
modulator therapy is approved for use earlier than 2 years of age.

Individuals With Recovered Pancreatic
Function May Develop Symptomatic
Pancreatitis
Rescuing exocrine pancreatic function in CF has clear benefits
for nutrition and growth. However, increasing pancreatic reserve
in CF poses its own risks, as a growing body of evidence
highlights links to the development of symptomatic acute
pancreatitis amongst a subset of patients who were PI prior
to commencement of modulators, corroborated by the findings
of recent case reports. Gould et al. describe a series of five
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patients, all PI, who developed a classical presentation of acute
pancreatitis at a median of 30 months following commencement
of modulator therapy. Of these five, three had regained some level
of exocrine function with FE measurements above 100µg/g (42).
Megalaa et al. describe a similar case report of a 10 year old child,
realized to have regained PS status only after an episode of acute
pancreatitis (43). In keeping with the model conceptualized by
Ooi and colleagues in 2011 (Figure 1), this suggests that while
CFTR modulators may effectively increase pancreatic acinar
reserve, in the setting of ongoing ductal obstruction, this can
result in a heightened risk of pancreatitis (10). This speaks to the
risk profile of CFTR modulators, highlighting that their health
benefits must be considered in the context of potential serious
complications which clinicians must remain vigilant for amongst
this population.

Pancreatic Sufficient Individuals May Have
a Reduced Risk of Symptomatic
Pancreatitis
Conversely, PS patients commenced on modulator treatment
appear to accelerate beyond this critical ratio of acinar reserve
and ductal obstruction (Figure 1), with a subsequent decline in
the prevalence of pancreatitis amongst this group. Akshintala
et al. retrospectively reviewed a small cohort of adult CF
patients with a history of pancreatitis in the preceding 2
years, highlighting that none of these 15 individuals developed
pancreatitis during their follow up period (mean 36 months)
(44). Ramsey and colleagues supported these findings 3 years
onwards, demonstrating a significant reduction in pancreatitis-
related hospitalizations amongst those commenced on CFTR
modulators amongst both PI and PS patients, with a greater
relative risk reduction within the PS group (45). Overall,
these findings suggest that in those suffering from recurrent

pancreatitis, or who have a pre-existing risk of pancreatitis, CFTR
modulators may assist in shifting away from this “risk window,”
alleviating ductal obstruction enough to improve pancreatic
output without inducing further inflammation.

CONCLUSION

Pancreatic disease represents a significant proportion of CF-
related morbidity and mortality. Where treatment previously
focused mitigating the effects of downstream sequalae, the
research landscape has shifted now to focus on addressing
the central CFTR mutation at the root. As CFTR modulators
become established as a cornerstone of CF management, the
limitations of these novel agents are brought to the fore.
The risk-benefit profile of these therapies varies for three CF
cohort subsets, depending on pre-existing pancreatic function
and risk of pancreatitis. This classification of modulator-eligible
patients encourages a patient-centered treatment approach,
where a distinct risk monitoring process may facilitate the early
recognition of key complications unique to each population.
The temporal outcomes of CFTR modulator use in the context
of longer-term pancreatic complications including CF-related
diabetes and malignancy are yet to be established, but with
demonstrable benefits in the short-term setting, positive effects
may be anticipated.
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