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Summary
Background The obesity epidemic in the USA continues to grow nationwide. Although excess weight-related mor-
tality has been studied in general, less is known about how it varies by demographic subgroup within the USA. In
this study we estimated excess mortality associated with elevated body weight nationally and by state and subgroup.

Methods We developed a nationally-representative microsimulation (individual-level) model of US adults between
1999 and 2016, based on risk factor data from 6,002,012 Behavioral Risk Factor Surveillance System respondents.
Prior probability distributions for hazard ratios relating body-mass index (BMI) to mortality were informed by a
global pooling dataset. Individual-level mortality risks were modelled accounting for demographics, smoking his-
tory, and BMI adjusted for self-report bias. We calibrated the model to empirical all-cause mortality rates from CDC
WONDER by state and subgroup, and assessed the predictive accuracy of the model using a random sample of data
withheld from model fitting. We simulated counterfactual scenarios to estimate excess mortality attributable to dif-
ferent levels of excess weight and smoking history.

Findings We estimated that excess weight was responsible for more than 1300 excess deaths per day (nearly
500,000 per year) and a loss in life expectancy of nearly 2¢4 years in 2016, contributing to higher excess mortality
than smoking. Relative excess mortality rates were nearly twice as high for women compared to men in 2016
(21¢9% vs 13¢9%), and were higher for Black non-Hispanic adults. By state, overall excess weight-related life expec-
tancy loss ranged from 1¢75 years (95% UI 1¢57−1¢94) in Colorado to 3¢18 years (95% UI 2¢86-3¢51) in Mississippi.

Interpretation Excess weight has substantial impacts on mortality in the USA, with large disparities by state and
subgroup. Premature mortality will likely increase as obesity continues to rise.
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Introduction
The obesity epidemic in the USA continues to grow,1−4

with large disparities by state and subgroup.5 Since
1999, the Centers for Disease Control and Prevention
(CDC) has published maps of state-level adult obesity
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prevalence, based on self-reported body measures from
the Behavioral Risk Factor Surveillance System
(BRFSS).1 Displaying the spread of obesity across place
and time has helped shift the focus from individual-
level behaviours to broader social and environmental
determinants of obesity. The maps also supported the
beginning of a federal public health response, featuring
prominently in a Surgeon General’s report in 2001.6 In
2015, the CDC began to provide race/ethnicity-specific
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Research in context

Evidence before the study

The obesity epidemic in the USA continues to grow,
with excess weight associated with increased incidence
and mortality of many diseases, including some cancers,
cardiovascular disease, and diabetes. Previous estimates
of the impact of excess weight on premature mortality
for the US overall have ranged from 186,000 to 300,000
excess deaths per year. However, these estimates do
not account for recent increases in obesity prevalence,
and do not provide insight into how excess-weight
related mortality varies by state and demographic sub-
group within the US. We searched PubMed using the
search terms “body mass index”, “all-cause mortality”,
and “United States” on April 5, 2022 without any lan-
guage or publication restrictions, and found no other
national estimates of excess mortality associated with
elevated body weight.

Added value of the study

Using the most recently available data, we developed a
novel computational approach to simulate a nationally-
representative virtual population of US adults, estimat-
ing annual all-cause mortality rates for each person
given their demographic characteristics, body mass
index (BMI), and smoking history. To estimate the
impact of excess BMI on mortality we simulated coun-
terfactual scenarios in which we changed the BMI distri-
bution and compared the predicted mortality outcomes
to the status quo. We estimated national and state-spe-
cific outcomes by demographic subgroup and report
the mean and 95% uncertainty intervals for all
estimates.

Implications of all the available evidence

We estimated that excess weight in the US was respon-
sible for over 1300 deaths per day (nearly 500,000 per
year) in 2016, contributing to higher excess mortality
than smoking, with large disparities by state and sub-
group. On average, excess weight was associated with a
loss in life expectancy of nearly 2¢4 years. Relative
excess mortality rates were nearly twice as high for
women compared to men in 2016 (21¢9% vs 13¢9%),
and were higher for Black non-Hispanic adults. Overall
state-level losses in life expectancy due to excess
weight ranged from 1¢75 years in Colorado to
3¢18 years in Mississippi.
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estimates of state-level obesity prevalence, which have
revealed disparities and helped public health officials
target federal prevention programmes.7

Although useful for planning and priority-setting,
estimates of obesity prevalence alone may not suffi-
ciently convey the human toll of the epidemic or the
seriousness of current racial/ethnic obesity disparities
in a way that can be compared to other epidemics, such
as smoking or COVID-19. Estimating the health conse-
quences of obesity can help to improve understanding
of the implications of the obesity epidemic, as excess
weight is associated with increased incidence and mor-
tality of many health conditions, including some can-
cers, cardiovascular disease, and diabetes,8−10 with
obesity itself increasingly recognised as a disease.11

Although the impact of excess weight on all-cause
mortality has been estimated for the general popula-
tion,12-17 these estimates do not account for recent
increases in obesity prevalence, and less is known about
how excess-weight related mortality varies by state and
demographic subgroup within the USA. Although no
comprehensive data on this topic exist in any one study
or dataset, mathematical modelling is an approach that
can synthesise information from multiple sources in an
internally consistent analytic framework which allows
us to make estimates for relevant outcomes of interest.
We developed a novel computational approach to esti-
mate mortality risks, accounting for body-mass index
(BMI) (kg/m2) distributions and smoking history by
state and subgroup. We estimated state-level trends in
excess deaths and life expectancy loss due to excess
weight between 1999 and 2016 by population sub-
group.
Methods

Study design
We simulated a nationally-representative virtual popula-
tion of US adults, estimating annual all-cause mortality
rates for each person given their demographic character-
istics, BMI, and smoking history. We fitted the model to
empirical data on all-cause mortality rates from 1999 to
2016 by subgroup and state. To estimate the impact of
excess BMI on mortality we simulated counterfactual
scenarios in which we changed the BMI distribution
and compared the predicted mortality outcomes to the
status quo. We briefly describe our analytical approach
below, and provide full details in a supplemental appen-
dix.
Virtual US population
We simulated a nationally-representative virtual popula-
tion of US adults from 1999 to 2016, accounting for
trends in demographics, BMI, and smoking (Appendix
1.1). We modelled the following demographic groups
within each state (50 states + DC) and year (1999
−2016): sex (male/female), race/ethnicity (white non-
Hispanic, Black non-Hispanic, Hispanic, Other non-
Hispanic), and age group (20−24, 25−34, 35−44, 45
−54, 55−64, 75−74, 75−84, 85+ years). Population sizes
by subgroup and year were obtained from CDC WON-
DER, an online database of public health information
developed by the CDC (Appendix 1.1.1). To estimate
www.thelancet.com Vol 48 Month June, 2022
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trends in BMI and smoking by state and subgroup, we
obtained data from the Behavioral Risk Factor Surveil-
lance System (BRFSS) − a large nationally-representa-
tive telephone survey − for 6,002,012 respondents
between 1999 and 2016, allowing us to estimate the
joint distribution of BMI and smoking (Appendix 1.1.2).
Self-reported BMI was adjusted for quantile-specific
self-report bias using measured BMI for 44,827
respondents in the National Health and Nutrition
Examination Survey over the same period, using a
method previously described (Appendix 1.1.3).5 Individ-
ual BRFSS respondents were sampled (with replace-
ment) based on population estimates by state, year, and
subgroup (Appendix 1.1.4)
Statistical analysis
The annual all-cause mortality rate (m) was simulated
for each person as a function of baseline mortality (m0),
estimated for each demographic subgroup for never
smokers at the ‘optimal’ BMI (i.e., no risk factors),
adjusted by hazard ratios accounting for each person’s
BMI (RRBMI) and smoking status (RRsmoke):

ms;r;t y; a;BMI;mð Þ

¼ m0
s;r;t y; að Þ � RRBMI

s;r BMID; að Þ � RRsmoke
s;r m; að Þ

where s is sex, r is race/ethnicity, t is state, y is year, a is
age, m is smoking status, and BMID is the distance
from the ‘optimal’ BMI (see Appendix 1.2).

Baseline mortality rates were estimated by year given
a person’s age, sex, race/ethnicity, and state of resi-
dence. We used a hierarchical model with 4 levels
(National, Census Region, Census Division, State) to
estimate state-specific baseline mortality rates by demo-
graphic group, using sex- and race/ethnicity-specific life
tables to set prior probability distributions (priors) for
national mortality rates, and geography-specific mortal-
ity rates from CDC WONDER to set priors for Region,
Division, and State parameters (Appendix 1.2.1).

We assumed that the nadir of all-cause mortality
rates occurs at the ‘optimal’ BMI, which in a previous
large global study, controlling for potential confound-
ing, was estimated to be between 22¢5 and <25 units of
BMI.12 We set sex-specific priors for optimal BMI,
within which we used the same priors for all race/eth-
nicity groups (i.e. no a priori assumption of differences),
but for greater model flexibility we allowed the fitted val-
ues (estimated via model calibration) to vary by race/eth-
nicity to account for potential differences (Appendix
1.2.2). In our primary analysis, we assumed that the
optimal BMI remained constant by age to help guard
against reverse causation, as older adults are more likely
to have co-morbidities which result in both weight loss
and increased mortality. Given the ‘optimal’ BMI for
each demographic group, we calculated the (signed)
www.thelancet.com Vol 48 Month June, 2022
distance of each person’s BMI from the nadir, which
determined their BMI hazard ratio for all-cause mortal-
ity.

We estimated a continuous surface (i.e., two-dimen-
sional function) of hazard ratios by BMI and age to
account for interactions. We set priors for these hazard
ratios based on estimates from the Global BMI Mortality
Collaboration by BMI category and age group,12 using
cubic spline interpolation to produce continuous values
(Appendix 1.2.3). Using a hierarchical approach,18 we
allowed the hazard ratio surfaces to vary by sex and
race/ethnicity when fitting the model to account for
potential differences by demographic group. Although
we set priors for the hazard ratios using global esti-
mates, we fitted the model parameters to US-specific
mortality data by sex, race/ethnicity, age group, and
state, allowing us to estimate subgroup-specific hazard
ratios which are consistent with empirical mortality
rates.

Smoking hazard ratios were estimated by age, sex,
and race/ethnicity for current and former smokers,
informed by previously published estimates (Appendix
1.2.4).19 We assumed that smoking hazard ratios were
independent of BMI hazard ratios, but do account for
the individual-level joint distribution of these risk fac-
tors.
Model calibration
We fitted our model to empirical data on all-cause mor-
tality rates by state and subgroup between 1999 and
2016 obtained from CDC WONDER,20 comprising
66,249 estimates. We randomly selected 10% of the
estimates to reserve as a testing set (i.e., not used to fit
the model) to assess the predictive accuracy of our
model. We fitted the model to our training set of esti-
mates using a stochastic optimization algorithm (simu-
lated annealing) to minimize the goodness-of-fit score,
calculated for each proposed parameter set as the sum
of the distance-squared between the model predictions
and reported mortality rates, with targets weighted
inversely proportional to the width of their 95% CIs. We
ran 1000 independent search chains, and selected the
best-fitting 50 parameter sets to reflect parameter uncer-
tainty (Appendix 2.1).

We sampled from the best-fitting parameter sets to
run 1000 simulations for each scenario, accounting for
both first-order (individual-level) and second-order
(parameter) uncertainty. We report the mean and 95%
uncertainty intervals (UI), calculated as the 2¢5 and 97¢5
percentiles of the simulation results. We evaluated the
accuracy of our model predictions compared to the
reported mortality rates, and calculated summary indi-
cators including coverage probabilities (how often our
95% UI contained the reported point estimate), mean
error, and mean relative error. Our coverage probability
was 97¢2% for our testing set, with a mean mortality
3
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rate error of 18¢5 per 100,000 and a mean relative error
of 2¢7%. Summary indicators are reported by subgroup
and state in the Appendix, Section 2.2. The model was
developed in Java v1.8.0.
Estimation of excess mortality
We simulated counterfactual scenarios with different
BMI distributions and compared the results to our
‘baseline’ (i.e., status quo) scenario to estimate mortality
attributable to different levels of excess weight (Appen-
dix 4). We used the ‘no excess weight’ scenario (i.e., all
adults with excess weight instead set to the ‘optimal’
BMI) as the primary scenario to estimate excess weight-
related mortality. For comparison, we also simulated
counterfactual scenarios to estimate mortality attribut-
able to smoking status. For each scenario we estimated
excess mortality rates, excess deaths, and loss of life
expectancy for each state and subgroup. Following CDC
analytic guidelines for reliable estimates,21 we sup-
pressed state-specific estimates for subgroups with
fewer than 50 BRFSS respondents. As a sensitivity anal-
ysis, we allowed the ‘optimal’ BMI to vary by age and re-
ran the model calibration and analyses of excess mortal-
ity. Ethical approval was not required for this mathemat-
ical modelling study based on publicly available data.
Role of the funding source
The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the
manuscript. All authors had access to the data in the
study and had final responsibility for the decision to
submit for publication.
Results

Hazard ratios
Our calibrated estimates of ‘optimal’ BMI (based on pri-
ors from the Global BMI Mortality Collaboration)12

were between 20 and 25 for all sex and race/ethnicity
subgroups (Appendix 3.1). We found a J-shaped relation-
ship for hazard ratios by BMI, with declining hazard
ratios by age (Appendix 3.2). Estimated hazard ratio sur-
faces were similar by subgroup, with somewhat lower
estimates for non-Hispanic White men (Appendix
3.2.3). Fitted smoking hazard ratios were also similar
for race/ethnicity subgroups by sex (Appendix 3.3). See
Appendix 3.4 for calibrated baseline mortality parame-
ters.
Excess weight mortality
Overall, we found that excess weight contributed to
more than 1300 excess deaths per day (nearly 500,000
per year) in the USA in 2016, increasing the total mor-
tality rate by nearly 18% and resulting in nearly
2¢4 years of life expectancy loss (see Table 1). On aver-
age, between 1999 and 2016, life expectancy loss for
US adults due to increasing excess weight grew by 1¢4
weeks per year. Relative excess mortality rates were
nearly twice as high for women compared to men in
2016 (21¢9% vs 13¢9%), and were higher for Black non-
Hispanic adults (see Table 1). Differences in life expec-
tancy loss are especially pronounced when considering
both sex and race/ethnicity, with Black non-Hispanic
women estimated to have lost 3¢72 (95% UI 3¢48−3¢91)
years of life expectancy due to excess weight in 2016
compared to 1¢32 years (95% UI 1¢12−1¢53) for Other
non-Hispanic men. By state, we estimated that life
expectancy loss in 2016 due to excess weight ranged
from 1¢75 years (95% UI 1¢57−1¢94) in Colorado to
3¢18 years (95% UI 2¢86−3¢51) in Mississippi, and
increased since 1999 for every state/territory with the
exception of DC (Appendix 4.1.1).

Examining excess-weight related mortality by age
group, we find that the absolute excess mortality rate (i.
e. absolute difference: m̂ � m�) increases sharply with
age, but that relative excess mortality (i.e. relative differ-
ence: m̂�m�

m� ) is highest in middle age, with the largest
number of excess deaths occurring between ages 65−74
(Appendix 4.1.2).
Excess mortality by BMI and smoking
Among BMI categories, overall we find that overweight
(BMI 25-<30) contributed about 21% of deaths due to
excess weight in 2016 (see Table 2). Class 3 obesity
(BMI 40+), while less common (7.6% among adults 20
+ in NHANES 2015−2016), accounted for 25% of
excess-weight related deaths due to the large health
risks associated with very high BMI. Overall, we find
that excess weight was responsible for more deaths in
2016 than smoking (both current and former smokers),
driven by higher excess weight-related deaths among
women, while smoking still caused more excess deaths
among men (see Table 2).
Life expectancy loss by state and subgroup
Within demographic groups, we also found large differ-
ences in life expectancy loss in 2016 due to excess
weight across states. For men, years of life expectancy
loss ranged from 1¢28 (95% UI 1¢08−1¢50) in Colorado
to 2¢62 (95% UI 2¢22−3¢06) in Mississippi, and for
women ranged from 1¢83 (95% UI 1¢28−2¢42) in
Hawaii to 3¢87 (95% UI 3¢28−4¢50) in West Virginia
(see Figure 1). Disparities in years of life expectancy loss
due to excess weight are even larger by demographic
group and state, ranging from 0¢55 (95% UI 0−1¢58) for
non-Hispanic White men in DC to 5¢93 (95% UI 0
−21¢74) for non-Hispanic Other men in Wyoming (see
Figure 1). Results for all states and subgroups are avail-
able in the Appendix, Sections 4.3−4.4.
www.thelancet.com Vol 48 Month June, 2022



Excess deaths per day Excess mortality rate (%) Life expectancy* loss (years)

Group 1999 2016 1999 2016 1999 2016

Overall 917 (862−985) 1324 (1271−1382) 14¢0 (13¢1−15¢0) 17¢9 (17¢2−18¢6) 1¢89 (1¢78−2¢02) 2¢36 (2¢26−2¢46)
Sex

Men 319 (291−355) 522 (491−563) 10¢0 (9¢1−11¢1) 13¢9 (13¢1−14¢9) 1¢39 (1¢28−1¢53) 1¢87 (1¢76−1¢99)
Women 599 (558−637) 802 (771−835) 17¢7 (16¢6−18¢9) 21¢9 (21¢0−22¢8) 2¢36 (2¢22−2¢52) 2¢83 (2¢71−2¢97)
Race/Ethnicity

White, non-Hispanic 703 (650−767) 995 (945−1053) 12¢9 (12¢0−14¢1) 17¢0 (16¢2−17¢9) 1¢66 (1¢53−1¢81) 2¢20 (2¢07−2¢35)
Black, non-Hispanic 150 (138−160) 190 (179−200) 19¢9 (18¢6−21¢2) 22¢8 (21¢5−23¢8) 3¢21 (2¢94−3¢43) 3¢34 (3¢12−3¢51)
Hispanic 49 (44−55) 104 (95−112) 18¢1 (16¢2−19¢9) 20¢9 (19¢3−22¢4) 2¢03 (1¢83−2¢24) 2¢22 (2¢02−2¢39)
Other, non-Hispanic 15 (14−17) 35 (31−38) 13¢4 (12¢0−15¢1) 14¢7 (13¢4−16¢2) 1¢33 (1¢17−1¢50) 1¢50 (1¢34−1¢66)
Sex + Race/Ethnicity

Men: White, non-Hispanic 234 (208−267) 383 (353−421) 9¢0 (8¢0−10¢2) 13¢0 (12¢1−14¢3) 1¢16 (1¢04−1¢30) 1¢63 (1¢49−1¢78)
Men: Black, non-Hispanic 59 (51−67) 79 (72−87) 15¢5 (13¢6−17¢7) 18¢6 (16¢9−20¢4) 2¢60 (2¢22−2¢99) 2¢87 (2¢61−3¢18)
Men: Hispanic 20 (16−24) 45 (40−51) 12¢9 (10¢9−15¢5) 16¢7 (14¢8−19¢0) 1¢52 (1¢30−1¢83) 1¢81 (1¢58−2¢05)
Men: Other, non-Hispanic 7 (5−8) 15 (13−17) 10¢7 (8¢5−13¢0) 12¢3 (10¢6−14¢1) 1¢09 (0¢88−1¢34) 1¢32 (1¢12−1¢53)
Women: White, non-Hispanic 469 (430−508) 613 (582−646) 16¢6 (15¢3−18¢0) 21¢0 (20¢0−22¢1) 2¢13 (1¢96−2¢34) 2¢78 (2¢62−2¢98)
Women: Black, non-Hispanic 91 (85−97) 111 (104−117) 24¢4 (22¢9−25¢8) 27¢1 (25¢7−28¢4) 3¢84 (3¢59−4¢08) 3¢72 (3¢48−3¢91)
Women: Hispanic 30 (27−34) 59 (52−65) 24¢5 (22¢0−27¢3) 26¢0 (23¢5−28¢7) 2¢59 (2¢29−2¢93) 2¢59 (2¢31−2¢90)
Women: Other, non-Hispanic 9 (7−10) 20 (17−23) 16¢6 (13¢9−19¢5) 17¢2 (14¢8−19¢7) 1¢57 (1¢30−1¢86) 1¢66 (1¢39−1¢94)

Table 1: Excess weight-related mortality indicators, US Adults (20+).
Data shown are mean (95% UI).

* Period, conditional (age 20) life expectancy.

Articles
Sensitivity analysis
Our sensitivity analysis, in which ‘optimal’ BMI was
allowed to vary by age, estimated a smaller impact of
excess weight on mortality, with 819 (95% UI 614
−1012) excess deaths per day in 2016, and a loss in life
expectancy of 1¢62 years (95% UI 1¢18−1¢97). Excess
mortality estimates from our sensitivity analysis are rel-
atively similar to our primary analysis for men, but are
lower for women (Appendix 5).
Discussion
Our model fits well to observed mortality by state and
subgroup, accounting for differences in levels and
Overall

BMI Category

Overweight (25-<30) 284 (265−304)

Class 1 Obesity (30-<35) 377 (357−399)

Class 2 Obesity (35-<40) 295 (280−310)

Class 3 Obesity (40+) 337 (322−351)

Obesity (30+) 1010 (972−1046)

Any Excess Weight (BMI>BMI*) 1324 (1271−1382)

Smoking Status

Current Smoker 486 (469−503)

Former Smoker 548 (534−563)

Ever Smoker 1034 (1016−1054)

Table 2: Estimated excess deaths per day in 2016 by risk factor: BMI cat
Data shown are mean (95% UI). BMI=Body mass index (kg/m2).
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trends of BMI, smoking, and other demographic factors
which influence all-cause mortality. We find that the
‘optimal’ BMI for all-cause mortality falls within the
‘normal weight’ range of 18¢5−25, and is similar by
race/ethnicity subgroup, with larger differences by sex.
We find a J-shaped relationship of all-cause mortality
with BMI, consistent with prior estimates,12 with declin-
ing BMI-related hazard ratios (but increasing absolute
excess mortality rates) by age, likely due to increasing
baseline mortality, residual reverse causation, and loss
of lean mass. Using a flexible, hierarchical approach we
allowed the hazard ratio surfaces to vary by subgroup,
but found that BMI- and age-specific all-cause mortality
hazard ratios were generally similar for race/ethnicity
Men Women

89 (74−109) 195 (184−207)

155 (146−166) 222 (206−237)

131 (121−142) 164 (155−174)

146 (139−152) 192 (178−202)

433 (412−453) 578 (554−601)

522 (491−563) 802 (771−835)

316 (305−332) 170 (160−183)

384 (375−396) 164 (152−172)

701 (687−714) 333 (320−348)

egory and smoking status.
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Figure 1. Estimated excess weight-related life expectancy loss (years) by state and subgroup in 2016. (Grey = Suppressed estimate
due to small sample size)
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and sex subgroups, but were somewhat lower for
non-Hispanic white men, which may reflect a variety
of influences, including biological and structural fac-
tors such as differential healthcare access or quality
of care. Further research on this point is needed to
estimate the relative contribution of potential differ-
ences in underlying biology22,23 versus societal fac-
tors, such as systemic racism,24 which could not be
www.thelancet.com Vol 48 Month June, 2022
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explored in this study, but are critical to informing
policy interventions.

Although overweight (BMI 25-<30) is associated
with relatively small increased risks of mortality com-
pared to higher levels of excess weight, because it is very
common in the US it contributes to nearly a quarter of
deaths from excess weight. Conversely, although Class 3
obesity (BMI 40+) is less common, the large health
risks associated with high BMI mean that it contributes
substantially to mortality. Increases in excess weight,
both in terms of obesity prevalence and levels of BMI (e.
g., rising severe obesity),5 together with declines in
smoking prevalence19 has resulted in excess weight
accounting for more deaths than smoking among US
adults.

As a result of increasing BMI, life expectancy loss
associated with excess weight has increased nationally
in the US, and varies widely by state and subgroup, and
is especially high nationwide for non-Hispanic Black
women, largely as a result of higher obesity prevalence.5

Indeed, we found that life expectancy loss associated
with excess weight has grown in every state/territory
except for DC, which likely reflects changes in the
demographic composition in DC. For completeness we
provide estimates for all race/ethnicity subgroups, how-
ever the composition of the “Other” race/ethnicity sub-
group (pooled due to small sample size and lack of
detailed mortality data) is quite heterogeneous and
varies widely from state to state. According to more
granular BRFSS data on race/ethnicity subgroups,5

states with lower excess-weight related life expectancy
loss among this pooled “Other” group, such as Califor-
nia and New York, are predominately Asian, whereas
states with higher excess mortality for this group, such
as Montana and Wyoming are predominately American
Indian/Alaskan Native. More detailed mortality data are
needed to more accurately characterize disparities by
specific race/ethnicity subgroups.

As obesity continues to increase in the USA,5 excess
mortality is likely even higher now than in 2016, the
last year for which all-cause mortality data were avail-
able from CDC WONDER. This trend has likely acceler-
ated during the ongoing COVID-19 pandemic, as excess
weight is associated with higher morbidity and mortal-
ity from COVID-19.25,26 Our estimates suggest that
excess weight may be responsible for more deaths than
annual mortality from COVID-19, which was estimated
to have reduced US life expectancy at birth in 2020 by
1¢31 years,27 with an estimated 458,000 excess deaths
(observed vs expected) in 2020.28 In comparison, we
estimate that in 2016 excess weight contributed to more
than 1300 excess deaths per day (nearly 500,000 per
year), and reduced life expectancy by nearly 2¢4 years.
Because excess-weight related deaths generally occur at
earlier ages than COVID-19 deaths, they have an even
larger impact on life expectancy. While the COVID-19
pandemic has had substantial adverse effects, with large
www.thelancet.com Vol 48 Month June, 2022
health and economic shocks worldwide, as the acute
impacts of the pandemic are brought under control, the
US still faces a chronic health crisis of increased mor-
bidity and mortality year after year due to excess weight.
This is likely only to worsen as obesity is projected to
continue rising in every state in the US.5 Indeed, obesity
trends may have been exacerbated by the pandemic,
with some studies suggesting an acceleration in weight
gain for both children and adults.29,30

Although our model has high predictive accuracy,
our analysis has certain limitations. For example,
small sample sizes for some subgroups result in
large uncertainty around the estimates for these sub-
groups within states. We were also unable to assess
mortality risks by income, which is a well-known risk
factor for both obesity5 and mortality,31 as all-cause
mortality estimates are not available by income group
in CDC WONDER. Similarly, although we accounted
for the joint distribution of BMI and smoking for
individuals in the model, we did not include other
risk factors which may have independent effects on
mortality, such as physical activity and fitness, which
may be more informative than BMI alone.32 How-
ever, because we fitted the model to state- and demo-
graphic-specific mortality data, the potential impacts
of other risk factors not explicitly modelled are
reflected in our baseline mortality parameters.

We also assumed that age/BMI-specific hazard ratios
were constant over time, which may ignore temporal
changes in mortality risk if medical care has improved
for patients with obesity. However, we do not anticipate
that large changes in mortality for a given risk profile (i.
e., age, sex, BMI, race/ethnicity, state) occurred during
our analytic timeframe of 1999−2016. Moreover, we
find empirically that under this assumption our model
has high predictive accuracy for mortality rates observed
during this period.

Lastly, our analysis evaluates short-term (annual)
mortality rates associated with BMI and smoking.
Although our hazard ratio parameters are informed
by estimates from the Global BMI Mortality Collabo-
ration which examine longer-term mortality out-
comes and are adjusted for potential confounding,
our estimates may be influenced by residual impacts
of reverse causation (i.e., health conditions, including
frailty, which both increase mortality risk and
decrease BMI), especially at older ages. Our esti-
mates of excess weight-related mortality may there-
fore be conservative. Residual confounding by
smoking may also contribute to underestimation of
the impacts of excess adiposity; for example, high
body weight is strongly associated with lower risk of
lung cancer, but there is no plausible mechanism
and Mendelian randomization analyses suggest that
this inverse association is not causal.33

Our sensitivity analysis in which we allow
‘optimal’ BMI to vary with age yields lower, but still
7
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substantial estimates of excess weight-related mortal-
ity, but is likely more impacted by reverse causation.
Further research to assess the impact of ‘optimal’
BMI on mortality outcomes over various time peri-
ods by age and by sex may help to more precisely
characterize time-dependent relationships between
BMI and longevity.

Nevertheless, even with these limitations which may
attenuate our associations, we estimate that excess
weight has a large impact on mortality, with over 1300
excess deaths per day in 2016 among US adults, result-
ing in an 18% increase in mortality rates and a loss in
life expectancy of nearly 2.4 years. Excess mortality is
even larger for some subgroups, especially women and
non-Hispanic Black adults, with especially large impacts
in many states in the US. As the obesity epidemic con-
tinues to grow, premature mortality due to excess
weight is likely to rise, highlighting the need for cost-
effective interventions to promote healthy weight across
the life course.34,35
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