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ABSTRACT

A structural covariance network (SCN) has been used successfully in structural magnetic
resonance imaging (sMRI) studies. However, most SCNs have been constructed by a unitary
marker that is insensitive for discriminating different disease phases. The aim of this study
was to devise a novel regional radiomics similarity network (R2SN) that could provide more
comprehensive information in morphological network analysis. R2SNs were constructed by
computing the Pearson correlations between the radiomics features extracted from any pair
of regions for each subject (AAL atlas). We further assessed the small-world property of R2SNs,
and we evaluated the reproducibility in different datasets and through test-retest analysis. The
relationships between the R2SNs and general intelligence/interregional coexpression of genes
were also explored. R2SNs could be replicated in different datasets, regardless of the use of
different feature subsets. R2SNs showed high reproducibility in the test-retest analysis
(intraclass correlation coefficient > 0.7). In addition, the small-word property (σ > 2)
and the high correlation between gene expression (R = 0.29, p < 0.001) and general intelligence
were determined for R2SNs. Furthermore, the results have also been repeated in the
Brainnetome atlas. R2SNs provide a novel, reliable, and biologically plausible method to
understand human morphological covariance based on sMRI.

AUTHOR SUMMARY

Gray matter volume and cortical thickness are some of the most popular brain morphological
measures of structural magnetic resonance imaging (sMRI). These patterns are important for
understanding complex brain cognitive function. However, most of the studies typically analyze
single/several anatomical regions independently without considering associations among
brain regions. The structural covariance network (SCN) is often used to reconstruct the brain
structural network from sMRI and is commonly used tomeasure the association between regions
in the human brain with morphological similarity. However, most of the individual SCNs
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have been constructed by a unitary marker such as gray volume/cortical thickness with
hyposensitivity. We develop a novel, reliable and biologically plausible brain network to
understand human morphological covariance based on sMRI.

INTRODUCTION

Structural magnetic resonance imaging (sMRI) plays an important role in neuroscience, including
in evaluations of gray matter volume and cortical thickness, which are some of the most popular
brain morphological measures. However, most of the studies typically analyze single/several
anatomical regions independently without considering associations among brain regions
(Alexander-Bloch et al., 2013; Pichet Binette et al., 2020), especially regarding which complex
heterogeneous network patterns can be used to characterize the brain by supporting information
transformation; these patterns are important for understanding complex brain cognitive function
(Bullmore & Sporns, 2012; Alexander-Bloch et al., 2013). Specifically, the structural covariance
network (SCN) is often used to reconstruct the brain structural network from sMRI based on the
similarity of gray matter morphology (He et al., 2007; Tijms et al., 2012) and is commonly used to
measure the association between interregions in the human brain with morphological similarity
(He et al., 2007;Montembeault et al., 2012; Tijms et al., 2012;Montembeault et al., 2016; Zhang
et al., 2017; Seidlitz et al., 2018; Kong et al., 2019; Spreng et al., 2019).

The SCNs typically consist of nodes and edges, representing the predefined brain regions
and the statistical similarity between them based on predefined morphological markers such as
volume or thickness (For a review, see Alexander-Bloch et al., 2013). Several methodologies
have been introduced for the reconstruction of connectome maps based on sMRI either at the
group level [such as independent component analysis (Guo et al., 2015; Pichet Binette et al.,
2020) and seed-based technology (Zielinski et al., 2010)] or the individual level. Specifically,
SCN based on cortical thickness (He et al., 2007, 2008) or gray matter volume (Yao et al.,
2010) was well studied at the group level, whereas the abovementioned biomarkers were also
developed to construct brain networks using single or multiple morphological features at the
individual level (Tijms et al., 2012; Wee et al., 2013; Kong et al., 2014; Kim et al., 2016). All
these methods have been used to investigate network alterations in brain-related diseases (Yao
et al., 2010; Zheng et al., 2015; Bethlehem et al., 2017; Yu et al., 2018). Seidlitz and col-
leagues proposed a morphometric similarity network that captures cortical cytoarchitecture
and is linked to individual cognitive performance (Seidlitz et al., 2018), and it has been applied
to understand major depressive disorder (Li et al., 2021). Despite the progress in constructing
different brain networks, a well-validated and widely accessible model for mapping the brain
network architecture of anatomical brain regions in an individual human brain is needed.
Radiomics is a powerful, robust method to extract more detailed information (Li et al., 2019),
including intensity and texture features from each brain region (Parmar et al., 2015; Gillies
et al., 2016; Chaddad et al., 2018). Texture analysis describes a variety of features that quantify
the variation in the patterns of intensity, including some imperceptible information to the human
visual system (Kassner & Thornhill, 2010). However, there is a literature gap regarding the con-
struction of a radiomics-based similarity network, as well as the associated attributes, which
could be a feasible anatomical topological mapping of the individual brain.

In this study, the first aimwas to develop a novel regional radiomics similarity network (R2SN)
approach. Building on this foundation, the second aimwas to explore the reproducibility, small-
world property, and biological basis of the R2SNs, including the relationship between R2SN

Structural covariance network (SCN):
A brain network from sMRI based on
the similarity of gray matter
morphology and is commonly used
to measure the association between
interregions in the human brain with
morphological similarity.

Radiomics:
A powerful, robust method to extract
more detailed information from each
brain region.

Small world network:
Network with high clustering
coefficient and short shortest path
length.
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indices and the coexpression of the gene or general fluid intelligence (gF) scores. The results con-
firmed that R2SNs provide a novel, robust, and biologically plausible model and a new perspec-
tive for understanding the human brain; therefore, R2SNs have great promise in further studies.

MATERIALS AND METHODS

Subjects

A total of 848 subjects from the Human Connectome Project (HCP, https://www
.humanconnectome.org/study/hcp-young-adult/document/) were included in our study; all
subjects were cognitively normal controls (NCs; age: 28.82 ± 3.68, sex (M/F): 371/477, fluid
intelligence: 16.53 ± 4.86, Flanker inhibitory control and attention (FICA) test score: 112.41 ±
10.06). The HCP was established in 2009 with an overarching objective of studying human
brain connectivity and its variability in healthy adults (Van Essen et al., 2012). All HCP sub-
jects were evaluated by 3T MR scanners. In the HCP protocol, fluid intelligence was assessed
using a form of Raven’s progressive matrices with 24 items. Detailed subject information can
be found at https://www.humanconnectome.org/study/hcp-young-adult/document/1200
-subjects-data-release and can also be found in a previous study (Van Essen et al., 2012).

Data Preprocessing and Radiomics Feature Extraction

For each subject, the T1-weighted MRI image was aligned to Montreal Neurological Institute
(MNI) space by using a combined linear and nonlinear registration (including N4 bias field cor-
rection) and resampled to 1mm×1mm×1mm (Xie et al., 2016) (Figure 1A). Then, 47 radiomics
features in each brain region were extracted with each region defined in the AAL atlas (a total of
90 regions) (Tzourio-Mazoyer et al., 2002). The radiomics features consisted of 14 intensity
features and 33 texture features (Figure 1B). All features were described in the study by Aerts
et al. (2014) and implemented as in-house MATLAB scripts (https://github.com/YongLiulab/).
The definitions and detailed descriptions of the radiomics features can be found in previous
publications (Aerts et al., 2014; Feng et al., 2018; Zhao et al., 2020) and Supporting
Information section S01. Redundancy features, defined as features having a high correlation
with other features (R > 0.9), were removed before subsequent analysis (Supporting
Information section S02). Therefore, a final feature matrix with 25 × 90 for each individual
was obtained for further analysis (Figure 1C; Table 1).

R2SN Construction

An individual R2SN was constructed by feature normalization, followed by radiomics similar-
ity matrix establishment. Specifically, feature normalization was implemented by adopting a
common min-max feature normalization scheme, whereas the radiomics similarity matrix was
established by mapping the individual’s radiomics features into a radiomics similarity matrix of
pairwise interregional Pearson’s correlations (Figure 1D). Briefly, for each subject, a 90 × 90
connection matrix was obtained, the node of this network was defined as the region based on
the AAL atlas, and the edge was calculated by Pearson’s correlations between interregional
radiomics features (Figure 1D). The mean value and the standard deviation (Std) of the
R2SNs were computed to estimate the fluctuation of R2SNs in these young NCs (Figure 1E).

The Topological Structure of R2SNs

To explore the topological structure of the brain characterized by R2SNs, a variety of graph-
theoretical network parameters were computed, including shortest path length (L), clustering co-
efficient (C), and small-world property, after binarization of R2SNs by using a threshold ranging
from 0.5 to 0.75 (step size = 0.01). Briefly, the small-world index was defined as sigma (σ) = γ/λ,

Fluid intelligence:
A measure which can reflect the
cognitive ability.

Flanker inhibitory control and
attention test:
A measure which can reflect both a
participant’s attention and inhibitory
control.

Shortest path length:
A shortest path between two nodes in
a graph is a path with the minimum
number of edge.

Sigma (σ):
The small-world index was defined
as sigma (σ) = γ/λ, with gamma being
(γ) = CR2SN/Crandom, lambda being
(λ) = LR2SN/Lrandom, and with Crandom

and Lrandom being the C and L of
the random network. C: clustering
coefficient; L: shortest path length.
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with gamma being (γ) = CR2SN/Crandom, lambda being (λ) = LR2SN/Lrandom, and Crandom and Lrandom
being the C and L of the random network (random sampling of edges to yield a matrix with the
samenumber of connections), respectively (Figure 1F). In addition,wecomputed theneighbor degree,
degree, betweenness centrality, and global efficiency of the R2SNs by using a threshold ranging
from 0.5 to 0.75 (step size = 0.01). The detailed definitions of these parameters can be found in a
previous study (Rubinov & Sporns, 2010) and were computed by using the Brainnetome fMRI
Toolkit (BRANT) (Xu et al., 2018) (Figure 1F).

Reproducibility of the Network

We demonstrated three points of view to estimate the reproducibility of R2SNs, including the
reproducibility of R2SN among different datasets, the reproducibility of the individual R2SN

Figure 1. Schematic of the data analysis pipeline. (A) Data preprocessing. (B) The computation of radiomics features in each brain region. (C)
Feature matrix of radiomics features. (D) Network construction with Pearson correlation. (E) The reproducibility of the network, (F) the network
parameters of the R2SN, (G) the correlation between the R2SN and gene expression, and (H) the correlation between the R2SN and the gF
score/FICA test score. gF indicates fluid intelligence; FICA indicates Flanker inhibitory control and attention.

Random network:
Network with low clustering
coefficient and short shortest path
length.

Global efficiency:
The global efficiency is the average
inverse shortest path length in the
network.
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among different scans, and the robustness of R2SNs to methodological variations. First, the
HCP dataset was randomly divided into two subdatasets for 1,000 iterations (424 subjects
for each subdataset). The Pearson correlation coefficient of the two subdatasets in each itera-
tion was used to estimate the consistency of the mR2SN (Seidlitz et al., 2018; Jin et al., 2020a;
Zhao et al., 2020), which was defined as the mean value of the R2SNs in the specific dataset.
Finally, the distribution of 1,000 Pearson correlation coefficients was used to estimate the
reproducibility of the R2SNs (Seidlitz et al., 2018; Jin et al., 2020a; Zhao et al., 2020).

Notably, the test-retest analysis was used to estimate the reproducibility in different observers
when measuring the same index (Friedman et al., 2008; Leijenaar et al., 2013; Maclaren et al.,
2014; Noble et al., 2019). To investigate the reproducibility of the R2SN, a test-retest analysis
was conducted using 21 subjects with four images acquired during different visits (https://duke
.edu/~morey005/ScanRescanData/). In this dataset, each subject was scanned on two different
days, two scans were conducted 1 hr apart on day 1 (scans 1A and 1B), and two scans were con-
ducted 1 hr apart at a second session 7–9 days later (scans 2A and 2B) (Morey et al., 2010). The
intraclass correlation coefficient [ICC; ICC = (BMS −WMS)/BMS] was used to estimate the repro-
ducibility of each edge of the R2SNs, where BMS is the between-subjects mean square andWMS
is the within-subject mean square. The ICC has a value between 0 and 1; ICC = 0 indicates no
reproducibility, and ICC = 1 indicates absolute reproducibility (Shrout & Fleiss, 1979) (Figure 1E).

We also quantified the robustness of R2SNs to methodological variations, including randomly
reducing the number of radiomics features for analysis (i.e., only 20 radiomics features rather than
all 25 features were involved as a predefined marker for network construction). The Pearson cor-
relation coefficient was used to estimate the similarity of the mR2SN, which was constructed with
20 radiomics features and 25 radiomics features. The distribution of the Pearson correlation coef-
ficient of 1,000 simulations was performed to assess the robustness of R2SNs to methodological
variations (Seidlitz et al., 2018; Jin et al., 2020a; Zhao et al., 2020) (Figure 1E).

In addition, we explored whether a significant correlation could be obtained between the
mean connective strength and the size of each node (the size of each node was roughly es-
timated with the voxel number based on the AAL atlas) (Tzourio-Mazoyer et al., 2002).

The Relationship Between the R2SN and the Gene Similarity Network

To further explore the biological basis of R2SNs, we continued our investigation by computing
the relationship between the R2SN and the gene similarity network (GSN). The GSN was

Table 1. The reserved features after removing superfluous features

Intensity features energy Textural features Autocorrelation IMC1

kurtosis Cluster prominence Maximum probability

maximum Cluster Shade Sum entropy

MAD Cluster Tendency Short run-length emphasis

minimum Contrast Long run-length emphasis

skewness Correlation Gray-level nonuniformity

entropy Energy Low gray-level run-length emphasis

Entropy High gray-level run-length emphasis

Homogeneity1 High gray-level long run-length emphasis

Gene similarity network:
A network based on the similarity of
gene expression between each pair
of brain regions.
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constructed with the Allen atlas (https://human.brain-map.org/) (Zeng et al., 2012) and prede-
fined genes (six subjects). The nodes were defined as the Allen atlas and mapped to the AAL
brain regions based on MNI coordinates by using “abagen” (https://github.com/rmarkello
/abagen) (Arnatkeviciute et al., 2019), and the edges were computed by the Pearson coeffi-
cient between the gene expression of any pair of regions. To correct the spatial autocorrelation
effect within R2SN and GSN, the Euclidean distance of each pair of brain regions was em-
ployed as a concomitant variable. Pearson’s correlation coefficient between the connectivities
of the mR2SN and the connectivities of the mGSN (the mean value of the GSN) was calculated
to assess the similarity between the R2SN and GSN (Figure 1G). Furthermore, Pearson’s cor-
relation coefficient between the mean connection strengths of nodes of the mR2SN and mGSN
was calculated to evaluate the similarity of these two networks.

Association Between the Network Properties of the R2SN and Cognitive Differences

We have investigated the network properties, reproducibility, and biological basis of the
R2SN, and we assumed that the individual network properties could represent the individual’s
differences in cognitive ability. In the HCP project, fluid intelligence scores were obtained as
an index for measuring the subjects’ intrinsic cognitive ability. In addition, the Flanker task
measures both a participant’s attention and inhibitory control. Therefore, we focused on the
associations of common gF and the FICA test score as the indices to estimate the cognitive
difference among young NCs, similar to Seidlitz et al. (2018). On this basis, we performed
Pearson’s correlation analysis between gF/FICA scores and connectivity strength and network
parameters (the neighbor degree, degree, betweenness centrality, global efficiency, shortest
path length, and clustering coefficients) of the individual’s network to explore the relationship
between the R2SN and gF/FICA scores in the HCP dataset.

The Replicability of Results in Brainnetome Atlas

To explore the replicability of the results in different atlases, we repeated the above analysis in
the Brainnetome atlas (Fan et al., 2016). First, the R2SN was created based on the Brainnetome
atlas (N = 246 without cerebellar), and then the reproducibility, small-world properties and the
biological basis of R2SN were explored with the same pipeline.

RESULTS

R2SN: Edge Properties

After redundancy removal, 25 radiomics features were reserved for each brain region, and the
R2SN was constructed with those predefined features for each subject (a symmetrical matrix
with a size of 90 × 90). The connective strength of the mR2SN ranged from −0.56 to 0.99 in the
HCP dataset (N = 848), and the Std value in each edge of the R2SN was significantly smaller
than the mean value, which ranged from 0.01 to 0.36, but with more than 95% of them ranging
from 0.01 to 0.20 (Figure 2A).

R2SN: Network Properties

The C, L, and sparseness values are shown in Figure 3A–C. In addition, the lambda (λ) value
showed the ratio of the L of the R2SN and the random network, and the gamma (γ) value
showed the ratio of the C of the R2SN and the random network. As a result, the value of γ
was significantly larger than 1 (Figure 3D), the value of λ was close to 1 (Figure 3E), and the

small-world index sigma (σ) was also significantly larger than 1 by different thresholds of bina-
rization (from 0.5 to 0.75 with a step size = 0.01) (Figure 3F). In addition, the betweenness
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centrality (Figure 3G), neighbor degree (Figure 3H), degree (Figure 3I) and global efficiency
(Figure 3J) of the R2SNs with different thresholds (from 0.5 to 0.75 with a step size = 0.01)
are also shown in Figure 3.

Reproducibility of the R2SN

A series of hypothesis testing was performed to further assess the reproducibility of the R2SN.
Most notably, high consistency was found in any two mR2SNs constructed by different datasets
(1,000 random simulations), with the Pearson coefficient ranging from 0.9997 to 1 (Figure 2B).
In addition, high consistency was also obtained bymR2SNs constructed with a different number
of features (20 randomly selected features and all features), and the R value ranged from 0.879
to 0.997 (Figure 2C). More importantly, the R2SN had a high ICC value (ICC > 0.7) within
more than a 95% edge by test-retest analysis (Figure 2D). We did not find a significant corre-
lation between the size of the node and the mean connective strength (R = 0.14, p = 0.17).

The Association Between the R2SN and the GSN

For each subject from the Allen dataset, the GSN was constructed based on 15,633 predefined
genes (https://human.brain-map.org/). The mean connective strength of each node of the

Figure 3. The network parameters of the R2SN with different correlation thresholds (0.5–0.75 and step size = 0.01). (A) The clustering
coefficient—the “black” means the R2SN, and the “blue” means the random network; (B) the shortest path length; (C) sparseness, and the
small-world parameter, including (D) the gamma value (the ratio of clustering coefficient between R2SN and random network); (E) the lambda
value (the ratio of shortest path length between the R2SN and the random network); (F) the sigma value (the ratio of gamma and lambda); (G)
the betweenness centrality value; (H) the neighbor degree value; (I) the degree value; and ( J) the global efficiency value.

Figure 2. The reproducibility of the R2SN. (A) The distribution of variance in the HCP dataset. (B) The distribution of the correlation coef-
ficients of the R2SN network for each pair of two datasets (the HCP dataset was divided into two parts for 1,000 random repetitions). (C) The
distribution of the correlation coefficients of the R2SN network with 20 features (random selection of 20 features from 25 predefined features
1,000 times) and the R2SN created with 25 features. (D) The ICC value of the R2SN with test-retest analysis.
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mR2SN and the mGSN are shown in Figure 4A (mR2SN) and Figure 4B (mGSN). We also
computed the similarity between the mR2SN and the mGSN (edge-based), and a significant
correlation was found between the two networks with R = 0.29 ( p < 0.001) (Figure 4C and
Figure 4D), meaning that the brain region with high morphometric similarity also tended to
have a high transcriptional similarity of the gene. We also computed the average of the off-
diagonal elements of a row or column in the radiomics similarity matrix (node-based), and a
significant correlation was also found between the mR2SN and the mGSN regarding the mean
connective strength of each node (R = 0.32, p = 0.002).

The Association Between the R2SN and Cognitive Differences

The fluid intelligence scores ranged from 4 to 24, and the FICA test scores ranged from 89 to
142 for all subjects (https://www.humanconnectome.org/study/hcp-young-adult). The
Pearson’s correlation showed that approximately 5% of connections had a significant corre-
lation with the fluid intelligence score (Bonferroni-corrected p < 0.05, with N = 4,005)
(Figure 5A). As Figure 5 shows, the neighbor degree of 15 nodes (Figure 5B), the degree of
16 nodes (Figure 5C), the global efficiency of 20 nodes (Figure 5D), and the clustering coef-
ficient of 8 nodes (Figure 5E) were significantly correlated with fluid intelligence (Bonferroni-
corrected p < 0.001, with N = 90) (when the threshold = 0.50).

Pearson’s correlation showed that approximately 8% of connections had a significant cor-
relation with the FICA test score (Bonferroni-corrected p < 0.05, with N = 4,005) (Figure 5F). In

Figure 4. The correlation between the R2SN and the gene expression network. (A) The mean connective strength of the R2SN, which was
mapped to the surface area from the AAL template. (B) The mean connective strength of the GSN, which was mapped to the surface area from
the AAL template. The value of the color bar was normalized with the max-min method. (C) The heat map for the R2SN and GSN. Some
negative correlations were generated with the GSN, and this phenomenon might have been caused by the deletion of genes in some brain
regions. (D) The scatter diagram of the correlation between GSN and R2SN, where the Euclidean distance between each pair of regions of
interest was employed as a concomitant variable within the network.
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addition, the neighbor degree of 7 nodes (Figure 5G), degree of 7 nodes (Figure 5H), global
efficiency of 42 nodes (Figure 5I), and clustering coefficient of 38 nodes (Figure 5J) were sig-
nificantly correlated with the FICA test score (Bonferroni-corrected p < 0.001, with N = 90)
(when the threshold is 0.50). The correlation between gF/FICA and the shortest path length
and betweenness centrality is shown in Supporting Information section S03 due to the weaker
significance.

The Replicability of the Results in the Brainnetome Atlas

The results can be repeated in the Brainnetome atlas. First, high consistency was found in any
two mR2SNs constructed by different datasets or subsets of the feature. More importantly, the
R2SN had a high ICC value (ICC > 0.7) within more than 95% of edges by the test-retest anal-
ysis (Supporting Information Figure S1). Furthermore, the value of γ was significantly larger
than 1, the value of λ was close to 1 and the small-world index sigma (σ) was also significantly
larger than 1 by different thresholds of binarization (from 0.5 to 0.75 with a step size = 0.01)
(Supporting Information Figure S2). In addition, the relationships between R2SN and gene ex-
pression (Supporting Information Figure S3)/fluid intelligence (Supporting Information Figure S4)
were also verified in the Brainnetome atlas (Supporting Information S03).

DISCUSSION

The present study provides a pipeline for transforming radiomics feature maps into a pairwise
interregional radiomics similarity matrix at the individual level, which still represents a gap
according to the literature. The systematic results confirmed that R2SNs provide a novel, robust,
and biologically plausible model for understanding the human brain.

Radiomics is a powerful method to extract more detailed information from brain images,
which includes intensity and texture features, and which could improve the ability of the SCN

Figure 5. The correlation between the R2SN and cognitive ability. (A) Connectivity showed a significant correlation with the individuals’ gF
score (Bonferroni-corrected p < 0.001); the brain regions in which the (B) neighbor degree value, (C) degree value, (D) global efficiency value,
and (E) clustering coefficient showed a significant association with the gF score (Bonferroni-corrected p < 0.001). (F) Connectivity showed a
significant correlation with the individuals’ FICA score (Bonferroni-corrected p < 0.001); the brain regions in which the (B) neighbor degree, (C)
degree, (D) global efficiency, and (E) clustering coefficient showed a significant association with the FICA score (Bonferroni-corrected p <
0.001). FICA indicates the Flanker inhibitory control and attention test score, and gF indicates the fluid intelligence.
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to represent the morphology of the brain as a network with the relativeness of pair of regions
(Parmar et al., 2015; Gillies et al., 2016; Chaddad et al., 2018). Texture features can quantify
the variations in intensity or patterns, including those features that are imperceptible to the
human visual system (Aerts et al., 2014). Numerous studies have emphasized the importance
of radiomics (Gillies et al., 2016) and have regarded it as a bridge between imaging and per-
sonalized medicine (Lambin et al., 2017). More importantly, radiomics also improve the diag-
nostic precision, treatment, and prognosis of a tumor (Aerts et al., 2014; Coroller et al., 2015;
Huang et al., 2018) as well as the diagnosis of Alzheimer’s disease (Sorensen et al., 2016;
Sorensen et al., 2017; Feng et al., 2018; Zhao et al., 2020; Ding et al., 2021). Radiomics is
a method that extracts a large number of features of the brain region with high reproducibility
(Li et al., 2019) and provides a better measure to evaluate the characteristics of the brain
region.

Representing the morphology of the brain as a network has an advantage in that the struc-
ture of the brain can be described statistically with tools from graph theory (Tijms et al., 2012).
Similar to most of the brain networks (e.g., functional brain networks, diffusion-weighted im-
aging, and SCNs) (He et al., 2007; Tijms et al., 2012; Heinze et al., 2015; Seidlitz et al., 2018),
R2SNs also had complex topologies. In R2SNs, the high-degree nodes were located in the
frontal lobe, parietal lobe, and occipital lobe, and low-degree nodes were found in the tem-
poral lobe and subcortical lobe. The nodes with strong connection strengths might work more
cooperatively with other brain regions, and the nodes with lower connection strengths might
have a more specific function in the brain (Seidlitz et al., 2018). The different connective pat-
terns between a GSN and R2SN might be caused by the difference in microstructure in the
brain, such as the histological classification of cortical areas (Solari & Stoner, 2011; Seidlitz
et al., 2018).

Notably, R2SN can be replicated in different datasets, demonstrated by a subsampling strat-
egy from the same dataset for 1,000 iterations. R2SNs showed high ICCs (a prominent statistic
to measure test-retest reliability) in different visit images, indicating the robustness of the radio-
mics similarity connectivity under the consensus that reproducibility was the most important
property for a novel method in MRI analysis (Stikov et al., 2019). The high consistency of
R2SNs, which was constructed with different features, also confirmed the methodological var-
iations (Seidlitz et al., 2018). These properties of R2SNs support the firm foundation for the
credibility of the results.

Imaging biomarkers are taken as the cornerstone of the radiology community, and imaging
genetics has established heritable phenotypes for quantitative genetics of brain phenotypes. As
expected, a high correlation was found between the gene expression network and the R2SN
(Zeng et al., 2012), meaning that cortical areas with high morphometric similarity also tended
to have high transcriptional similarity (Seidlitz et al., 2018). The structure of the brain region
was controlled by gene expression (Warden & Mayfield, 2017), and the variations in intensity
or pattern of the brain region can be reflected by radiomics features (Wang et al., 2019). These
results further suggested that gene expression can be reflected by R2SNs. In brief, R2SNs have
a genetic basis, and the present findings provide the possibility of estimating the risk of a gene
by using R2SNs and indicate a certain degree of evidence for genetic disease research, such as
that conducted regarding Alzheimer’s disease (Jin et al., 2020b; Zhao et al., 2020).

It is vital to evaluate the association between the individual network architecture and the cog-
nitive ability or psychological functions of the brain (Li et al., 2009; van den Heuvel et al., 2009;
Seidlitz et al., 2018). For high-degree hub nodes and the global efficiency of the connectome to
be preferentially affected by clinical brain disorders associated with cognitive impairment, the
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relationship between high-degree nodes and cognitive status should obtain a higher perfor-
mance in classification, prediction, and so on (Crossley et al., 2014). As we all know that fluid
intelligence is a common measure to estimate the cognitive ability among NCs and to identify
the cognitive difference among individuals, higher fluid intelligence scores corresponded to
more efficient information transfer in the brain (Li et al., 2009). The fluid intelligence score
refers to the ability to solve abstract problems that do not depend on acquired knowledge and
change with age (Gray et al., 2003; Cole et al., 2012; Kievit et al., 2016). A set of fronto-parietal
brain regions has been reported to be associated with fluid intelligence in brain imaging
(Duncan et al., 2000; Cole et al., 2012; Woolgar et al., 2018). Comprehensive evidence has
indicated that the lingual gyrus, caudate nucleus, rolandic operculum, and frontal lobe play
an important role in an individual’s cognitive ability (Preusse et al., 2011; Rhein et al., 2014;
Santarnecchi et al., 2015; Zhang et al., 2016). The significant correlation between fluid
intelligence and efficiency of the hub regions in R2SNs also indicates that an individual’s
cognitive ability is linked to the brain network architecture (Li et al., 2009; van den Heuvel
et al., 2009). In addition, the network measures exclude global efficiency, which is also
correlated with cognitive ability. Thus, we speculate that the R2SN might be a brain network
with a solid biological basis.

This study has some limitations. First, we only studied R2SNs based on the AAL atlas and
Brainnetome atlas; therefore, the network properties and their basis need to be further val-
idated by other reputable brain atlases. Second, a unified framework for interpreting these
measures and their alterations in different brain diseases is needed. The integration of existing
studies shows that different models for brain structural networks do not align uniformly across
the brain, and the coupling between structural network models and/or functional connectivity
remodeling will help support the underpinnings of functional specialization and cognition.
Third, more samples from different independent scanners and more cognition measures
may improve the statistical power of the analysis, allowing scientists to explore the neural
mechanisms of R2SNs in the future.

CONCLUSION

R2SN is a network with high reproducibility and a biological basis; thus, an R2SN might serve
as an improved, novel method and shed new light on future MRI studies. We assume that an
R2SN could provide a powerful technology platform for measuring the anatomical connec-
tome in vivo and be applied for the diagnosis of a variety of diseases in the future.
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