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In this article, we provide new formulas to compute the reduced reciprocal randić index,

Arithmetic geometric1 index, SK index, SK1 index, SK2 index, edge version of the first

zagreb index, sum connectivity index, general sum connectivity index, and the forgotten

index using the M-polynomial and finding these topological indices for a boron triangular

nanotube. We also elaborate the results with graphical representations.
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1. INTRODUCTION

A chemical molecular structure is composed of atoms that join together with chemical bonds.
This molecular structure is responsible for the chemical, physical, and biological properties of the
chemical compound. A chemical graph theory is an important field of science, in which we study
the formation and behavior of a chemical structure with the help of graph theory tools.

In graph theory a set of points is referred as graph G. These points are known as vertices. An
edge is a line joining the two vertices. The number of edges that coincide at a vertex is considered
to be the degree of the vertex and is represented as dj and the degree of the edge is defined as
djk = dj + dk − 2. E(G) represents the set of edges and V(G) shows the set of vertices. In the
chemical graph, an atom of the molecule is represented with the vertex of the graph, and the bond
is considered as an edge.

There are many uses of chemical graph theory in different subjects, such as quantum chemistry,
computer sciences, biology, stereochemistry, and engineering, which is explained by Gutman and
Trinajstić (1972), Balaban (1985), Trinajstiéc (1992), Shirinivas et al. (2010), and Vergniory et al.
(2017). With the help of chemical graph theory techniques, we convert a chemical molecule into
a real number, which is referred to as a topological index and the molecular structure is examined
through the topological indices. In this study, we try to develop mathematical methods for the
calculation of topological indices. With the help of topological indices, Hosamani et al. (2017)
studied the different physical properties like themolar volume, boiling points, andmolar refraction,
of the molecular structure. Rouvray (1986) and Ramakrishnan et al. (2013) describe the biological
behavior, such as nutritive, stimulation of cell growth, toxicity, and pH regulation, of the chemical
species, which are also characterized through topological indices.
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These topological indices are widely used in chemical graph
theory to explain the different properties of the chemical
structure. The carbon-hydrogen bond is not considered during
the computation of topological indices because this bond does
not have a serious effect on the properties of the chemical
compound. During the QSAR and QSPR analysis, topological
indices are widely used.

Gutman et al. (2014) formulated a reduced reciprocal randić
index defined as RRR =

∑

jk∈E(G)
√

(dj − 1)(dk − 1). Shigehalli

and Kanabur (2015) presented the arithmetic geometric1 index

defined as AG1 =
∑

jk∈E(G)
dj+dk

2
√

dj·dk
. Shigehalli and Kanabur

(2016) also introduced the new indices defined as SK index

=
∑

jk∈E(G)
dj+dk

2 , SK1 index =
∑

jk∈E(G)
dj·dk
2 , and SK2 index

=
∑

jk∈E(G)
( dj+dk

2

)2
. Miličević et al. (2004) presented the first

Zagreb index in term of edge degree defined as EM1 =
∑

jk∈E(G)(djk)
2. Du et al. (2011) formulated the general sum-

connectivity index defined as SCI =
∑

jk∈E(G)
1√
dj+dk

and

SCIλ =
∑

jk∈E(G)
(

dj + dk
)λ
. Gutman and Furtula (2015)

presented the forgotten index represented with F and defined as
F =

∑

jk∈E(G)
(

d2j + d2
k

)

.

2. BORON TRIANGULAR NANOTUBE

The analysis of a chemical molecular structure smaller than
100 nm is known as nanotechnology. Nanomaterials have

FIGURE 1 | Boron triangular nanosheet.

many applications in different fields of nanoscience. The
boron triangular nanotube BTntlq is a well-known structure in
nanomaterials with a wide range of applications in medicine,
electronics, and computers as discussed by Menuel (2010),
Bezugly et al. (2011), and Liu et al. (2018). With the help of this,
experts are expected to revolutionize the world. The formation
of the boron triangular nanotube is formed by a 2-D boron
triangular nanosheet consisting of l rows and q columns. The first
and the last column of the 2-D boron triangular nanosheet are
connected to form a boron triangular nanotube.

A detailed analysis of Figures 1, 2 shows that there are only
two types of vertex present in BTntlq. One which has a degree
of four and the other has a degree of six. Now count the edges
with smaller dimension and then by generalization and we obtain
Table 1.

3. M-POLYNOMIAL

An algebraic polynomial has the ability to elaborate the chemical
molecular structure. M-polynomial is such a polynomial
that represents the graph. Deutsch and Klawzar (2015)
formulated the M-polynomial and defined as M(G, x, y) =

∑

δ≤u≤υ≤1

muv(G)x
uyυ . Where δ represents the minimum degree

of the vertex belonging to the vertex set V(G), 1 represents the
maximum degree of the vertex belonging to the vertex set V(G)
and mυv(G) is the total number of edges jk ∈ E(G) such that
{dj, dk} = {u, υ}.
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FIGURE 2 | Boron triangular nanotube (BTntlq ).

TABLE 1 | Edge partition of boron triangular nanotube (BTntlq ).

(du,dυ ) Number of edges

(4,4) 3q

(4,6) 6q

(6,6) q
2 (9l − 24)

Deutsch and Klawzar (2015) introduced M-polynomial and
in the same article nine topological indices closed formulas
are given via m-polynomial. Some indices are calculated by
Munir et al. (2016). In the past, Kang et al. (2018), Afzal et al.
(2020a,b), Cancan et al. (2020a,b), and Khalaf et al. (2020)
used these formulas to compute topological indices via M-
polynomial and a lot of work has been done in this area. One
more set of nine topological indices has been computed by
Afzal et al. (2020c). The F-index is also computed by Mondal
et al. (2020). In this article, we formulated a new set of nine
topological indices shown in Table 2. These formulas are used
to compute the topological indices via M-polynomial for the
chemical structure. This formulation is a useful achievement in
the field the topological indices and opens a new research field.
We apply the newly formulated indices on BTntlq.

4. M-POLYNOMIAL OF BORON
TRIANGULAR NANOTUBE

Theorem 4.1. Let BTntlq be a Boron triangular nanotube where
lq is the dimension of the BTntlq then M-polynomial of BTntlq is

M[BTntlq; x, y] = 3qx4y4 + 6qx4y6 + q

2
(9l− 24)x6y6.

Proof: Let BTntlq be a boron triangular nanotube then by using
Figures 1, 2 and Table 1 the edge partition of boron triangular
nanotube is consisting of three type of sets. The first edge
partition represented with E1 contains 3q edges, in which dj and
dk have the same value equal to 4. The second edge partition

TABLE 2 | Topological indices derive from M(BTntlq; x, y).

Topological index Derivation from M(BTntlq; x, y) = g(x, y)

RRR[BTntlq ] = D
1
2
x D

1
2
y Qy(−1)Qx(−1)[g(x, y)]x=y=1

AG1 [BTntlq] = 1
2DxJS

1
2
x S

1
2
y [g(x, y)]x=1

SK[BTntlq ] = 1
2 (Dx + Dy )[g(x, y)]x=y=1

SK1[BTntlq ] = 1
2DxDy [g(x, y)]x=y=1

Sk2[BTntlq] = 1
4D

2
xJ[g(x, y)]x=y=1

EM1[BTntlq] = D2
xQx(−2)J[g(x, y)]x=1

SCI[BTntlq] = S
1
2
x J[g(x, y)]x=1

SCIλ[BTntlq] = Dλ
xJ[g(x, y)]x=1

F [BTntlq ] = (D2
x + D2

y )[g(x, y)]x=1

Where the operator used are defined as

Dxg(x, y) = x
∂ (g(x,y))

∂x , Dyg(x, y) = y
∂ (g(x,y))

∂y , Jg(x, y) = g(x, x), Qx(α)g(x, y) = xαg(x, y),

D
1
2
x g(x, y) =

√

x
∂ (g(x,y))

∂x ·
√

g(x, y), D
1
2
y g(x, y) =

√

y
∂ (g(x,y))

∂y ·
√

g(x, y),

S
1
2
x g(x, y) =

√

x
∫

0

g(t,y)
t dt ·

√

g(x, y), S
1
2
y g(x, y) =

√

y
∫

0

g(x,t)
t dt ·

√

g(x, y) .

referred to as E2 consists of 6q edges jk, in which the value of
dj is 4 and value of dk is 6. The third edge partition named as E3
contains

q
2 (9l−24) edges jk, in which dj = dk = 6. Now, by using

the definition of M-polynomial, we have

M(BTntlq; x, y) =
∑

δ≤u≤υ≤1

muυ (BαNTmn)x
uyυ

=
∑

4≤u≤v≤6

muv(BTntlq)x
uyv,

M(BTntlq; x, y) =
∑

4≤4

m44(BTntlq)x
4y4 +

∑

4≤6

m46(BTntlq)x
4y6

+
∑

6≤6

m66(BTntlq)x
6y6,

M(BTntlq; x, y) =|E4,4|x4y4 + |E4,6|x4y6 + |E6,6|x6y6,

M[BTntlq; x, y] =3qx4y4 + 6qx4y6 + q

2
(9l− 24)x6y6.

The plot ofM[BTntlq; x, y] is shown in Figure 3.
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FIGURE 3 | 3D plots of M-polynomial of boron triangular nanotube BTntlq for

l = q = 4.

5. TOPOLOGICAL INDICES OF BORON
TRIANGULAR NANOTUBE

Theorem 5.1. Let BTntlq be a boron triangular nanotube and

M[BTntlq; x, y] = 3qx4y4 + 6qx4y6 + q

2
(9l− 24)x6y6,

then

1. RRR[BTntlq] = 45
2 ql+ (6

√
15− 51)q,

2. AG1[BTntlq] = 9
2ql+ ( 5

√
6

2 − 9)q,

3. SK[BTntlq] = 27ql− 30q,

4. SK1[BTntlq] = 81ql− 120q,

5. SK2[BTntlq] = 162ql− 234q,

6. EM1[BTntlq] = 450ql− 708q,

7. SCI[BTntlq] = 3
√
3

4 ql+ ( 3
√
2

4 + 3
√
10
5 − 2

√
3)q,

8. SCIλ[BTntlq] = 9
2 (12)

λql+ {3(8)λ + 6(10)λ − 24(12)λ}q,
9. F[BTntlq] = 324ql− 456q.

Proof: Let M[BTntlq; x,y] = g(x,y)

Qx(−1)g(x, y) = 3qx3y4 + 6qx3y6 + q

2
(9l− 24)x5y6,

Qy(−1)Qx(−1)g(x, y) = 3qx3y3 + 6qx3y5 + q

2
(9l− 24)x5y5,

D
1
2
y Qy(−1)Qx(−1)g(x, y) = 3

√
3qx3y3 + 6

√
5qx3y5

+
√
5

2
q(9l− 24)x5y5,

D
1
2
x D

1
2
y Qy(−1)Qx(−1)g(x, y) = 9qx3y3 + 6

√
15qx3y5

+ 5

2
q(9l− 24)x5y5,

S
1
2
y g(x, y) = 3

2
qx4y4 +

√
6qx4y6 + q

2
√
6
(9l− 24)x6y6,

S
1
2
x S

1
2
y g(x, y) = 3

4
qx4y4 +

√
6

2
qx4y6 + q

12
(9l− 24)x6y6,

JS
1
2
x S

1
2
y g(x, y) = 3

4
qx8 +

√
6

2
qx10 + q

12
(9l− 24)x12,

DxJS
1
2
x S

1
2
y g(x, y) = 6qx8 + 5

√
6qx10 + q(9l− 24)x12,

1

2
DxJS

1
2
x S

1
2
y g(x, y) = 3qx8 + 5

√
6

2
qx10 + q

2
(9l− 24)x12,

Dxg(x, y) = 12qx4y4 + 24qx4y6 + 3q(9l− 24)x6y6,

Dyg(x, y) = 12qx4y4 + 36qx4y6 + 3q(9l− 24)x6y6,

(Dx + Dy)g(x, y) = 24qx4y4 + 60qx4y6 + 6q(9l− 24)x6y6,

1

2
(Dx + Dy)g(x, y) = 12qx4y4 + 30qx4y6 + 3q(9l− 24)x6y6,

DxDyg(x, y) = 48qx4y4 + 144qx4y6 + 18q(9l− 24)x6y6,

1

2
(DxDy)g(x, y) = 24qx4y4 + 72qx4y6 + 9q(9l− 24)x6y6,

Jg(x, y) = 3qx8 + 6qx10 + q

2
(9l− 24)x12,

D2
xJg(x, y) = 192qx8 + 600qx10 + 72(9l− 24)x12,

1

4
D2
xJg(x, y) = 48qx8 + 150qx10 + 18(9l− 24)x12,

Qx(−2)Jg(x, y) = 3qx6 + 6qx8 + q

2
(9l− 24)x10,

D2
xQx(−2)Jg(x, y) = 108qx6 + 384qx8 + 50q(9l− 24)x10,

S
1
2
x Jg(x, y) = 3

2
√
2
qx8 + 6√

10
qx10 + q

4
√
3
(9l− 24)x12,

Dλ
x Jg(x, y) = 3(8)λqx8 + 6(10)λqx10

+ q

2
(12)λ(9l− 24)x12,

D2
xg(x, y) = 48qx4y4 + 96qx4y6 + 18q(9l− 24)x6y6,

D2
yg(x, y) = 48qx4y4 + 216qx4y6 + 18q(9l− 24)x6y6,

(D2
x + D2

y)g(x, y) = 96qx4y4 + 312qx4y6 + 36q(9l− 24)x6y6.

1. RRR[BTntlq] = D
1
2
x D

1
2
y Qy(−1)Qx(−1)[g(x, y)]x=y=1,

RRR[BTntlq] = 45
2 ql+ (6

√
15− 51)q.

2. AG1[BTntlq] = 1
2DxJS

1
2
x S

1
2
y [g(x, y)]x=1,

AG1[BTntlq] = 9
2ql+ ( 5

√
6

2 − 9)q.

3. SK[BTntlq] = 1
2 (Dx + Dy)[g(x, y)]x=y=1,

SK[BTntlq] = 27ql− 30q.

4. SK1[BTntlq] = 1
2DxDy[g(x, y)]x=y=1,

SK1[BTntlq] = 81ql− 120q.

5. Sk2[BTntlq] = 1
4D

2
xJ[g(x, y)]x=y=1,

SK2[BTntlq] = 162ql− 234q.
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FIGURE 4 | 3D plots of topological indices of BTntlq. (A) Reduced reciprocal randić index. (B) Arithmetic geometric1 index. (C) SK index. (D) SK1 index. (E) SK2

index. (F) Edge version of first Zagreb index. (G) Sum connectivity index. (H) General sum connectivity index. (I) Forgotten index.

6. EM1[BTntlq] = D2
xQx(−2)J[g(x, y)]x=1,

EM1[BTntlq] = 450ql− 708q.

7. SCI[BTntlq] = S
1
2
x J[g(x, y)]x=1,

SCI[BTntlq] = 3
√
3

4 ql+ ( 3
√
2

4 + 3
√
10
5 − 2

√
3)q.

8. SCIλ[BTntlq] = Dλ
x J[g(x, y)]x=1,

SCIλ[BTntlq] = 9
212

λql+{3(8)λ+6(10)λ−24(12)λ}q.

9. F[BTntlq] = (D2
x + D2

y)[g(x, y)]x=1,
F[BTntlq] = 324ql− 456q.

Figure 4 shows a graphical analysis of topological indices of
BTntlq. With the help of these graphs, we observe the behavior
of the topological indices regarding the different parameters
involved. These visualizations are shown to be identical but have
different gradients.

6. CONCLUSION

The formulation of new formulas, placed in Table 2, to compute
the topological indices for the molecular structure via M-

polynomial lead to a new era in the computational field. In this
research work, we compute M(BTntlq; x, y) and with the help of
this polynomial, we find the various topological invariants given
in Table 2. We also presented the graphical presentation of M-
Polynomial and topological indices. This visualization helps us
to understand results against parameters.
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