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A B S T R A C T   

Between 50 and 80% of very preterm infants (<32 weeks gestational age) exhibit increased white matter signal 
intensity on T2-weighted MRI at term-equivalent age, known as diffuse white matter abnormality (DWMA). A 
few studies have linked DWMA with microstructural abnormalities, but the exact relationship remains poorly 
understood. We related DWMA extent to graph theory measures of network efficiency at term in a representative 
cohort of 343 very preterm infants. We performed anatomic and diffusion MRI at term and quantified DWMA 
volume with our novel, semi-automated algorithm. From diffusion-weighted structural connectomes, we 
calculated the graph theory metrics local efficiency and clustering coefficient, which measure the ability of 
groups of nodes to perform specialized processing, and global efficiency, which assesses the ability of brain 
regions to efficiently combine information. We computed partial correlations between these measures and 
DWMA volume, adjusted for confounders. Increasing DWMA volume was associated with decreased global ef-
ficiency of the entire very preterm brain and decreased local efficiency and clustering coefficient in a variety of 
regions supporting cognitive, linguistic, and motor function. We show that DWMA is associated with widespread 
decreased brain network efficiency, suggesting that it is pathologic and likely has adverse developmental 
consequences.   

1. Introduction 

Up to 80% of very preterm infants exhibit increased white matter 
signal intensity on T2-weighted MRI at term-equivalent age (Skiöld, 
2010; Jeon et al., 2012). This hyperintense signal, referred to as either 
diffuse excessive high signal intensity (DEHSI) or diffuse white matter 
abnormality (DWMA), has been investigated in relation to neuro-
developmental outcomes in premature infants with mixed results. Some 
studies have shown no significant relationship between DWMA and later 
neurodevelopmental deficits, including cognitive, language, and motor 
impairments (Jeon et al., 2012; Kidokoro et al., 2011; Broström et al., 
2016; Hart, 2011; de Bruïne et al., 2011; Skiöld, 2012; Mürner-Lavanchy 
et al., 2019; Calloni, 2015; Leitner, 2014). Conversely, other studies 
(Boardman et al., 2010; Krishnan et al., 2007; Iwata et al., 2012; Iwata, 
2007), especially those that quantified DWMA extent at term age (Par-
ikh, 2013; Parikh et al., 2020a, 2020b), identified significant 

associations with neurodevelopmental outcomes, particularly cognition 
and language. 

The cellular pathology and brain connectivity alterations underlying 
DWMA have not been fully delineated. In pilot studies of preterm infants 
with DWMA, abnormal white matter microstructure on diffusion MRI 
(Skiöld, 2010; Counsell, 2006) and aberrant functional connectivity 
derived from resting state fMRI (He and Parikh, 2015) were documented 
at term. A small postmortem histopathology case series from our group 
reported fewer oligodendroglial cells and axons in the brains of very 
preterm infants in regions of DWMA compared to the brains of control 
infants (Parikh et al., 2016). Based on these results, we postulated that 
DWMA is associated with brain network disorganization in very preterm 
infants. 

Graph theory is a powerful mathematical method that can investi-
gate the information transfer and processing capacity of complex net-
works like the human brain (Bullmore and Sporns, 2009; Rubinov and 
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Sporns, 2010; Sporns and Zwi, 2004; Sporns, 2013; Bassett et al., 2017). 
The brain’s connectome can be modeled as a set of regions (nodes) and 
their pair-wise associations (edge weights), which may represent num-
ber of structural connections, effective or functional connectivity values, 
or measures of white matter integrity between regions. From symmetric 
matrices of edge weights, graph metrics can be calculated that quantify 
high-level brain network properties. Although some graph metrics are 
preserved in prematurity (Ball et al., 2014; Scheinost et al., 2016; 
Bouyssi-Kobar et al., 2019), a subset including global efficiency (Eglob), 
local efficiency (Eloc), and clustering coefficient (CC), are altered by 
preterm birth (Bouyssi-Kobar et al., 2019; Young, 2018; Gozdas, 2018), 
and these alterations may be the antecedents of lifelong neuro-
developmental impairment (Thompson et al., 2016). 

Our main objective was to quantify DWMA in a regional, population- 
based cohort of very preterm infants using our published semi- 
automated algorithm and to quantify the relationship between DWMA 
volume and graph theory metrics of information processing efficiency: 
Eglob, Eloc, and CC, correcting for known confounders of early brain 
development in very preterm infants. We hypothesized that global ef-
ficiency would decrease with increasing extent of objectively-quantified 
DWMA. Likewise, we hypothesized that Eloc and CC would decrease with 
increasing DWMA volume, particularly in regions related to cognition, 
language, and motor ability. 

2. Materials and methods 

2.1. Subjects 

We enrolled a multicenter, prospective cohort of 343 very preterm 
infants (gestational age [GA] ≤ 32 weeks) from five level-III Greater 
Cincinnati area neonatal intensive care units: 1) Cincinnati Children’s 
Hospital Medical Center, Cincinnati’s primary academic pediatric 
referral service for the sickest neonates; 2) University of Cincinnati 
Medical Center, Cincinnati’s primary academic hospital for high-risk 
maternal referral; 3) Good Samaritan Hospital; 4) Kettering Medical 
Center; 

and 5) St. Elizabeth’s Healthcare; the latter three represent non- 
academic sites. Subjects were recruited between June 2017 and 
November 2019 and were excluded if they had cyanotic heart disease or 
chromosomal or congenital anomalies affecting their central nervous 
system. Infants who were hospitalized and mechanically ventilated on 
more than 50% supplemental oxygen at 45-weeks postmenstrual age 
(PMA) were also excluded. All experimental protocols involving human 
subjects were in accordance with the Declaration of Helsinki. The Cin-
cinnati Children’s Hospital Institutional Review Board approved this 
study, resulting in approval at the other sites due to reciprocity agree-
ments. A parent or guardian of each infant gave written informed con-
sent before enrollment. 

Fig. 1. Example Semi-automated DWMA Segmentation. The top row shows three slices from a T2-weighted MRI scan of the same male infant; gestational age of 25.4 
weeks, postmenstrual age at MRI of 41.7 weeks. The bottom row displays the same slices with clusters of voxels designated as DWMA by our algorithm circled in 
yellow. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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2.2. MRI data acquisition 

All study infants were imaged during unsedated sleep between 40- 
and 44- weeks postmenstrual age on a 3 T Philips Ingenia scanner 
(Philips Medical Systems, Best, the Netherlands) with a 32 channel 
phase array head coil. All MRI scans were performed at Cincinnati 
Children’s Hospital using identical imaging parameters. A skilled 
neonatal nurse and neonatologist were both present for any scan 
requiring positive pressure airway support. Each infant was fed 30 min 
prior to MRI, fitted with silicone earplugs to mitigate scanner noise 
(Instaputty, E.A.R. Inc, Boulder, CO), and swaddled in a blanket and a 
vacuum immobilization device (MedVac, CFI Medical Solutions, Fenton, 
MI) to promote natural sleep. We acquired MRI data as follows: diffusion 
MRI: echo time 88 ms, repetition time 6972 ms, flip angle 90◦, field of 
view 160 × 160 mm2, 80 × 79 matrix, 2-mm contiguous slices, and scan 
time 5:58 min. 36 directions of diffusion gradients were applied with a b 
value of 800 s/mm2 (4 b0 images were acquired with posterior-anterior 
phase encoding, and 1 b0 image was acquired with anterior-posterior 
phase encoding); axial T2-weighted image: echo time 166 ms, repeti-
tion time 18567 ms, flip angle 90◦, voxel dimensions 1.0 × 1.0 × 1.0 
mm3, and scan time 3:43 min; Three-dimensional magnetization-pre-
pared rapid gradient echo: echo time 3.4 ms, repetition time 7.3 ms, flip 
angle 11◦, voxel dimensions 1.0 × 1.0 × 1.0 mm3, and scan time 2:47 
min; sagittal SWI: echo time 7.2 ms, repetition time 29 ms, flip angle 
17◦, voxel dimensions 0.57 × 0.57 × 1.0 mm3, and scan time 3:27 min. 

2.3. DWMA quantification 

We quantified whole-brain DWMA on T2 images using our 
previously-described semi-automated software (He et al., 2013). Briefly, 
after preprocessing the T2 images with bias field correction and in-
tensity normalization and performing tissue segmentation via a unified 
algorithm (Ashburner and Friston, 2005) with the guide of a neonatal 
atlas (Shi et al., 2011), our program designated white matter voxels as 
DWMA if their intensity was greater than 1.8 standard deviations above 
the mean intensity for all grey and white matter voxels, a cutoff deter-
mined by our previous research (Parikh et al., 2020) (Fig. 1). For each 
subject, we normalized whole-brain DWMA volume by the infant’s total 
white matter volume to correct for the effect of brain size. The investi-
gator who performed DWMA quantification was blinded to the results of 
the graph theory analysis, and vice versa. 

2.4. Brain abnormality scoring 

We used the standardized scoring system developed by Kidokoro 
et al. (2013); Harpster (2021) to derive a brain abnormality score for 
each study subject. The overall score is the sum of four individual scores 
quantifying the extent of abnormalities in 1) the cortical grey matter, 2) 
the cerebral white matter, 3) the deep grey matter, and 4) the cere-
bellum. A single pediatric neuroradiologist who was masked to the 
clinical history of the study subjects performed all qualitative and 
quantitative MR image assessments. 

2.5. Diffusion MRI processing 

We used standard FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/, version 
5.0.11) routines to preprocess the diffusion data, correcting for 
susceptibility-induced distortions (using the reverse phase-encoded b0 
image), movement artifact, and eddy current-induced distortions. 
Diffusion Toolkit software allowed us to fit a tensor model in each brain 
voxel and generate maps of fractional anisotropy (FA), mean diffusivity 
(MD), radial diffusivity (RD), and axial diffusivity (AD) in diffusion 
space. From the FA maps, we performed whole-brain, deterministic fiber 
tracking with an angulation threshold of 35◦. We linearly aligned each 
subject’s T2-weighted image to their diffusion b0 image, to produce an 
image with more clearly-delineated anatomical boundaries than the 

original b0. We then aligned the 90-region automated anatomical la-
beling (AAL) infant template (Shi et al., 2011; Tzourio-Mazoyer et al., 
2002) to this new image, to create parcellated brain maps in diffusion 
space. We visually inspected each resulting image to ensure that the 
template had aligned properly and that all regional boundaries were 
clearly and correctly delineated. For several subjects with initial sub- 
optimal template alignment, we performed additional alignment of 
the image via the anterior and posterior commissures before reat-
tempting alignment with the template. 

2.6. Diffusion tensor metrics 

The diffusion tensor (DT) model uses the diffusion signal in each 
brain voxel to estimate the underlying tissue microstructure. FA, one of 
the most commonly-derived DT metrics, measures the degree of direc-
tionality of the white matter fibers and can be considered a surrogate 
marker of overall white matter integrity. AD measures diffusion along an 
axon’s main (longitudinal) axis, and RD quantifies the average diffusion 
in the other two orthogonal directions. MD, also known as apparent 
diffusion coefficient, captures the amount of diffusion in all three di-
rections. In normal brain development, FA of the white matter tracts 
increases and MD, RD, and AD tend to decrease with age (Mukherjee 
et al., 2001). However, in preterm infants with DEHSI, FA is reduced and 
MD, RD, and AD are elevated in regions of DEHSI as compared to normal 
surrounding white matter, although AD is less straightforward than the 
other metrics. At least one study found that AD can both increase and 
decrease, depending on the brain region, in preterm infants with DWMA 
(Cheong et al., 2009). AD in particular is not sensitive to myelination, 
unlike the other three metrics of the DT model. (Feldman et al., 2010) 

2.7. Brain structural connectome construction 

We used the MRtrix3 software (http://www.mrtrix.org, version 
0.3.0) to create undirected connectivity matrices weighted by the four 
major metrics from the diffusion tensor model (FA, MD, RD, or AD). For 
each metric, we extracted a value at each discrete point along every 
white matter streamline. We generated 90x90 conectivity matrices, the 
edge weights of which were the mean values for all streamlines con-
necting each regional pair. An edge could only exist where regions were 
connected by one or more streamline. For the RD, MD, and AD weighted 
networks, we used the inverse mean values, so that the edge weights 
roughly corresponded to white matter integrity, based on the expected 
trajectory in typical development. To avoid spurious associations due to 
noise in the diffusion image and because many regional pairs are not 
biologically plausible, we reassigned matrix elements with mean FA <
0.05 to zero. To verify that this absolute threshold did not alter the 
overall picture of the preterm connectome, we examined the global ef-
ficiency values for each connectome calculated over a range of possible 
FA thresholds (0 to 0.2 in increments of 0.01) and verified that the 
values were stable (Supplementary Fig. 5). For our secondary analysis, 
we set elements with mean MD/RD/AD < 5 x 10− 4 mm2/sec to zero. We 
also set upper bounds of 0.0025 for MD and RD and 0.003 for AD, based 
on plausible values for the very preterm brain (Teli et al., 2018). 

2.8. Graph theory metrics 

We used the open-source, MATLAB-compatible Brain Connectivity 
Toolbox (www.brain-connectivity-toolbox.net) to calculate our graph 
theory metrics of interest. We computed global efficiency for each whole 
connectome and local efficiency and clustering coefficient for each re-
gion/node. Global efficiency of a network is defined as the average in-
verse shortest path length for that network (Achard and Bullmore, 
2007), with path in this context describing the number of steps between 
regions rather than physical distance. Higher global efficiency repre-
sents fewer overall steps between nodes in a network, and as our net-
works are weighted by fractional anisotropy, higher FA values also 
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equate to higher global efficiency. Local efficiency is equivalent to 
global efficiency calculated on the neighborhood of a single node. The 
clustering coefficient (Latora and Marchiori, 2001) of a node is the 
fraction of the node’s neighbors that are neighbors of each other, and as 
such it can be thought of as a measure of fault tolerance in the network. 

2.9. Metric normalization 

Because regional graph theory metrics can be influenced by both 
number of nodes (N) and the average degree (k) of a network (van Wijk 

et al., 2010) and because normalization has been shown to produce 
more robust features (Paldino et al., 2019), we normalized our regional 
metrics (Eloc and CC) two ways. 1) As the number of nodes was already 
constant across subjects (N = 90), we retained an equal number of strong 
connections across all networks. Given that the smallest number of 
unique connections in any network (after thresholding) was 569, we 
retained the strongest 550 unique connections for all networks before 
calculating our metrics of interest. This approach results in an equal 
average degree distribution for all networks (van Wijk et al., 2010). To 
verify that our results were robust across levels of network sparcity, we 
also report results when retaining the top 500 and top 450 strongest 
connections in the supplement. 2) Normalization via random graphs. As 
an alternate normalization approach, for each connectome, we created 
100 random graphs with preserved degree distribution by randomly 
rewiring each edge 1000 times using Maslov and Sneppen’s algorithm in 
Brain Connectivity Toolbox (Maslov and Sneppen, 2002). For this 
approach, we divided the nodal metrics calculated from each subject’s 
connectome by the mean taken over all random networks for that 
subject. 

2.10. Statistical analysis 

Our primary analysis concerned the relationship between graph 
theory metrics derived from the FA-weighted connectivity matrices and 
DWMA extent. In Stata version 16.0 (StataCorp, College Station, TX), we 
performed partial correlation analysis between normalized DWMA 
volume and Eglob, Eloc, and CC, with the effects of PMA at MRI, gesta-
tional age, sex, structural brain abnormality (using the global brain 
abnormality score) (Kidokoro et al., 2013), birth hospital, and bron-
chopulmonary dysplasia (defined as supplemental oxygen use at 36 
weeks PMA) removed. We applied Benjamini-Hochberg false discovery 
rate (FDR) correction to account for all 181 graph theory metrics 
examined (global efficiency, local efficiency for 90 regions, and clus-
tering coefficient for 90 regions), with an accepted FDR of 5%. For our 

Table 1 
Baseline characteristics of the final very preterm cohort and the excluded 
infants.  

Characteristics Final Cohort 
(n = 324) 

Excluded (n 
= 19) 

p 

Antenatal steroids (completed 
course), n (%) 

299 (92.3) 18 (94.7)  1.00 

Gestational age, weeks, mean (SD) 29.3 (2.5) 28.4 (2.1)  0.09 
Birth weight, grams, mean (SD) 1308.6 (459.4) 1174.1 

(311.5)  
0.10 

Male, n (%) 162 (50.0) 5 (26.3)  0.06 
Severe retinopathy of prematurity*, 

n (%) 
18 (5.6) 1 (5.3)  1.00 

Bronchopulmonary dysplasia, n (%) 115 (35.5) 11 (57.9)  0.08 
Late onset sepsis, n (%) 30 (9.3) 3 (15.8)  0.41 
Postnatal steroids (dexamethasone), 

n (%) 
32 (9.9) 3 (15.8)  0.43 

Maternal education (college degree 
or higher), n (%) 

154 (47.5) 9 (47.4)  1.00 

Private insurance, n (%)** 155 (48.3) 5 (26.3)  0.10 
Household income above $60,000, 

n (%) 
159 (49.1) 9 (47.4)  1.00 

Moderate to severe injury on 
structural MRI, n (%) 

30 (9.3) 9 (47.4)  <0.001 

* 1 included subject did not have retinopathy of prematurity data. 
** 3 included subjects did not have insurance data. 

Fig. 2. Heatmap of DWMA concentration in the very preterm brain. 311 DWMA segmentations created by our algorithm were aligned to the AAL infantneo template 
using linear and nonlinear warping, to produce a heatmap of its location in our cohort. Two different views of the same map (top and bottom row) are shown from 
three perspectives. Yellow means that DWMA existed in a particular voxel for more subjects. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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secondary analysis, we repeated the above analysis for the MD, RD, and 
AD-weighted connectivity matrices, to help delineate the contribution of 
myelination vs axonal injury in DWMA pathology. We also repeated all 
of the aforementioned analyses after first applying our alternate 
normalization approach (normalization via random networks). Our 
brain networks were visualized using BrainNet Viewer (http://www.nitr 
c.org/projects/bnv/). 

Additionally, we performed two minor analyses. First, to confirm the 
validity of our graph theory metrics, we examined the relationship of 
FA-weighted global efficiency, local efficiency, and clustering coeffi-
cient with overall brain abnormality score (and all four subdomains 
scores), with an expectation that all three graph metrics would be 
reduced with increasing abnormality. Second, to identify possible 
exclusion bias, we compared the baseline characteristics of our final 
cohort to the excluded infants. We used a Fischer’s exact test for binary 
variables and either a Student’s t-test or a Mann-Whitney U test for 
continuous variables, after assessing normality. All applicable signifi-
cance tests were two-tailed, and a p-value of < 0.05 indicated 
significance. 

3. Results 

Out of an initial cohort of 343 very preterm infants with identically- 
acquired diffusion MRI scans, eight were excluded due to suboptimal 
alignment with the AAL template (Shi et al., 2011; Tzourio-Mazoyer 
et al., 2002), resulting from artifacts on diffusion MRI (n = 7) or 
deformational scaphocephaly (n = 1). An additional 11 subjects were 
excluded due to ventriculomegaly; in extreme cases very little brain 

tissue was spared for DWMA detection. Our final cohort comprised 324 
infants with high-quality diffusion data and objectively-quantified 
DWMA. The mean (SD) postmenstrual age at MRI scan was 42.8 (1.3) 
weeks. Compared to our final cohort, excluded infants were more likely 
to have moderate or severe brain injury, which was expected due to the 
nature of the exclusions. All other baseline characteristics were com-
parable between the two groups. Table 1 summarizes the clinical char-
acteristics of both cohorts as well as their statistical differences. Fig. 2 
shows a heatmap of where DWMA tended to concentrate in the preterm 
brain. 

As expected, mean graph theory measures derived from the FA- 
weighted connectivity matrices were significantly influenced by brain 
abnormality. Our final cohort had a median brain abnormality score of 2 
and an interquartile range of 5. For our final cohort of 324, 216 subjects 
(66.7%) had no brain abnormality (scores of 0–3), 72 (22.2%) had mild 
abnormality (scores of 4–7), 19 (5.9%) had moderate abnormality 
(scores 8–11), and 17 (5.3%) had severe abnormality (scores ≥12). 
Brain abnormality score was negatively correlated with Eglob (r = -0.27, 
p = 8.60E-07), with Eloc in 24 nodes, and with CC in 18 nodes (Sup-
plementary Fig. 1, Supplementary Table 1). 

As hypothesized, Eglob of the FA-weighted brain networks was 
negatively correlated with DWMA volume (p = 2.27 E-04). Regarding 
the two normalization schemes, the regions identified as significantly 
related to DWMA extent overlapped substantially for all network 
weightings. We therefore present the results normalized by retaining an 
equal number of strongest connections (550) in the main text. The re-
sults for normalization via random networks can be found in the sup-
plement (Supplementary Table 2, Supplementary Figs. 2–4). Regionally, 

Fig. 3. DWMA vs regional LE and CC for FA-weighted structural networks. Nodes in which DWMA volume was negatively correlated with local efficiency (top) or 
clustering coefficient (bottom) in the very preterm brain, after covariate correction and FDR. There were no significant positive correlations. The networks are shown 
from sagittal (left), axial (middle), and coronal (right) perspectives. Colors represent network membership: blue = cognitive, yellow = language, red = motor, green 
= cognitive/language, purple = cognitive/motor, orange = language/motor, and pink = other. The size of each sphere represents the total variance explained in the 
covariate-corrected model of normalized DWMA volume. 
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local efficiency was negatively correlated with DWMA in 30 nodes and 
CC was negatively correlated with DWMA in 9 nodes (Fig. 3, Table 2). 
There were no significant positive associations between DWMA volume 
and any graph theory metric tested. Similar results were seen across 
various levels of network sparcity (550, 500, or 450 strongest connec-
tions), although fewer nodal metrics remained significant as sparcity 
increased (Supplementary Table 3). Regional metrics with the strongest 
associations, for instance local efficiency of the left middle orbitofrontal 
cortex, right thalamus, and bilateral hippocampus and pallidum, 
remained strongly negatively associated with DWMA extent at all levels 
of sparcity tested. 

The results of our secondary analysis show complementary but less 
widespread relationships between DWMA volume and graph theory 
metrics derived from the MD- and RD-weighted networks. For the MD- 
weighted networks, DWMA extent was negatively correlated with Eglob 
(p = 0.02), Eloc in 17 nodes, and CC in 6 nodes (Fig. 4, Table 2). For RD, 
DWMA was negatively correlated with Eglob (p = 6.02E− 04), with Eloc in 
26 nodes, and with CC in 16 nodes (Fig. 5, Table 2). For the AD-weighted 
networks, Eglob was not significantly related to DWMA extent and Eloc 
was only significantly correlated with DWMA in the triangular right 
inferior frontal gyrus (p = 4.89E-05, not shown). Of the 42 nodes in 
which Eloc or CC were significantly correlated with DWMA, nearly all 
could be ascribed to a cognitive, language, or motor function (Table 2). 

4. Discussion 

We have illustrated that in the very preterm brain at term-equivalent 

age, increasing volume of objectively-quantified DWMA is indicative of 
widespread reduced network efficiency as indexed by graph theoretical 
metrics. For FA-weighted structural connectomes, increased DWMA 
volume correlates with decreased global efficiency, local efficiency, and 
clustering coefficient throughout a widely-distributed brain network 
that subserves cognitive, language, and motor performance. This finding 
supports the idea that DWMA is a pathological signal related to 
decreased white matter structural integrity. Less-widespread yet com-
plementary results were found for MD and RD-weighted networks, 
however there was only one significant region for the AD-weighted 
networks, which may offer insight into the pathophysiology of 
DWMA. The lack of an association with the AD networks suggests that 
abberent myelination rather than axonal injury is primarily at play in 
the pathophysiology of DWMA. 

Alterations in diffusion metrics in the presence of DEHSI have been 
previously reported and are consistent with our findings. In a cohort of 
extremely preterm infants (GA < 27 weeks), Skiold and colleagues found 
that infants with qualitatively-diagnosed DEHSI had lower FA and 
higher apparent diffusion coefficient in the centrum semiovale and 
along the corpus collosum than infants without DEHSI (Skiöld, 2010). 
Counsell et al. reported that compared to infants with normal white 
matter, very preterm infants with qualitatively-defined DEHSI had 
elevated radial diffusivity in the posterior limb of the internal capsule 
and the corpus collosum and elevated axial and radial diffusivity in the 
frontal, occipital, and periventricular white matter and centrum semi-
ovale (Counsell, 2006). Leitner et al. reported similar findings: elevated 
axial and radial diffusivities in the optic radiations, centrum semiovale, 

Fig. 4. DWMA vs regional LE and CC for inverse MD-weighted structural networks. Nodes in which DWMA volume was negatively correlated with local efficiency 
(top) or clustering coefficient (bottom) in the very preterm brain, after covariate correction and FDR. There were no significant positive correlations. The networks 
are shown from sagittal (left), axial (middle), and coronal (right) perspectives. Colors represent network membership: blue = cognitive, yellow = language, red =
motor, green = cognitive/language, purple = cognitive/motor, orange = language/motor, and pink = other. The size of each sphere represents the total variance 
explained in the covariate-corrected model of normalized DWMA volume. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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and posterior limb of the internal capsule in infants with DEHSI but 
without overt brain injury. (Leitner, 2014) All these findings suggest 
that in the presence of DWMA there is either 1) reduced myelination of 
white matter tracts or 2) an underlying axonal abnormality involving 
decreased white matter integrity or disorganized white matter 
microstructure. 

Results from our postmortem histopathology case series (Parikh 
et al., 2016) indicated that both axonal loss and reduced myelination are 
in fact involved in DWMA pathology. Both of these microstructural 
abnormalities could manifest as decreased FA and increases in the other 
three diffusion metrics. However, given that metrics of efficiency from 
our FA/MD/RD networks were significantly associated with DWMA 
extent but AD-weighted efficiency metrics were not (with the exception 
of local efficiency in one node), we cautiously posit that DWMA pa-
thology is driven more by myelination abnormalities than by severe 
axonal injury. This agrees with the notion that diffuse white matter 
disturbances in encephalopathy of prematurity are specifically charac-
terized by injury to oligodencdrocytes (Volpe, 2011; Back, 2017). 
However, we cannot rule out that AD is a poorer DTI metric from which 
to infer the presence of pathology such as DWMA, due to the afore-
mentioned conflict over its trajectory in typical development and 
following preterm birth (Cheong et al., 2009; Teli et al., 2018) and also 
conflicting accounts of how it is altered by axonal injury (Winklewski 
et al., 2018). 

For the FA-weighted connectomes, local efficiency and clustering 
coefficient decreased with increasing DWMA volume throughout much 
of the very preterm brain, especially in regions related to cognition, 

language, and motor ability (Table 2), reinforcing the premise that 
DWMA extent is tied to the specific deficits often seen in preterm chil-
dren (Parikh et al., 2020a, 2020b). FA-weighted Eloc and CC were 
consistently and strongly reduced with increasing DWMA volume in 
brain regions critical to cognitive function, especially in the bilateral 
insula, the left superior parietal gyrus, the left inferior temporal gyrus, 
and the bilateral middle orbitofrontal cortex, which is critical for deci-
sion making (Wallis, 2007). Eloc and CC were also negatively correlated 
with DWMA in nodes crucial to language production and comprehen-
sion, especially the bilateral inferior frontal gyrus (the left side of which 
contains Broca’s area) and the left superior temporal gyrus, containing 
Wernicke’s area. Furthermore, FA-weighted graph theory metrics were 
consistently down-regulated with increasing DWMA extent in several 
nodes of the brain’s motor network, particularly the right thalamus and 
in the bilateral pallidum and putamen. The MD and RD networks lend 
support to this interpretation; all regional efficiency metrics that 
decreased significantly with DWMA can be ascribed to motor, language, 
and cognitive functions, and there was a high degree of regional overlap 
across all networks. See Table 2 for a complete list of the significant 
regions and a cursory listing of their membership within functional 
networks. 

Graph theory applied to the preterm connectome has begun to 
delineate network changes associated with prematurity and tease apart 
the contributions of other factors like preterm illnesses. Bouyssi-Kobar 
et al. used resting state functional connectivity to compare the brains 
of preterm and full-term infants at term-equivalent age (Bouyssi-Kobar 
et al., 2019). They recorded decreased global efficiency, local efficiency, 

Fig. 5. DWMA vs regional LE and CC for inverse RD-weighted structural networks. Nodes in which DWMA volume was negatively correlated with local efficiency 
(top) or clustering coefficient (bottom) in the very preterm brain, after covariate correction and FDR. There were no significant positive correlations. The networks 
are shown from sagittal (left), axial (middle), and coronal (right) perspectives. Colors represent network membership: blue = cognitive, yellow = language, red =
motor, green = cognitive/language, purple = cognitive/motor, orange = language/motor, and pink = other. The size of each sphere represents the total variance 
explained in the covariate-corrected model of normalized DWMA volume. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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and clustering coefficient in the preterm brain and determined an as-
sociation with chronic respiratory illness. We found that the same graph 
theory metrics are decreased in proportion to DWMA volume (even 
when correcting for a common neonatal respiratory illness, broncho-
pulmonary dysplasia), suggesting that DWMA is a robust biomarker of 
network disorganization in the preterm brain at term with independent 
significance. Network alterations associated with prematurity persist 
into early life, as Young et al. reported decreased Eglob, Eloc, and CC in 
very preterm children compared to full-term children at four years of age 
(Young, 2018). Thompson et al. showed decreased Eglob but increased 
Eloc in specific brain regions in preterm children at seven years of age 
(Thompson et al., 2016), a discrepancy which may suggest that preterm 
children employ compensatory strategies to improve the efficiency of 
specific brain regions during early life. 

Our study has a number of strengths. We recruited a regional, 
population-based cohort of very preterm infants, thus increasing the 
generalizability of our findings. This is the largest cohort ever assembled 

Table 2 
Nodes in which DWMA volume was significantly associated with local efficiency 
or clustering coefficient for FA, MD, and RD-weighted connectomes, after co-
variate correction and FDR. Significant p-values for local efficiency are in the top 
row of each cell, and significant p-values for clustering coefficient are in the 
bottom row.  

Node FA MD RD Network 

Precentral gyrus left PreCG- 
L   

1.89E- 
03 

Motor 

Superior frontal gyrus 
(dorsal) left SFGdor-L  

6.21E- 
04 

4.92E- 
06 
3.15E- 
03 

Cognition 

Superior frontal gyrus 
(dorsal) right SFGdor-R  

8.71E- 
05 
4.68E- 
03 

1.52E- 
04 
5.36E- 
04 

Cognition 

Orbitofrontal cortex 
(superior) left ORBsup-L 

3.56E- 
04  

5.00E- 
04 
9.58E- 
03 

Cognition 

Orbitofrontal cortex 
(superior) right ORBsup- 
R 

1.10E- 
03   

Cognition 

Middle frontal gyrus left 
MFG-L   

2.74E- 
04 
6.08E- 
04 

Cognition 

Middle frontal gyrus right 
MFG-R   

1.09E- 
02 

Cognition 

Orbitofrontal cortex 
(middle) left ORBmid-L 

8.74E- 
06 
9.00E- 
03 

2.33E- 
03 

4.56E- 
08 
2.15E- 
06 

Cognition 

Orbitofrontal cortex 
(middle) right ORBmid-R 

7.41E- 
03 
8.17E- 
03 

1.61E- 
04 
3.61E- 
04 

4.81E- 
04 
4.92E- 
04 

Cognition 

Inferior frontal gyrus 
(opercular) left IFGoperc- 
L 

3.19E- 
03   

Language 

Inferior frontal gyrus 
(opercular) right 
IFGoperc-R 

4.25E- 
03  

8.75E- 
03 

Language 

Inferior frontal gyrus 
(triangular) right 
IFGtriang-R*  

1.52E- 
03  

Language 

Rolandic operculum left 
ROL-L 

5.12E- 
04   

Language 
Motor 

Supplementary motor area 
right SMA-R    1.01E- 

02 

Motor 

Olfactory right OLF-R 9.60E- 
03    

Rectus gyrus right REC-R 2.15E- 
03   

Cognition 

Insula left INS-L 1.04E- 
07 
5.38E- 
04 

1.22E- 
04 

1.16E- 
05 
9.59E- 
03 

Cognition 

Insula right INS-R 1.85E- 
03 

1.93E- 
03 

1.26E- 
03 

Cognition 

Anterior cingulate gyrus 
right ACG-R 

1.09E- 
02 

2.33E- 
03 

2.22E- 
03 

Cognition 

Hippocampus left HIP-L 1.49E- 
03  

5.73E- 
03 

Cognition 

Hippocampus right HIP-R 4.04E- 
04   

Cognition 

Parahippocampal gyrus 
right PHG-R 

1.02E- 
02   

Cognition 

Amygdala left AMYG-L 4.07E- 
03   

Cognition 

Amygdala right AMYG-R 3.28E- 
03  

8.28E- 
03 

Cognition 

Lingual gyrus right LING-R  2.16E- 
03 

1.70E- 
03 

CognitionLanguage  

Table 2 (continued ) 

Node FA MD RD Network 

4.58E- 
03 

1.68E- 
03 

Superior occipital gyrus 
right SOG-R  

4.96E- 
03  

Cognition 

Middle occipital gyrus right 
MOG-R 

9.75E- 
03 

6.19E- 
04 

7.81E- 
06 
7.57E- 
03 

Cognition 

Postcentral gyrus left PoCG- 
L 

5.28E- 
04   

CognitionMotor 

Superior parietal gyrus left 
SPG-L 

2.89E- 
04 
5.26E- 
03 

8.59E- 
04 

1.07E- 
03 
7.07E- 
03 

Cognition 

Superior parietal gyrus 
right SPG-R   

5.07E- 
03 

Cognition 

Inferior parietal lobule right 
IPL-R   3.11E- 

03  
5.71E- 
03 

CognitionLanguage 

Caudate left CAU-L 8.48E- 
04   

Motor 

Caudate right CAU-R   8.18E- 
03 

Motor 

Putamen left PUT-L 5.35E- 
04 

9.04E- 
05 

2.23E- 
06 
4.70E- 
03 

Motor 

Putamen right PUT-R 1.41E- 
04 

3.97E- 
04 

1.71E- 
05 

Motor 

Pallidum left PAL-L 4.82E- 
07 
1.46E- 
05 

1.19E- 
04 
7.64E- 
04 

9.63E- 
07 
4.19E- 
05 

Motor 

Pallidum right PAL-R 7.43E- 
06 
1.73E- 
04 

3.86E- 
06 
1.61E- 
04 

3.28E- 
07 
3.82E- 
05 

Motor 

Thalamus right THA-R 1.98E- 
05 
1.20E- 
04 

7.54E- 
04 

3.61E- 
04 

CognitionMotor 

Superior temporal gyrus left 
STG-L 

1.04E- 
03 
5.05E- 
03  

2.29E- 
03 

CognitionLanguage 

Temporal pole (superior) 
left TPOsup-L 

4.70E- 
04   

Cognition 

Middle temporal gyrus left 
MTG-L 

1.60E- 
03   

CognitionLanguage 

Inferior temporal gyrus left 
ITG-L 

1.41E- 
03 
2.20E- 
03  

4.13E- 
04 
4.51E- 
03 

Cognition 

*Means that LE was also significant for AD connectomes. 
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to study DWMA, which may explain why we identified such a strong 
association between DWMA and global efficiency of the preterm brain 
for the FA, MD, and RD-weighted networks, which remained highly 
significant after correction for several confounding variables. Unlike 
most prior studies, we used an semi-automated, objective method to 
quantify DWMA. To our knowledge, only one other group has developed 
an algorithm to accurately segment DWMA (Xu et al., 2018), however it 
has not been validated with clinical outcomes like our algorithm (Parikh 
et al., 2020; Parikh, 2020). Furthermore, by using graph theory rather 
than diffusion metrics alone, we were able to identify high-level network 
changes associated with DWMA extent. Finally, we examined structural 
connectomes weighted by several measures from the diffusion tensor 
model to disambiguate the relationship between DWMA and brain 
network alterations. However, our study also had some limitations. 
Excluded subjects were more likely to have moderate to severe brain 
injury, which may have introduced some sample bias. Nevertheless, our 
findings remained significant after controlling for structural abnormal-
ities on MRI using global brain abnormality score. 

5. Conclusions 

Overall, increasing volume of objectively-quantified DWMA is 
correlated with reduced information processing efficiency throughout 
the very preterm brain, as indexed by graph theoretical metrics, espe-
cially global efficiency and local efficiency. Our work suggests that the 
most common MRI finding in very preterm infants at term is associated 
with decreased brain network efficiency, due in large part to abnormal 
myelination compromising information transfer throughout the 
network. Furthermore, the consistent results across various network 
weightings and normalization schemes help identify and affirm which 
brain regions are preferentially impacted by DWMA. More work is 
warranted to determine the exact interplay between DWMA, brain 
network efficiency, and neurodevelopmental outcomes later in life. We 
have begun to undertake these follow-up studies in our center. 
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