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random forest algorithm (CNN-stochastic gradient descent, R? = 0.715; CNN-Adam,
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Introduction

Facial asymmetry is commonly encountered in the general
population.’ Generally, lateral deviation of the mandible is
easily recognized in patients with severe facial asymmetry;
this manifestation causes concern for patients and leads to
functional impairment. Therefore, facial symmetry affects
satisfaction with orthodontic treatment.”>

Cephalometric radiography is a diagnostic tool used to
quantitatively analyze the craniomaxillofacial skeleton
during orthodontic treatment planning. Broadbent intro-
duced cephalometric radiography in 1931;* cephalometric
analysis has since been an important diagnostic procedure
during orthodontic treatment. In orthodontic treatment
planning, assessment of the midline and mandibular devi-
ation in posteroanterior (PA) cephalograms are complex but
clinically important steps. Notably, additional orthodontic
training is needed to accurately evaluate the midline and
mandibular deviation.

In recent years, deep learning (a branch of artificial in-
telligence) has developed rapidly and has shown potential
for solving complicated medical tasks. Convolutional neural
networks (CNNs), a type of deep learning inspired by human
vision, have performed well in image classification tasks
because of their robust abilities to automatically learn
important features from images in healthcare,® including
the dental field. Research involving artificial intelligence
algorithms is ongoing with respect to the detection of
caries®’ and apical lesions,® diagnosis of periodontal dis-
ease”’® and oral cancer,'”'? and implementation of
maxillofacial prosthetic rehabilitation.’® Overall, lateral
cephalometric analysis has been demonstrated to auto-
matically identify anatomical landmarks.'* '8 In 2014 and
2015, public competitions for automatic lateral cephalo-
metric landmark detection were held at the Institute of
Electrical and Electronics Engineers International Sympo-
sium on Biomedical Imaging, with the goal of establishing
an integrative approach to biomedical image analysis.'%°
These competitions encouraged the continuing develop-
ment of various approaches for automatic detection of
lateral cephalometric landmarks.

Here, we propose a fully automated annotation system
that supports analysis of mandibular deviation and
detection of facial asymmetry in PA cephalograms by
means of a deep learning-based CNN algorithm. In the first
part of this study, four landmarks used for mandibular
deviation analysis were annotated in PA cephalograms; the
CNN algorithm with a stochastic gradient descent (SGD)
optimizer (i.e., CNN-SGD) showed the best experimental
performance. In the second part of this study, two refer-
ence lines were automatically defined and mandibular
deviation was measured to aid in prompt detection of
facial asymmetry.

Materials and methods
Dataset

This study was approved by the Ethical Committee for
Epidemiology of Hiroshima University (Approval Number:
E—2119). Four hundred PA cephalograms were collected
from the medical records of patients aged 4 years 2
months—80 years 3 months (mean age, 17 years 10 months;
255 female patients and 145 male patients). All images
were recorded in DICOM format by using a cephalometric
scanner (CX-150W; Asahi Roentgen Ind. Co., Ltd, Kyoto,
Japan). The original image resolution was 1648 x 1980
pixels with pixel spacing of 0.15 mm; images were resized
to 256 x 256 pixels. Subsequently, the images were
randomly divided into a training set (320 images) and a test
set (80 images). Two orthodontists (12 and 6 years of
experience, respectively) independently identified and
manually annotated four PA cephalometric landmarks: neck
of crista galli, right latero-orbital, left latero-orbital, and
menton (Me) (Fig. 1). The X, Y coordinate values for each
landmark were recorded as datasets and defined as the
ground truth locations. Then, the horizontal reference line
(a straight line connecting the right and left latero-orbital
landmarks) and vertical reference line (VRL; a perpendic-
ular line to the horizontal reference line through the neck
of crista galli) were defined (Fig. 1). All landmark and line
definitions employed Sassouni analysis, which is the most
commonly used method for assessment of asymmetry.?’

Deep learning-based CNN and random forest
algorithms

All procedures were performed with an Intel Core i7-9750H
2.60 GHz CPU (Intel, Santa Clara, CA, USA), 16.0 GB RAM,
and NVIDIA GeForce RTX 2070 MAX-Q 8.0 GB GPU (NVIDIA,
Santa Clara, CA, USA). CNNs were constructed using Python
and implemented using the Keras framework for deep
learning, with TensorFlow as the backend.

Supervised learning was implemented by means of two
machine learning approaches: a deep learning-based CNN
and a random forest algorithm (i.e., a robust decision tree-
based machine learning algorithm).?? The overall CNN ar-
chitecture is shown in Fig. 2. In the CNN learning process,
optimizers play crucial roles in model training.?>** There-
fore, two CNN optimizers were employed in this study: SGD
and Adam,” with learning rates of 1.8x107® and
1.8 x 107, respectively. The total epoch number was 5000.
The output layer had eight nodes, defined as individual
pairs of X, Y coordinate values for right latero-orbital, left
latero-orbital, neck of crista galli, and Me landmarks. The
random forest hyper parameters were implemented with
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Figure 1 Landmarks and prediction points on poster-
oanterior cephalograms. NC, neck of crista galli; Lo, right
latero-orbital; Lo’, left latero-orbital; Me, menton; HRL, hori-
zontal reference line; VRL, vertical reference line.

default settings. Following landmark annotation, the hori-
zontal reference line and VRL were automatically defined
with an algorithm coded in Python.

Performance metrics

Eighty test images were used to validate accuracy and
computational efficacy. The CNN and random forest per-
formances were assessed based on the coefficient of
determination (R?). All annotation results were analyzed as
the successful detection rate (in %) for four precision

measurements, in accordance with previous reports.'®%°

The successful detection rate was defined as the propor-
tion of corresponding landmarks within 2mm, 2.5mm,
3mm, and 4mm from the ground truth location. The dis-
tance from the VRL to the Me was measured to determine
mandibular deviation. To evaluate algorithm performance,
mean absolute error (MAE) was calculated using the
following formula:

1 n
MAE—E;}D,-—D;},

where D; is the ground truth distance from the VRL to the
Me and D;’ is the predicted distance from the predicted VRL
to the predicted Me.

Results

Table 1 shows the algorithm performances during predic-
tion of the four landmarks. The CNN algorithms had high R?
values, compared with the random forest algorithm (CNN-
SGD, R? =0.715; CNN-Adam, R? = 0.700; random forest,
R? = 0.486). Table 2 summarizes the best and worst per-
formances of the algorithms for each landmark. Notably,
the right latero-orbital landmark was most difficult to
detect accurately by using the CNN. The successful detec-
tion rates of the CNN and random forest algorithms are
shown in Fig. 3. Compared with the random forest algo-
rithm, the CNN-SGD algorithm exhibited an approximately
5% higher successful detection rate across all precision
ranges.

Based on the annotated landmarks, the horizontal
reference line and VRL were defined using an algorithm
coded in Python. Representative predicted reference lines
are shown in Fig. 4. The distances between the Me and
VRL were determined for ground truth and predicted

Table 1 Performance evaluation of proposed algorithms

for landmark prediction.

Algorithm Optimizer R"2

CNN SGD 0.715
Adam 0.700

Random forest = 0.486

CNN, convolutional neural network; SGD, stochastic gradient
descent.
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Figure 2  Architecture of the convolutional neural network used in this study. ReLU, rectified linear unit.
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Table 2  Successful detection rates for four landmarks at four precision ranges.
Algorithm Optimizer Landmark SDR (%)
<2.0mm <2.5mm <3.0mm <4.0mm
CNN SGD Mn 26 33 45 63
Nc 30 41 50 62
Lo 26 35 42 60
Lo’ 36 48 55 70
Adam Mn 27 41 45 57
Nc 32 38 47 65
Lo 22 27 37 51
Lo’ 23 31 38 58
Random forest = Mn 12 13 26 35
Nc 37 48 53 67
Lo 22 36 40 55
Lo’ 26 37 43 60

SDR, successful detection rate; CNN, convolutional neural network; SGD, stochastic gradient descent.
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Figure 3

Success detection rates of the proposed convolutional neural network and random forest algorithms for 2.0-mm, 2.5-

mm, 3.0-mm, and 4.0-mm precision ranges for the four landmarks assessed in this study. CNN, convolutional neural network; SGD,

stochastic gradient descent.

landmarks, respectively. MAEs between ground truth and
predicted distances were similar for CNN and random
forest algorithms (Table 3).

Discussion

Various artificial intelligence algorithms have been pro-
posed and applied to medical research. Here, we applied
two artificial intelligence algorithms (i.e., CNN and random
forest) to orthodontic diagnosis; our proposed system was

able to automatically annotate landmarks and measure
mandibular lateral deviation by means of PA cephalograms.
CNNs typically consist of three types of layers: convolution,
pooling, and fully connected. Convolution layers are
composed of multiple feature maps, whereas pooling layers
are inserted periodically between convolution layers to
reduce the number of parameters in the network. These
two types of layers perform feature map extraction of the
images; extracted features are then transformed into the
fully connected layer. The algorithm does not require
manual feature extraction and does not necessarily require
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Predicted VRL

Figure 4 Representative annotations of landmarks and def-
initions of reference lines. Ground truth landmarks (blue),
convolutional neural network-stochastic gradient descent
predictions (yellow), and predicted reference lines are shown.
NC, neck of crista galli; Lo, right latero-orbital; Lo’, left latero-
orbital; Me, menton; HRL, horizontal reference line; VRL,
vertical reference line.

Table 3  Performance evaluation of proposed algorithm in
terms of mean absolute error for distance from the vertical
reference line.

Algorithm Optimizer MAE Max  Min Median
CNN SGD 1.67 +1.77 7.957 0.038 1.147
Adam 1.69+1.63 8.374 0.013 1.174
Random — 1.80+1.81 8.298 0.005 1.295
forest

CNN, convolutional neural network; SGD, stochastic gradient
descent; MAE, mean absolute error.

manual segmentation of the target (e.g., tumor or organ)
by human experts.?® However, CNNs are computationally
intensive because they require large amounts of data to
estimate millions of trainable parameters.”® Random forest
is an ensemble algorithm that builds randomized decision
trees and incorporates a variety of features into its classi-
fication process; importantly, it can deter overfitting by a
“majority voting” approach. Thus, the random forest al-
gorithm has crucial advantages relative to other algorithms;
these include effectiveness in multiclass classification and
regression tasks, rapid training speed, ease of imple-
mentation in parallel computation, tuning simplicity,
robustness to noise, and ability to handle highly non-linear
biological data.?” Although prior studies have used lateral
cephalograms, rather than PA cephalograms, machine
learning-based algorithms such as random forest and CNN
have been proposed for landmark annotation. Random

forest algorithms have been proposed for some landmark
annotation systems.'®?° In a recent study, You-Only-Look-
Once version 3,”® a CNN specialized for real-time object
detection, was applied to lateral cephalograms for land-
mark detection.”” These systems are effective for a broad
range of landmark annotation.

Selection of an optimizer is an important step in deep
learning-based CNNs that influences model perfor-
mance.?>?* The SGD and Adam optimizers were employed
in this study because of their widespread use in prior
investigations.”-% 32324 However, there is no established
guideline for optimizer selection. Thus, researchers rely
on empirical studies and comparative benchmarking.?* In
the present study, the SGD optimizer showed the best
experimental performance, in terms of the successful
detection rate.

Orthodontists may choose any of several methods for
setting the facial midline, such as drawing a perpendicular
line at the midpoint between two landmarks on either side,
or connecting the left and right landmarks with a horizontal
line and drawing a perpendicular line passing through a
landmark located near the midline of the face. It is chal-
lenging to define facial midline due to the influences of
vertical and horizontal errors in setting each landmark.?’
Thus, automatic detection of the neck of crista galli and
other PA landmarks by means of artificial intelligence may
be a promising clinical technique that facilitates definition
of the facial midline. A limitation of this study was that the
successful detection rates were relatively moderate,
compared with previously reported landmark detection
systems that used lateral cephalograms; this might have
had substantial effects on the final measurement of
mandibular deviation. Despite the use of symmetrical
landmarks, the right latero-orbital landmark showed lower
successful detection rates, compared with the left latero-
orbital landmark. The difference in annotations between
the two experts may have been greater for the right latero-
orbital landmark in our dataset. In addition, craniofacial
growth continues with advancing age in humans, a phe-
nomenon widely accepted in current medical litera-
ture.>®3" We included 400 patients in our small dataset;
their ages ranged from 4 to 80 years. Given the changes
that occur in the facial skeleton over time, this is a fairly
wide age range. We presume that many sophisticated
datasets evaluated by consensuses involving several experts
will contribute to the improvement of successful detection
rates in the future.

The Sassouni analysis employed in this study is a widely
used method in which lines connecting the left and right
latero-orbital landmarks are used as the horizontal refer-
ence plane, while the perpendicular line passing through
the neck of crista galli is regarded as the facial midline.?’
Some investigators have concluded that the neck of crista
galli is among the landmarks with the greatest inter-
inspector error in PA cephalometric analysis.

It is important to emphasize that the final evaluation of
facial symmetry requires hard tissue evaluation by PA
cephalometric analysis, as well as soft tissue evaluation
with facial photographs.®>** Recently, several methods
have been reported for evaluating facial symmetry via
simultaneous analysis of hard and soft tissue characteristics
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in computed tomography images.>**° The use of CNNs for
three-dimensional evaluation may provide an important
diagnostic tool in the future.

In this study, we annotated PA cephalometric landmarks
that contribute to the determination of reference lines in
the Sassouni analysis, using deep learning-based CNN al-
gorithms; we evaluated the precision of this annotation.
Additionally, we described systems that could automati-
cally measure mandibular deviation to aid in the detection
of facial asymmetry. Although further improvement may be
necessary for clinical implementation, the proposed appli-
cation of deep CNNs for detection of facial asymmetry of-
fers a promising technique that might reduce the effort
involved in orthodontic diagnosis. Future studies should
focus on building a comprehensive diagnostic system that
includes lateral cephalometric analysis and three-
dimensional evaluation.
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