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Manual detection of newly formed lesions in multiple sclerosis is an important

but tedious and di�cult task. Several approaches for automating the detection

of new lesions have recently been proposed, but they tend to either

overestimate the actual amount of new lesions or to miss many lesions. In

this paper, an image registration convolutional neural network (CNN) that

adapts the baseline image to the follow-up image by spatial deformations and

simulation of new lesions is proposed. Simultaneously, segmentations of new

lesions are generated, which are shown to reliably estimate the real new lesion

load and to separate stable and progressive patients. Several applications of the

proposed network emerge: image registration, detection and segmentation of

new lesions, and modeling of new MS lesions. The modeled lesions o�er the

possibility to investigate the intensity profile of new lesions.
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1. Introduction

Multiple sclerosis (MS) is a chronic inflammatory disease that progressively destroys

the axons in the central nervous system. With an estimated number of more than 2

million affected,MS is the leading cause of neurological disability in young adults (WHO,

2008). The detection and quantification of new MS lesions based on magnetic resonance

(MR) imaging is a crucial task in the monitoring of MS, since the presence of new lesions

indicates drug inefficacy. The manual segmentation of MS lesions, however, is time-

consuming and complex. In a postmortem study (Geurts et al., 2005), only 40% of lesions

detected on histopathology were also found on FLAIR MR scans. The detection of new

lesions is considered to be an even more challenging task, exhibiting high intra- and

inter-rater variance. The automation of (new) MS lesion detection and segmentation has

therefore attracted substantial attention recently, e.g., through several public challenges

(Commowick et al., 2016, 2021; Carass et al., 2017).
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Existing methods for automatic longitudinal examination of

MS may be classified into lesion detection and change detection

approaches (Lladó et al., 2012). Lesion detection approaches

segment all lesions on MR volumes of single time points.

For a longitudinal quantification of changes, a subsequent

differentiation of static, dynamic and new lesions is needed.

Köhler et al. for example use a semi-automatic segmentation

approach to mark lesions in individual MR scans. Afterwards,

they affinely register all images to a reference scan and finally

distinguish between stable, dynamic and new lesions based on

the intersection of lesion masks from all time points (Köhler

et al., 2019).

Change-detection approaches on the other hand directly use

both images from subsequent time points to detect changes

between baseline and follow-up. These approaches can be

subclassified into intensity- and deformation-based approaches

(Salem et al., 2020). Intensity-based approaches compare pre-

registered scans of subsequent time points on a voxel-by-

voxel basis to segment new lesions, e.g., Moraal et al. (2010),

Ganiler et al. (2014), and Battaglini et al. (2014); Jain et al.

(2016); Fartaria et al. (2019). Deformation-based approaches,

however, use non-rigid image registration and analyze the

resulting deformation fields to find new or evolving lesions (Rey

et al., 2002; Cabezas et al., 2016). Works combining ideas from

intensity- and deformation-based approaches show improved

performance compared to using intensity-based solutions alone

(Cabezas et al., 2016; Salem et al., 2018).

The majority of recent methods for new MS lesion

segmentation are based on deep learning (Krüger et al., 2020a;

McKinley et al., 2020; Salem et al., 2020; Combès et al., 2021).

A trend reflected in the submissions to the MICCAI 2021—

Longitudinal Multiple Sclerosis Lesion Segmentation (MSSEG-

2). Challenge (Commowick et al., 2021), most of which perform

image registration as a pre-processing step and subsequently

use a 2D or 3D U-Net-like architecture to segment new

lesions. Especially promising segmentation results are achieved

by Dalbis et al. (2021) and Zhang et al. (2021) that both use

a 2.5D approach with image slices of all three directions as

network input.

Salem et al. (2020) propose a fully convolutional network

(FCN) that consists of four registration blocks followed by

a segmentation block. Each registration block registers the

baseline scan of a certain modality (T1, T2, PD, and FLAIR) to

the respective follow-up scan. The resulting deformation fields

are then fed to the segmentation part of the network (Salem

et al., 2020). For the MSSEG-2 challenge, the authors adapt their

approach to work with FLAIR images only.

Using image registration as a pre-processing step to

lesion load change or new lesions detection may cause

underestimation of changes, since not only geometrical

distortions but also changes of interest are erroneously

eliminated by the registration step. Joint image registration and

non-correspondence estimation may overcome this problem

(Dufresne et al., 2020). Classic, i.e., iterative approaches that

estimate non-correspondences during the registration process

can be found in (Ou et al., 2011; Chen et al., 2015;

Dufresne et al., 2020; Krüger et al., 2020b). Ou et al. (2011)

estimate the matching uniqueness between voxel pairs to

weigh the image distance measure during the registration

process. A similar approach is followed by Krüger et al.

(2020b) who use probabilistic correspondences between sparse

image representations to define the weight map. In Chen

et al. (2015) and Dufresne et al. (2020), a segmentation

mask of non-corresponding regions is generated during the

registration process. This segmentation is used to mask out

the image distance measure in non-corresponding image

regions. Together with regularization of the segmentation,

non-corresponding regions are thus found as outliers in the

image distance and segmented directly. Following this approach,

we propose in Andresen et al. (2022) what is, to the best

of our knowledge, the first method that tackles joint image

registration and non-correspondence segmentation with deep

learning. For the MSSEG-2 challenge, we use this approach to

register baseline and follow-up images of MS patients while

simultaneously segmenting non-corresponding regions. The

non-correspondence segmentation is then refined with a second

FCN, resulting in a final segmentation of new MS lesions

(Andresen et al., 2021).

While all these approaches handle non-correspondences by

weighing them down during the registration process, other

methods for image registration with non-correspondences

directly model both spatial and intensity differences between

images to make them look alike (Trouvé and Younes, 2005;

Rekik et al., 2015; Wilms et al., 2017; Bône et al., 2020). Uzunova

et al. propose the joint shape and appearance autoencoder

(SAAE) that reconstructs images from a global template using

spatial deformations and intensity transformations (Uzunova

et al., 2021). This allows the reconstruction of different

modalities within the same framework. To assure a proper

disentanglement of shape and appearance, guided filtering (He

et al., 2013) is used such that the appearance offsets do not

change the shape of the template.

Inspired by Uzunova et al. (2021), we now extend our

image registration CNN for newMS lesions detection (Andresen

et al., 2021) to ANCR-Net (appearance adaptation in non-

correspondent regions and image registration network). ANCR-

Net not only spatially deforms the baseline image, but also

changes its appearance in non-corresponding image areas to

match the follow-up. The spatial displacement accounts for

general misalignments between the baseline and the follow-

up images, as well as for old lesions changing shapes and

sizes. The intensity transformations, however, are not applied

to the entire baseline images but only in non-corresponding

areas, which allows us to directly model newly appearing MS

lesions. Different from Andresen et al. (2021), we use only one

CNN whose segmentation branch is trained in a supervised
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manner. The trained network offers several applications for MS

lesion analysis: 1) detection and segmentation of new lesions, 2)

registration of baseline to follow-up images and 3) modeling the

appearance of new lesions.

2. Materials and methods

2.1. Training objective

As described in Andresen et al. (2022), CNN-based image

registration of baseline image B :� → R and follow-up

image F :� → R with simultaneous non-correspondence

segmentation can be formulated with the following training

objective (Andresen et al., 2022).

LNCR = (1− N) · D
(

F, B ◦ ϕ
)

+ αRϕ + βRN , (1)

with image distance measure D and regularizers Rϕ and RN .

The diffeomorphic deformation field ϕ :R → R
3, with

ϕ = exp(v) and the segmentation of non-correspondences

N :� → [0, 1] are both network outputs. The regularizers

Rϕ = ‖∇v‖22 and RN =
∑

x∈� N + γ tanh
(

‖∇N‖2
)

enforce

smoothness of the velocity field v and small, regularly bordered

segmentations N. The image distance measure D is evaluated

only in corresponding image regions, while non-corresponding

areas with large image distance are masked out. Based on outlier

detection in the image distance measure, the network is able to

simultaneously segment non-correspondences and to spatially

align baseline and follow-up images.

Taking ideas from Uzunova et al. (2021), we now want to

model new MS lesions as appearance offsets between baseline

and follow-up images in non-corresponding image regions. This

results in the new training objective

L = D
(

F, (B+ N · A) ◦ ϕ
)

+ αRϕ + βLDice(N ◦ ϕ, S). (2)

Appearance offsets A :� → R are masked with the non-

correspondence segmentation N and added to the baseline

image. The appearance adapted baseline is then spatially

deformed to match the follow-up image. Normalized cross-

correlation is used as an image distancemeasure. The regularizer

Rϕ is defined as in Eq. (1). Other than our previous

approach, we now use the Dice loss between the network’s

non-correspondence segmentation N and the ground truth

segmentation S, making the regularization of N obsolete.

The intuition behind this method is that only in the

regions of new lesions, strong intensity changes are to be

expected between the baseline and the follow-up. Thus, intensity

transformations are only applied in the non-corresponding

image regions in order to directly model the newly appearing

MS lesions. The spatial displacement ϕ in turn accounts for

old lesions changing shapes and sizes as well as for general

misalignments between the baseline and the follow-up images,

but not for newly appearing lesions.

2.2. Network architecture

Consistent with previous works, the proposed ANCR-Net

consists of one encoder and two separate decoders whose exact

architecture is shown in Figure 1. The encoder starts with two

separate convolutional blocks that process input MR images

and their subtraction image. The resulting feature maps are

concatenated and passed through multiple max pooling and

convolution operations, analogously to the U-Net (Ronneberger

et al., 2015). Another common feature to the U-Net is that

our network also has decoders connected to the encoder via

skip connections. The first decoder outputs the diffeomorphic

deformation ϕ and the other generates non-correspondence

and appearance offset maps N and A. Outputs are generated

on three levels of resolution to provide deep supervision on

both branches (Hering et al., 2019; Andresen et al., 2022). The

loss function is determined at all three levels of resolution

and a weighted sum is calculated to give a final loss for

backpropagation. The weighting factors are chosen to be 0.7, 0.2

and 0.1 for each level, respectively, giving the finest resolution

level the highest weight. Input to the network are five stacked

axial slices sampled to an isotropic resolution and image size

of 368 × 512 pixels. To generate segmentation results for the

entire image volume, we iterate slice-wise through the volume

and keep the segmentation of the central slice of the stacked

input patches.

2.3. Network training

For network training, we use theMSSEG-2 challenge dataset.

It consists of 40 whole-head FLAIR MR image pairs. Baseline

and follow-up images have been rigidly pre-aligned for each

patient. NewMS lesions—if present—were manually segmented

in the pre-aligned images by four medical experts and combined

to one ground truth label of new lesions, which are used for

network training.

New MS lesions are rare and mostly small, resulting

in lesions being severely underrepresented in the data. To

account for the class imbalance problem, we pre-train the

network by inserting simulated lesions into the images that

do not have real new lesions and deforming them with

random elastic deformations. The network is then trained

in a supervised manner using Dice loss and mean squared

error between predicted and ground truth deformations as loss

function. For lesion simulation, we generate a mask indicating

candidate locations of lesions as follows. First, brain extraction

is performed on both time points separately and the union of

the brain masks is defined as the final brain mask. Second,

baseline and follow-up images are normalized to values between

0 and 1 and thresholded above 0.1 to exclude the ventricles

from the final mask. The brain mask is then multiplied with

the thresholded MR images. As the simulated lesions should not
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FIGURE 1

Architecture of the proposed network for new MS lesions modeling. Input to the network are baseline and follow-up MR images and their

subtraction image. Two decoders generate a di�eomorphic deformation field ϕ for registration of baseline to follow-up and a segmentation N

of new lesions together with appearance o�sets A. Numbers below or above the blue boxes indicate the number of feature maps. Since the max

pooling does not change the number of features, we omit the numbers before max pooling for visualization purposes.

protrude beyond the edge of the brain, the mask is subsequently

shrunk using morphological erosion.

Artificial lesions are inserted on the fly during pre-training

by first selecting a random number of new lesions (minimum

one and maximum five) and randomly selecting locations

from the candidate locations extracted before. At each selected

location, we simulate a new lesion as a Gaussian ellipsoid whose

values are added to the image intensities.

After lesion insertion, a random elastic deformation is

applied to the image which then serves as fixed image whereas

the original image is used as moving image. In addition, the

following augmentation techniques are randomly applied to the

moving and reference images during both the pre- and the final

network training:

• Gaussian noise (inside brain region only)

• Rotation (±5◦, performed on both images)

• Shift (±3 pixels in the axial plane, performed on both

images)

• Brightness change (inside brain region only)

• Brightness gradient (inside brain region only)

• Adaptive histogram equalization

Pre-training is performed for 200 epochs, Adam optimization

and a learning rate of 1e−4 that is decayed every 20th epoch

with a factor of 0.8. After pre-training, ANCR-Net is trained

with the loss function (2) using only image patches containing

new lesions in the manual ground truth. Each of these patches is

passed twice to the network, once with the original orientation

and once flipped horizontally. Training is again performed

with Adam optimization, exponentially decaying learning rate

starting from 1e−4 and run for 400 epochs to assure full

convergence. All code is made publicly available at https://

github.com/juliaandresen/ANCRNet.git.

3. Experiments and results

The proposed method is validated on the test dataset of the

MSSEG-2 challenge, consisting of 60 FLAIR MR image pairs. In

our observations, the ground truth segmentation for one patient

in the test data (ID 12) is not correct, thus we discard patient 12

from the test set and report results for the remaining 59 patients.

For all experiments, we perform five-fold cross-validation on

the training data, splitting the dataset into 32 training and 8

validation images per fold. The networks are ensembled and

segmentations combined by majority vote. Each lesion in the

resulting segmentations that is smaller than 3 mm3 in volume

is discarded. All metrics reported for new lesions detection

and segmentation compare the manual consensus ground

truth with the non-correspondence segmentations N. The

non-correspondence segmentations are multiplied with brain

masks generated by the default pre-processing pipeline1 before

metrics calculation.

1 https://github.com/Inria-Empenn/lesion-segmentation-challenge-

miccai21/
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3.1. New lesions detection

New lesions detection performance is measured with several

metrics. First, we report lesion sensitivity SensL, the proportion

of detected new lesions in the ground truth. The lesion positive

predictive value PPVL gives the proportion of true positive

lesions out of all lesions segmented by the network. Finally, the

F1-Score combines SensL and PPVL as

F1 =
2 · SensL · PPVL

SensL + PPVL
. (3)

These metrics are not suitable for images that do not contain

lesions in the ground truth. For these cases, we report average

number and volume of erroneously detected lesions. We

additionally give the proportion Detp of patients correctly

identified as progressing, i.e., at least one ground truth lesion

is detected. For patients without new lesions we report Dets,

the proportion of patients correctly identified as stable, i.e., no

segmentation is generated for these patients.

Results are summarized in Table 1 both for images with and

without ground truth lesions. For comparison, we report the

average performance of the four medical experts who segmented

the MSSEG-2 challenge data and of the three teams achieving

best results in the four metrics considered at the challenge:

MedICL (Zhang et al., 2021) achieving the highest Dice score,

Mediaire-B (Dalbis et al., 2021) achieving the best F1-Score and

LYLE (Ashtari et al., 2021) who performed best for number and

volume of erroneously detected lesions. The results per patient

can be found in the Supplementary material.

The PPVL results show that most automated methods,

including ours, tend to overestimate the number of new MS

lesions and generate quite a lot of false positives. This is

particularly true when the proposed pre-training is not used.

In return, they are able to reliably detect real new lesions, even

exceeding the average detection rate of medical experts. Despite

the high proportion of false positives on the images with newMS

lesions, ANCR-Net manages to correctly identify 89.3% of the 28

patients without a ground truth lesion in the test set as stable. At

the same time, an average of 63.3% of ground truth lesions are

correctly identified by our network. For 25 out of the 31 patients

in the test set, our CNN manages to correctly detect at least

one ground truth lesion. Considering not only correctly detected

new lesions but all generated lesions, ANCR-Net identifies 29

patients as progressing. While the competitive methods achieve

high detection rates either for stable or progressive patients, our

method is the only one capable of reliably detecting new lesions

and keeping the number of false positives low in stable patients,

thus properly separating stable and progressing patients. In

addition, our network also reliably estimates the real number of

new lesions, with a mean error of only 1.322 lesions.

In Figure 2, contentious new lesions not included in the

ground truth but segmented by at least one of the four experts

and also by our proposed network are shown. The figure

highlights the difficulty of the new lesions detection problem that

is further aggravated by the changing size and shape of lesions.

Automatic methods for new lesion detection inherently suffer

from these difficulties, leading to the observed high proportion

of false positives.

3.2. Segmentation of new lesions

To measure lesion segmentation performance, average Dice

score, surface distance and Hausdorff distance are considered.

Results are reported in Table 2 and again compared to experts’

performance and best performing challenge submissions.

Segmentation performances overall are quite low, which is

reflected both in the Dice score and in the surface-based

metrics. The average surface distance is comparable for almost

all automaticmethods with a value of just over 9 mm.Only LYLE

achieves amean surface distance of 7.209mm. The results for the

Hausdorff distance vary more. Here, too, LYLE performs best

with 38.883mm. Our methods achieves the second lowest value

of 42.618mm.

Considering Dice score, the best performing method

(MedICL) achieves a value of 0.523. Our method scores second

with 0.470. Even the experts only achieve an average Dice

score of 0.573. This highlights the difficulty of the MS lesion

segmentation task. Lesion borders often appear blurred, making

their exact delineation difficult. Still, Dice scores do not take

into account separate lesions, but only measure the overlap of

all segmented pixels. We therefore also compute Dice scores

for the test data on lesion-level and report scores averaged over

1) all lesions in ground truth and 2) all detected ground truth

lesions. Lesion-wise Dice scores are even lower than the results

in Table 2 with 0.412 for our method and 0.558 for the experts

when averaging is performed over all ground truth lesions. For

detected ground truth lesions, the average lesion-wise Dice score

is 0.631, showing that lesion delineation works well in the case

of identified lesions, but the gap to experts is still large (experts’

average 0.817).

Finally, factors influencing the detection and segmentation

quality of ANCR-Net are analyzed. For each lesion in themanual

ground truth, volume, convexity, contrast to surrounding tissue

and contrast to the baseline image are considered. For lesion

volume, the cube root of the volume is used as a very rough

estimate of lesion diameter. As described in Lian et al. (2012),

the convexity is calculated as the quotient of the lesion volume

and the volume of the convex hull of this lesion. To calculate

the contrast to the surrounding tissue, we determine the mean

intensities within the lesion and in a small area around the

lesion (found by binary dilation of the lesion segmentation with

a spherical structuring element). The contrast is then calculated

as the difference in mean intensity divided by the average of the

two mean intensities (Nabavizadeh et al., 2019). The contrast

to the baseline image is determined analogously using the
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TABLE 1 New lesion detection results for images with and without new lesions in ground truth.

Model Data With new lesions Without new lesions

F1 SensL PPVL Detp Number Volume Dets

Experts Validation 0.732 0.697 0.772 0.871 0.000 0.000 1.000

Ours, w/o PT Validation 0.591 0.634 0.624 0.828 0.545 6.959 0.636

Ours Validation 0.622 0.666 0.623 0.862 0.455 6.948 0.636

Experts Test 0.635 0.609 0.663 0.815 0.045 1.514 0.955

MedICL Test 0.516 0.760 0.465 0.871 0.536 12.713 0.643

Mediaire-B Test 0.559 0.707 0.507 0.806 0.536 29.235 0.643

LYLE Test 0.455 0.431 0.522 0.742 0.036 0.470 0.964

Ours, w/o PT Test 0.566 0.623 0.612 0.839 0.250 4.443 0.750

Ours Test 0.582 0.633 0.582 0.806 0.107 2.039 0.893

Reported are average F1 score, lesion sensitivity and positive predictive lesion value for images containing new lesions. For stable patients, the average number of erroneously detected

lesions and their volume are reported. The results are given for the medical experts who generated the manual ground truth data as well as for our proposed method with and without

pre-training (PT) and compared to the three pipelines that performed best in the MSSEG-2 challenge (Ashtari et al., 2021; Dalbis et al., 2021; Zhang et al., 2021). Best results are given in

bold font and second best in italics. No method manages to significantly outperform all other methods (according to a Wilcoxon signed rank test with significance level 0.05).

FIGURE 2

False positives generated by our CNN for patients 1, 23, 62, and 66 that were controversial among the experts. For each patient, baseline,

follow-up and the segmentation of new lesions as generated by our network are shown. Segmentation contours of expert 1, 2, 3, and 4 are

overlaid in blue, orange, green and red, respectively.

mean intensities within the lesion area in baseline and followup

images.

Results are shown as scatter plots in Figure 3 where each

point represents a ground truth lesion. It can be seen that

lesion convexity does not seem to strongly influence the lesion

detection performance. The pre-training on artificial lesions

with an elliptical shape does not result in better detection of

lesions with such a shape (as measured by convexity). The

other considered metrics, however, have a greater impact on

the detection performance of ANCR-Net. Larger lesions are

detected with higher accuracy. Likewise, lesions that show a

strong contrast to the background and especially to the baseline

image are detected better than lesions with low contrast.

To analyze the influence of the considered lesion

characteristics on the segmentation performance of ANCR-Net,

linear regression is performed. For each lesion characteristic,

we remove outliers biasing the regression results by discarding

those lesions whose characteristic is smaller/larger than the

5 %-/95 % percentile of the respective characteristic. Also, we

perform the regression once for all the remaining lesions and
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once for only those lesions that are detected by ANCR-Net. Each

of the considered metrics shows a small positive correlation

with Dice-score. A comparison of the regression results for

all lesions and only for detected lesions shows again that the

TABLE 2 New lesion segmentation results for medical experts, our

proposed method with and without pre-training (PT) as well as the

three approaches performing best in the MSSEG-2 challenge (Ashtari

et al., 2021; Dalbis et al., 2021; Zhang et al., 2021).

Model Data Dice SD HD

Experts Validation 0.663 4.013 29.885

Ours, w/o PT Validation 0.512 7.231∗ 41.502∗

Ours Validation 0.502 7.753∗ 37.688∗

Experts Test 0.573 6.211 32.639

MedICL Test 0.523 9.352 61.835

Mediaire-B Test 0.451 9.010∗ 44.866∗

LYLE Test 0.422 7.209∗ 38.883∗

Ours, w/o PT Test 0.463 12.335 48.167

Ours Test 0.470 9.053∗ 42.618∗

Reported are average Dice score, surface distance (SD) and Hausdorff distance (HD).

Results marked with ∗ are averaged over non-empty predicted segmentations only. For

Mediaire-B two patients and for LYLE five patients are excluded from the distance

calculation.With ANCR-Net, two patients from the validation data and two patients from

the test data for the version trained with pre-training are excluded from the calculation.

Significantly best results are presented in bold font.

lesion volume and the contrast to the baseline image strongly

influence the ANCR-Net detection rate. Interestingly, none of

the metrics seem to have a very strong impact on segmentation

performance when only looking at the detected lesions (red lines

in Figure 3). Solely the contrast to the surrounding tissue gives

a significant influence on the quality of the segmentation, with

an R2 of 0.085. Overall, lesion size and contrast to the baseline

image are crucial for the detection of the lesions, but less so

for their precise delineation, while contrast to the surrounding

tissue is more critical for good segmentation.

3.3. Modeling of new lesions

Network outputs allow to not only spatially align baseline

and follow-up, but also to model the appearance of newly

formed lesions. To do so, the appearance offset mapmasked with

the segmentation output is added to the baseline image and the

adapted baseline is spatially deformed to match the follow-up

image. In Figure 4 some exemplary results are shown for image

registration and appearance adaptation between baseline and

follow-up using new lesion modeling. For more examples refer

to the Supplementary material.

The figure shows that the deformed and appearance adapted

baseline images resemble the follow-up images well. The

FIGURE 3

Lesion characteristics influencing the lesion detection and segmentation performance of ANCR-Net. Di�erent colors represent di�erent

patients. The results of a linear regression measuring the influence of the respective lesion characteristic on Dice score are shown. Red lines

show the results using only those lesions detected by ANCR-Net, whereas orange lines show the results considering all lesions. For each

regression line, the slope s and the R2 value are given.
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FIGURE 4

Modeling of new lesions. The appearance map is masked with the new lesions segmentation and added to the spatially deformed baseline

image. The upper row shows baseline and follow-up images, the masked appearance map, deformed and appearance adapted baseline. In the

lower row the di�erence image between follow-up and baseline, the appearance map, the segmentation of our CNN and the di�erence image

between follow-up and adapted baseline are shown. The ground truth lesion segmentation is overlaid in red onto the network’s segmentation.

modeled lesions do not overcompensate the overall intensity

difference between baseline and follow-up images. Instead, the

difference images show similar values inside and outside new

lesions. The modeled lesions thus fit the intensity distribution

of the baseline image. Investigating the modeled lesions, it

can be seen that, even though MS lesions appear primarily as

bright spots in FLAIR MR images, some of them still exhibit an

irregular intensity profile. These irregular intensity profiles can

be seen particularly well in the masked appearance maps (upper

row in third and seventh columns in Figure 4), which might be

used to analyze the morphology of newly forming MS lesions.

4. Discussion

We presented ANCR-Net, a CNN for the adaptation

of baseline FLAIR MR images from MS patients to the

respective follow-up images. Spatial deformations are

applied to align baseline and follow-up structures, and

new lesions are simulated in non-corresponding image

areas. The trained network gives three outputs, namely a

diffeomorphic deformation field to spatially align baseline and

follow-up, a segmentation of new lesions and an appearance

offset map that can be used to model newly appeared

MS lesions.

New lesions detection and segmentation performances

were compared to approaches scoring best in the MSSEG-2

challenge. The proposed CNN achieved highest lesion sensitivity

(proportion of detected ground truth lesions) and F1-Score.

Most automatic methods for new MS lesions segmentation tend

to produce quite a lot of false positives. ANCR-Net was the only

method capable of keeping the number of such false positives

comparably low while still detecting 63.3% of the new lesions

on average. Thus, our method is the one best suited to separate

stable and progressing patients.

Segmentation performances overall were quite low, but even

the medical experts achieved an average Dice score of only

0.573. Our method achieved the second-best Dice score of all

automatic methods, with a value of 0.470. Evaluations on lesion

level showed that correctly detected lesions are indeed well

delineated, a fact that the overall Dice score fails to reflect.

Whether the exact delineation of the new lesions is actually

crucial for MS monitoring, or rather their number and size,

should be further investigated. Here, our network could be a

valuable tool as it estimated the true number of new lesions very

well, with a mean deviation of only 1.3 lesions.

The modeled new lesions were shown to fit well with the

intensity profile of the baseline images and were able to match

the baseline to the follow-up image. Some modeled lesions

exhibit an irregular intensity profile that might give new insights

into the morphology of MS lesions. The intensity profile of the

lesions can be analyzed independently of the surrounding MR

images using our masked appearance offsets maps. Distracting

or influencing factors of the original images can thus be

eliminated. Extensions to multimodal network inputs would

also allow analyzing different types of MS lesions. Sheng et al.

for example differentiate between hypo-, iso- and hyperintense

lesions on susceptibility-weighted imaging (Sheng et al., 2019).

Such a distinction could easily be made automatically based on

our modeled lesions.

Network training using random intensity transformations

makes the method robust to appearance variations between

time points, as they might e.g., be introduced by imaging

artifacts (see also Section 3 in Supplementary material). Still,
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the challenge training data is limited to 40 cases with high

quality and well pre-registered images, thus performance may

degrade in less controlled settings. The training dataset should

therefore be extended with more data that reflects the natural

variability of images in clinical practice. For example, the images

could be noisier, or they could have been taken with different

scanners at each visit. Also, the current method is designed for

monomodal data. Extensions to multimodal inputs could be

achieved by training ANCR-Net for each modality separately

and then combining the results for the different modalities. How

the method can be extended to take advantage of the different

modalities in a single CNN will be the subject of future research.

Overall, the automatic analysis of new MS lesions remains

a very difficult task. Our network achieves good values for all

metrics considered, performing comparable to state-of-the-art

methods for new MS lesions detection and segmentation. It

is the only method capable of reliably separating stable and

progressing patients, which additionally allows estimating the

real new lesion load. Beyond that, the generated appearance

offset maps offer the possibility to investigate morphology

and intensity profile patterns of newly developed MS lesions.

Our method is thus an important step toward automating the

analysis of new MS lesions and achieving the performance of

medical experts.

Data availability statement

Publicly available datasets were analyzed in this study.

This data can be found here: https://shanoir.irisa.fr/shanoir-ng/

challenge-request.

Author contributions

JA, HU, JE, and TK: methodology. JA and JE: software. JA:

validation and writing—original draft preparation. JA, HU, JE,

TK, and HH: writing—review and editing. HH: supervision. All

authors have read and agreed to the published version of the

manuscript.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be

found online at: https://www.frontiersin.org/articles/10.3389/

fnins.2022.981523/full#supplementary-material

References

Andresen, J., Kepp, T., Ehrhardt, J., von der Burchard, C., Roider, J.,
and Handels, H. (2022). Deep learning-based simultaneous registration
and unsupervised non-correspondence segmentation of medical images
with pathologies. Int. J. Comput. Assist. Radiol. Surg. 17, 699–710.
doi: 10.1007/s11548-022-02577-4

Andresen, J., Uzunova, H., Ehrhardt, J., and Handels, H. (2021). “New multiple
sclerosis lesion detection with convolutional neural registration networks,” in
MSSEG-2 Challenge Proceedings: Multiple Sclerosis New Lesions Segmentation
Challenge Using a Data Management and Processing Infrastructure (Strasbourg),
111–114.

Ashtari, P., Barile, B., Van Huffel, S., and Sappey-Marinier, D. (2021).
“Longitudinal multiple sclerosis lesion segmentation using pre-activation U-Net,”
in MSSEG-2 Challenge Proceedings: Multiple Sclerosis New Lesions Segmentation
Challenge Using a Data Management and Processing Infrastructure (Strasbourg),
61–64.

Battaglini, M., Rossi, F., Grove, R. A., Stromillo, M. L., Whitcher, B., Matthews,
P. M., et al. (2014). Automated identification of brain new lesions in multiple
sclerosis using subtraction images. J. Magn. Reson. Imaging 39, 1543–1549.
doi: 10.1002/jmri.24293

Bône, A., Paul, V., Colliot, O., and Durrleman, S. (2020). “Learning joint
shape and appearance representations with metamorphic auto-encoders,” in
23rd International Conference on Image Computing and Computer Assisted
Interventions-MICCAI 2020 (Lima), 202–211.

Cabezas, M., Corral, J. F., Oliver, A., Díez, Y., Tintoré, M., Auger, C.,
et al. (2016). Improved automatic detection of new T2 lesions in multiple
sclerosis using deformation fields. AJNR Am. J. Neuroradiol. 37, 1816–1823.
doi: 10.3174/ajnr.A4829

Carass, A., Roy, S., Jog, A., Cuzzocreo, J. L., Magrath, E., Gherman, A.,
et al. (2017). Longitudinal multiple sclerosis lesion segmentation: resource and
challenge. Neuroimage 148, 77–102. doi: 10.1016/j.neuroimage.2016.12.064

Chen, K., Derksen, A., Heldmann, S., Hallmann, M., and Berkels, B. (2015).
“Deformable image registration with automatic non-correspondence detection,”
in International Conference on Scale Space and Variational Methods in Computer
Vision (Lège-Cap Ferret), 360–371.

Combès, B., Kerbrat, A., Pasquier, G., Commowick, O., Le Bon, B., Galassi,
F., et al. (2021). A clinically-compatible workflow for computer-aided assessment
of brain disease activity in multiple sclerosis patients. Front. Med. 8, 740248.
doi: 10.3389/fmed.2021.740248

Commowick, O., Cervenansky, F., and Ameli, R. (2016). “MSSEG challenge
proceedings: multiple sclerosis lesions segmentation challenge using a data
management and processing infrastructure,” inMICCAI (Athènes).

Commowick, O., Cervenansky, F., Cotton, F., and Dojat, M. (2021). “MSSEG-
2 challenge proceedings: multiple sclerosis new lesions segmentation challenge
using a data management and processing infrastructure,” in 24th International
Conference on Medical Image Computing and Computer Assisted Intervention—
MICCAI 2021 (Strasbourg).

Frontiers inNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2022.981523
https://shanoir.irisa.fr/shanoir-ng/challenge-request
https://shanoir.irisa.fr/shanoir-ng/challenge-request
https://www.frontiersin.org/articles/10.3389/fnins.2022.981523/full#supplementary-material
https://doi.org/10.1007/s11548-022-02577-4
https://doi.org/10.1002/jmri.24293
https://doi.org/10.3174/ajnr.A4829
https://doi.org/10.1016/j.neuroimage.2016.12.064
https://doi.org/10.3389/fmed.2021.740248
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Andresen et al. 10.3389/fnins.2022.981523

Dalbis, T., Fritz, T., Grilo, J., Hitziger, S., and Ling, W. X. (2021). “Triplanar
U-Net with orientation aggregation for new lesions segmentation,” in MSSEG-2
Challenge Proceedings: Multiple Sclerosis New Lesions Segmentation Challenge Using
a Data Management and Processing Infrastructure (Strasbourg), 61–64.

Dufresne, E., Fortun, D., Kumar, B., Kremer, S., and Noblet, V. (2020). “Joint
registration and change detection in longitudinal brain MRI,” in 2020 IEEE 17th
International Symposium on Biomedical Imaging (ISBI) (Iowa City, IA: IEEE),
104–108.

Fartaria, M. J., Kober, T., Granziera, C., and Bach Cuadra, M. (2019).
Longitudinal analysis of white matter and cortical lesions in multiple sclerosis.
Neuroimage Clin. 23, 101938. doi: 10.1016/j.nicl.2019.101938

Ganiler, O., Oliver, A., Diez, Y., Freixenet, J., Vilanova, J. C., Beltran, B.,
et al. (2014). A subtraction pipeline for automatic detection of new appearing
multiple sclerosis lesions in longitudinal studies. Neuroradiology 56, 363–374.
doi: 10.1007/s00234-014-1343-1

Geurts, J. J., Bö, L., Pouwels, P. J., Castelijns, J. A., Polman, C. H., and Barkhof, F.
(2005). Cortical lesions in multiple sclerosis: combined postmortem MR imaging
and histopathology. AJNR Am. J. Neuroradiol. 26, 572–577.

He, K., Sun, J., and Tang, X. (2013). Guided image filtering. IEEE Trans. Pattern
Anal. Mach. Intell. 35, 1397–1409. doi: 10.1109/TPAMI.2012.213

Hering, A., Kuckertz, S., Heldmann, S., and Heinrich, M. P. (2019). “Enhancing
label-driven deep deformable image registration with local distance metrics for
state-of-the-art cardiac motion tracking,” in Bildverarbeitung für die Medizin die
Medizin 2019 (Lübeck), 309–314.

Jain, S., Ribbens, A., Sima, D. M., Cambron, M., De Keyser, J., Wang, C., et
al. (2016). Two time point MS lesion segmentation in brain MRI: an expectation-
maximization framework. Front. Neurosci. 10, 576. doi: 10.3389/fnins.2016.00576

Köhler, C., Wahl, H., Ziemssen, T., Linn, J., and Kitzler, H. H. (2019). Exploring
individual multiple sclerosis lesion volume change over time: development of an
algorithm for the analyses of longitudinal quantitative MRI measures. Neuroimage
Clin. 21, 101623. doi: 10.1016/j.nicl.2018.101623

Krüger, J., Opfer, R., Gessert, N., Ostwaldt, A.-C., Manogaran, P., Kitzler, H.
H., et al. (2020a). Fully automated longitudinal segmentation of new or enlarged
multiple sclerosis lesions using 3D convolutional neural networks. Neuroimage
Clin. 28, 102445. doi: 10.1016/j.nicl.2020.102445

Krüger, J., Schultz, S., Handels, H., and Ehrhardt, J. (2020b). Registration with
probabilistic correspondences–Accurate and robust registration for pathological
and inhomogeneous medical data. Comput. Vis. Image Underst. 190, 102839.
doi: 10.1016/j.cviu.2019.102839

Lian, Z., Godil, A., Rosin, P., and Sun, X. (2012). “A new convexity measurement
for 3D meshes,” in Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (San Juan).

Lladó, X., Ganiler, O., Oliver, A., Martí, R., Freixenet, J., Valls, L., et al.
(2012). Automated detection of multiple sclerosis lesions in serial brain MRI.
Neuroradiology 54, 787–807. doi: 10.1007/s00234-011-0992-6

McKinley, R., Wepfer, R., Grunder, L., Aschwanden, F., Fischer, T., Friedli, C.,
et al. (2020). Automatic detection of lesion load change in Multiple Sclerosis using
convolutional neural networks with segmentation confidence. Neuroimage Clin.
25, 102014. doi: 10.1016/j.nicl.2019.102104

Moraal, B., Wattjes, M. P., Geurts, J. J. G., Knol, D. L., van Schijndel,
R. A., Pouwels, P. J. W., et al. (2010). Improved detection of active

multiple sclerosis lesions: 3D subtraction imaging. Radiology 255, 154–163.
doi: 10.1148/radiol.09090814

Nabavizadeh, A., Bayat, M., Kumar, V., Gregory, A., Webb, J., Alizad,
A., et al. (2019). Viscoelastic biomarker for differentiation of benign and
malignant breast lesion in ultra- low frequency range. Sci. Rep. 9, 5737.
doi: 10.1038/s41598-019-41885-9

Ou, Y., Sotiras, A., Paragios, N., and Davatzikos, C. (2011). DRAMMS:
deformable registration via attribute matching and mutual-saliency
weighting. Med. Image Anal. 15, 622–639. doi: 10.1016/j.media.2010.
07.002

Rekik, I., Li, G., Wu, G., Lin, W., and Shen, D. (2015). “Prediction of
infant MRI appearance and anatomical structure evolution using sparse patch-
based metamorphosis learning framework,” in Patch-Based Techniques in Medical
Imaging: First International Workshop, Patch-MI 2015, Held in Conjunction With
MICCAI 2015, Munich, Germany, October 9, 2015 (Munich), 197–204.

Rey, D., Subsol, G., Delingette, H., and Ayache, N. (2002). Automatic detection
and segmentation of evolving processes in 3D medical images: APP|lication to
multiple sclerosis. Med. Image Anal. 6, 163–179. doi: 10.1016/S1361-8415(02)
00056-7

Ronneberger, O., Fischer, P., and Brox, T. (2015). “U-net: convolutional
networks for biomedical image segmentation,” in International Conference on
Medical Image Computing and Computer Assisted Intervention-MICCAI 2015
(Munich), 234–241.

Salem, M., Cabezas, M., Valverde, S., Pareto, D., Oliver, A., Salvi, J.,
et al. (2018). A supervised framework with intensity subtraction and
deformation field features for the detection of new T2-w lesions in
multiple sclerosis. Neuroimage Clin. 17, 607–615. doi: 10.1016/j.nicl.2017.
11.015

Salem, M., Valverde, S., Cabezas, M., Pareto, D., Oliver, A., Salvi, J., et al. (2020).
A fully convolutional neural network for new T2-w lesion detection in multiple
sclerosis. Neuroimage Clin. 25, 102149. doi: 10.1016/j.nicl.2019.102149

Sheng, H., Zhao, B., and Ge, Y. (2019). Blood perfusion and cellular
microstructural changes associated with iron deposition in multiple sclerosis
lesions. Front. Neurol. 10, 747. doi: 10.3389/fneur.2019.00747

Trouvé, A., and Younes, L. (2005). Metamorphoses through lie group action.
Found Comput. Math. 5, 173–198. doi: 10.1007/s10208-004-0128-z

Uzunova, H., Handels, H., and Ehrhardt, J. (2021). “Guided filter regularization
for improved disentanglement of shape and appearance in diffeomorphic
autoencoders,” in Proceedings of the Fourth Conference on Medical Imaging with
Deep Learning, volume 143 of Proceedings of Machine Learning Research, eds M.
Heinrich, Q. Dou, M. de Bruijne, J. Lellmann, A. Schläfer, and F. Ernst (Lübeck:
PMLR), 774–786.

WHO (2008). Atlas: Multiple Sclerosis Resources in the World 2008. Geneva:
World Health Organization.

Wilms, M., Handels, H., and Ehrhardt, J. (2017). “Representative patch-based
active appearance models generated from small training populations,” in Medical
Image Computing and Computer Assisted Intervention-MICCAI 2017 (Quebec City,
QC), 152–160.

Zhang, H., Li, H., and Oguz, I. (2021). “Segmentation of new MS lesions with
tiramisu and 2.5D stacked slice,” in MSSEG-2 Challenge Proceedings: Multiple
Sclerosis New Lesions Segmentation Challenge Using a Data Management and
Processing Infrastructure (Strasbourg), 61–64.

Frontiers inNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2022.981523
https://doi.org/10.1016/j.nicl.2019.101938
https://doi.org/10.1007/s00234-014-1343-1
https://doi.org/10.1109/TPAMI.2012.213
https://doi.org/10.3389/fnins.2016.00576
https://doi.org/10.1016/j.nicl.2018.101623
https://doi.org/10.1016/j.nicl.2020.102445
https://doi.org/10.1016/j.cviu.2019.102839
https://doi.org/10.1007/s00234-011-0992-6
https://doi.org/10.1016/j.nicl.2019.102104
https://doi.org/10.1148/radiol.09090814
https://doi.org/10.1038/s41598-019-41885-9
https://doi.org/10.1016/j.media.2010.07.002
https://doi.org/10.1016/S1361-8415(02)00056-7
https://doi.org/10.1016/j.nicl.2017.11.015
https://doi.org/10.1016/j.nicl.2019.102149
https://doi.org/10.3389/fneur.2019.00747
https://doi.org/10.1007/s10208-004-0128-z
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

	Image registration and appearance adaptation in non-correspondent image regions for new MS lesions detection
	1. Introduction
	2. Materials and methods
	2.1. Training objective
	2.2. Network architecture
	2.3. Network training

	3. Experiments and results
	3.1. New lesions detection
	3.2. Segmentation of new lesions
	3.3. Modeling of new lesions

	4. Discussion
	Data availability statement
	Author contributions
	Conflict of interest
	Publisher's note
	Supplementary material
	References


