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Network oscillations imply 
the highest cognitive workload 
and lowest cognitive control 
during idea generation 
in open‑ended creation tasks
Wenjun Jia1, Frederic von Wegner2, Mengting Zhao1 & Yong Zeng1*

Design is a ubiquitous, complex, and open‑ended creation behaviour that triggers creativity. The 
brain dynamics underlying design is unclear, since a design process consists of many basic cognitive 
behaviours, such as problem understanding, idea generation, idea analysis, idea evaluation, 
and idea evolution. In this present study, we simulated the design process in a loosely controlled 
setting, aiming to quantify the design‑related cognitive workload and control, identify EEG‑defined 
large‑scale brain networks, and uncover their temporal dynamics. The effectiveness of this loosely 
controlled setting was tested through comparing the results with validated findings available in the 
literature. Task‑related power (TRP) analysis of delta, theta, alpha and beta frequency bands revealed 
that idea generation was associated with the highest cognitive workload and lowest cognitive 
control, compared to other design activities in the experiment, including problem understanding, 
idea evaluation, and self‑rating. EEG microstate analysis supported this finding as microstate class 
C, being negatively associated with the cognitive control network, was the most prevalent in idea 
generation. Furthermore, EEG microstate sequence analysis demonstrated that idea generation was 
consistently associated with the shortest temporal correlation times concerning finite entropy rate, 
autoinformation function, and Hurst exponent. This finding suggests that during idea generation the 
interplay of functional brain networks is less restricted and the brain has more degrees of freedom in 
choosing the next network configuration than during other design activities. Taken together, the TRP 
and EEG microstate results lead to the conclusion that idea generation is associated with the highest 
cognitive workload and lowest cognitive control during open‑ended creation task.

Design is a ubiquitous, complex, and open-ended creation  behaviour1. All of us design consciously or uncon-
sciously in everything we do. Societies design laws to govern social behaviours, engineers design products to 
achieve certain functions, artists design different forms to realize or release subconscious emotional energy, 
and economists design market mechanisms to enable trade. Over the past decades, design is emerging as a 
transdisciplinary domain in parallel with the arts and sciences. A lot of research has been endeavoring to model 
design as a rational problem-solving  process2, a ‘reflective conversation with the situation’3, or a process involving 
both cognitive and affective  components4, in which problems are actively framed by designers who take actions 
improving the current situation, approaching to satisfying solutions.

According to Bloom’s  taxonomy5, behaviours related to design creation implicate various cognitive functions, 
such as problem understanding, idea generation, idea evaluation, idea elaboration, idea evolution, and ideation. 
Neuroimaging studies revealed that ideation is associated with heightened activation in the dorsolateral and 
medial prefrontal  cortex6–8 and temporal brain  regions9. Idea generation is related to activity in the default-mode 
network (DMN) while idea evaluation is linked to the executive control  network10–13. EEG studies indicated 
that idea generation is associated with decreases in alpha power over almost all sites, suggesting increased 
cognitive  workload14–19. An increase in cognitive workload frequently occurs at the beginning and end of idea 
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 generation20,21, an effect that influences the subjective rating of task  difficulty22. Compared to idea generation, 
increases in alpha power are associated with idea elaboration and idea  evolution17,23. In addition, idea evaluation 
is associated with increased theta power over mid-frontal sites, reflecting heightened cognitive  control24–28. As 
such, these cognitive functions are related to large-scale brain networks during design creation.

Ongoing cognition during design activities is better characterized by the complex interaction of large-scale 
brain networks over time, rather than by an activation sequence of circumscribed brain areas reflecting basic 
cognitive  functions29–31. These ongoing cognitive functions constitute the continuous flow of thought, varying 
with internally and externally changing experimental conditions. Yet, a quantitative description of how these 
large-scale brain networks temporally and functionally interact during design creation is largely missing.

Major challenges in studying design creation are the experimental paradigm and adequate analysis strate-
gies with the presence of non-stationary data properties related to a free flowing task execution, as opposed 
to stimulus-averaged signals. A strictly controlled  experiment32 that observes stimulus-response effects in the 
brain, whereas controlling all extraneous variables cannot simulate some key cognitive functions related to 
creativity during design creation, such as reframing and mind  wandering17. In addition, the strictly controlled 
experiment itself will become a critical independent factor to influence the design results through changing 
a designer’s perception of the design problem due to design recursivity. Design recursivity demonstrates that 
the design problem, solution, and knowledge keep evolving interdependently and  simultaneously33–38, which 
stresses the concept ‘an agent’s view of a world changes depending on what the agent does’39. Design recursivity 
results in the non-repetitiveness of the design process in that whatever designers do, and whatever changes in the 
environment will all contribute to updating the initial design problem. This non-repetitiveness defies repetition/
averaging-based cognitive study techniques.

Therefore, we simulated design creation under loosely controlled settings in a series of open-ended creation 
tasks, including problem understanding, idea generation, idea evaluation, and self-rating. The loosely controlled 
setting refers to considerable freedom regarding response time (self-paced) and response action (integrating 
thinking and drawing phases) while maintaining certain degrees of  control40. The effectiveness of loosely con-
trolled settings was demonstrated in a recent creativity  study17. To align our findings with other validated evi-
dence, we investigated the regional contribution of brain oscillations in the classical frequency bands (delta, theta, 
alpha, and beta) to the different open-ended creation tasks through TRP analysis. In terms of data analysis, how-
ever, loosely controlled settings add new challenges. Several cognitive functions can be simultaneously involved 
in one open-ended creation task, and one cognitive function may contribute to different open-ended creation 
tasks. Basic cognitive functions never appear in isolation and interact heavily with each other. Consequently, 
causal relationships between stimuli and responses are extremely complex under loosely controlled settings.

To facilitate the loosely controlled experimental setting, we used EEG microstate analysis to segment the 
unstructured EEG signals into a set of microstates. Each microstate reflects activity in large-scale brain networks 
whose induced scalp potential fields remain quasi-stable during successive short time  periods41. EEG microstates 
are closely associated with resting-state networks as identified using  fMRI42 and cognitive  components43,44, 
potentially representing the basic building blocks of consciousness, sometimes called “atoms of thoughts”45–47. 
Temporal dynamics of EEG microstate sequences increasingly attract the attention of scholars, reflecting the 
need to quantify the temporal structure and complexity of microstate sequences, running in parallel to, and thus 
representing the ongoing flow of thoughts and cognitive  processes48–50. A few studies revealed key characterises 
of temporal dynamics underlying resting EEG microstate sequences, such as scale-free  dynamics51, short- and 
long-range  correlations52, and non-Markovianity53. In contrast to resting-state EEG microstate sequences, tem-
poral dynamics of EEG microstate sequences are still unknown for design creation, which will be uncovered in 
this study.

We hypothesized that idea generation would be associated with the highest cognitive workload but the lowest 
cognitive control. It is during idea generation that participants are minimally constrained by instructions, and 
have the most freedom to explore and express their ideas, suggesting a relaxed cognitive control. The reduced 
cognitive control, however, may lead to increases in cognitive workload due to increased uncertainty coming 
from the relative freedom associated with this task. Therefore, one could expect: (1) idea generation would be 
associated with more decreases in delta, theta, alpha, and beta  power17; (2) EEG microstate class C would be more 
prevalent during idea generation, since EEG microstate class C reflects activities in the default mode  network48,49 
and is associated with neural processes requiring less cognitive control, such as mind  wandering54; and (3) the 
correlation time of microstate sequences to depend on cognitive control mechanisms. Stronger cognitive control 
would lead to more restricted microstate transitions and therefore longer correlation times. Correspondingly, 
idea generation would be associated with fewer restrictions in choosing the next brain state and lead to shorter 
microstate sequence correlation times.

Methods
Experiment design. The experiment included six runs corresponding to six different design problems: 
a birthday cake, a recycle bin, a toothbrush, a wheelchair, a workspace, and a drinking  fountain22, as listed in 
Table 1. Figure 1A shows the sequence of six design problems presented to the participants. Each run included 
five successive design activities: problem understanding, idea generation, rating idea generation, idea evaluation, 
and rating idea evaluation. Figure 1B shows an example of schematic time courses of designing a birthday cake.

During problem understanding, participants were asked to read and understand a given design problem. 
During idea generation, participants were asked to sketch a solution that satisfied the requirements of the design 
problem. During idea evaluation, participants were asked to evaluate the performance or preference of two given 
solutions. NASA Task Load Index was placed at the end of idea generation and evaluation, namely rating idea 
generation and rating idea evaluation respectively. During rating activity, participants were asked to rate their 
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Figure 1.  (A) The sequence of six design problems. (B) An example of schematic time courses of designing a 
birthday cake. (1) Self-paced problem understanding. (2) Self-paced idea generation. (3) Self-paced rating idea 
generation. (4) Self-paced idea evaluation. (5) Self-paced rating idea evaluation.
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mental demand, time demand, performance, effort, and stress level. The rests were placed at the beginning and 
end of this experiment with eye-closed for three minutes. By dividing the experiment into the above mentioned 
five design activities, we aimed at a reduced difficulty in investigating such a complex design process by adding 
certain ‘structure’ to the unstructured data. Such segmentation was the main control applied in the experiment, 
meaning that despite the task description showing on the screen from the beginning of each design activity, any 
additional control including time limit, oral instructions, or ‘think-aloud’ related control, was avoided during 
the experiment. In the meanwhile, the presented experiment was loosely controlled as participants were given 
unlimited response time during each design activity and they were given sufficient freedom to complete the 
given task in their own way without any interruption or interference. In this way, the characteristics of design 
process could be better modelled as sufficient time and freedom could be essential to allow participants’ naturally 
exploring possible solutions and completing the given task recursively.

Participants and experiment procedure. A total of 42 participants took part in this experiment, who 
were graduate students in the Gina Cody School of Engineering and Computer Science, Concordia University. 
A gift card of CAD$100 was given as compensation to the best design. Three participants were excluded from 
data analysis since they have not completed all the experiments. Eleven participants were excluded from data 
analysis due to technical errors such as missing markers. One participant was excluded from data analysis due to 
large electrode impedances and poor data quality. The final samples included 27 participants (8 women, 19 men) 
aged from 24 to 39. All participants had normal or corrected-to-normal vision. The experimenters helped sub-
jects wear the HRV chest strap, GSR finger strap, respiration rate belt and EEG cap. The experimenters briefed 
each participant the experimental tasks; impedances of all the EEG electrodes were below 10 k � ; participants 
completed the experiment by following the experimental procedures specified in the experimental design. EEG 
signals were recorded by a 64 channel BrainVision actiCHamp at 500 Hz during the experiment. The EEG was 
referenced to Cz and the electrode placement was based on the international 10-10 system. The experimental 
protocol was approved by Human Research Ethics Committee (HREC) of Concordia University. All sections of 
the experiment were performed in accordance with relevant guidelines and regulations. All subjects signed the 
informed consent form before taking the experiment.

Data analysis approach. Data pre‑processing. The EEGLAB toolbox was used to reduce noise and re-
move artefacts from the EEG  signals55. After acquisition, A one-pass zero-phase Hamming windowed-sinc FIR 
filter between 1 and 40 Hz was applied to the EEG signals. Second, bad global channels of the EEG signals were 
detected and isolated when one or more criteria were satisfied: a channel was flat for more than 5 s; a correla-
tion between a channel and its nearby channels is smaller than 0.8; and a channel’s amplitude was greater than 
3 standard deviations from the mean. Third, eye-blink, eye-movement, muscle-generated, and other artefacts 
were removed using the multiple artifact rejection algorithm (MARA) when independent components had more 
than 40% chance to be labelled as artefacts. Fourth, the EEG signals were segmented into 2-s epochs, with the 
aim to detect bad segments and bad local channels within  segments56. Bad local channels in each segment were 
detected using  FASTER57 criteria (variance, median gradient, amplitude range, and deviation from mean am-
plitude) when one or more Z scores of four criteria were greater than 3 standard deviations from the mean. The 
detected bad local channels were interpolated using spherical splines. Next, bad segments were rejected when 
one or more criteria were satisfied: a channel’ amplitude was higher than ±100 μV; the single electrode probabil-
ity across segments or the electrode group probability within segments was greater than 3 standard deviations 
from the mean. Finally, the isolated bad global channels were interpolated using spherical splines. The cleaned 
EEG signals were re-referenced to average reference and were downsampled to 250 Hz.

Task‑related power analysis. The power spectral density ( µV2
/Hz ) of EEG signals was estimated by Welch’s 

method with a time window of 500 sample points and 250 sample points overlap between neighbouring time 
windows. The power ( Pow,µV2 ) of EEG signals was estimated by the composite trapezoidal rule in the delta band 
(1–3.5 Hz), theta band (4–7.5 Hz), alpha band (8–13.5 Hz), and beta band (14–29 Hz)58. The task-related power 

Table 1.  Six design problems.

Design problem Description

Design a birthday cake Make a birthday cake for a 5 year old kid. How should it look like?

Design a recycle bin Sometimes, we do not know which items should be recycled. Create a recycle bin that helps people recycle 
correctly

Design a toothbrush Create a toothbrush that incorporates toothpaste (incorporate = include, combine)

Design a wheelchair
In Montreal, people on wheelchair cannot use metro safely because most of metros have only stairs or escala-
tors. Elevator is not an option because it is too costly to build one. You are asked to create the most efficient 
solution to solve this problem

Design a workspace
Employees in an IT company are sitting too much. The company wants their employees to stay healthy and 
work efficiently at the same time. You are asked to create a workspace that can help the employee to work and 
exercise at the same time

Design a drinking fountain
Two problems with standard drinking fountain: (a) filling up water bottle is not easy; (b) people too short 
cannot use the fountain and people too tall has to bend over too much. Create a new drinking fountain that 
solves these problems
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(TRP) was computed in each channel (i) based on the formula TRPi = Log(Powi,activation)− Log(Powi,reference) . 
The estimated log-power during the first resting state was subtracted from the estimated log-power during each 
design  activities59. The condition-wise TRP was computed by averaging TRP across runs of the same condition. 
Positive TRP values reflect power increases from the rest to the design activities, whereas negative TRP values 
reflect power decreases from the rest to the design activities.

To compare with the previous studies, the condition-wise TRP values at 63 electrodes were grouped into the 
five cortical areas (frontal, central, temporal, parietal, and occipital) and two hemispheres (left and right)18. In 
the left hemisphere, the areas were defined as follows, frontal: Fp1, AF3, AF7, F1, F3, F5, F7, FC1, FC3; central: 
FC5, C1, C3, C5; temporal: FT7, T7, TP7, CP5, P5; parietal: CP1, CP3, P1, P3; and occipital: PO3, PO7, P7, O1. 
In the right hemisphere, the corresponding even-numbered electrodes were included.

Statistical analyses were performed on the design activities considering the selected five cortical areas in 
each hemisphere. The TRP changes were analyzed by a 5× 5× 2 repeated measures ANOVA with the three 
within factors CONDITION (problem understanding, idea generation, rating idea generation, idea evaluation, 
and rating idea evaluation), AREA (frontal, central, temporal, parietal, and occipital), and HEMISPHERE (left 
and right). Post-hoc comparisons of the TRP changes at AREA were performed with the Bonferroni correction 
between CONDITION. The Greenhouse-Geisser correction was applied in the case of sphericity violations.

EEG microstate analysis. The modified k-means clustering algorithm was applied to identify the microstate 
 classes60. Firstly, for each run, each participant, and each condition, the Global Field Power (GFP) of EEG signals 
was calculated based on Eq. (1). The GFP is the standard deviation of the potentials across all electrodes at a 
given time point. Secondly, the EEG signals at GFP peaks were submitted to the modified k-means algorithm, 
which was run 100 times for cluster number k = 2 . . . 10 . Thirdly, the microstate classes were determined by 
minimizing the cost function defined in Eq. (2). The optimal microstate classes were selected among 100 repeti-
tions based on minimum cross-validation as shown in Eq. (3). Fourthly, the group-wise microstate classes were 
determined by the full permutation procedure applied to the subject-wise microstate map across runs, partici-
pants, and  conditions61.

In Eqs. (1)–(3), ui is the electric potential of the EEG signals u at the electrode i, u is the average electric poten-
tial of all electrodes of the EEG signals u and NS is the number of electrodes of the EEG signals u. NT is the sample 
length . Vt is a NS × 1 vector consisting of the electric potential at time instant t. NK is the number of microstate 
classes. Ŵk , which is a normalized NS × 1 vector, represents the k-th microstate class. akt is the intensity of the 
k-th microstate class at the time instant t. Once the global microstate classes are determined, they were fitted 
back to the individual EEG signals in the time domain to generate the microstate sequences. Each time point of 
individual EEG signals was assigned into one of the global microstate classes when they have the highest spatial 
correlations. In the fitting process, the polarity of global microstate classes was ignored since the same neural 
generators may result in the inversion of scalp potential field. To avoid modifications of temporal dynamics of 
microstate sequences, we did not apply any criteria to smooth the microstate sequences, such as the minimum 
duration of microstates. For each run, for each participant, for each condition, and for each microstate class, the 
following microstate parameters were calculated:

• mean microstate duration: the average lifespan or duration that a microstate remains stable. The microstate 
duration can be interpreted as the average amount of time that a set of neural generators remains synchro-
nously active.

• mean microstate occurrence: the average number of times that a microstate occurs per second. The mean 
microstate occurrence can be interpreted as the average amount of times that a set of neural generators 
becomes synchronously active.

• mean microstate coverage: the fraction of the total analysis time covered by a microstate. The microstate 
coverage can be interpreted as the relative rather than absolute presence of a microstate.

EEG microstate sequence analysis. A finite estimate of the entropy  rate62, autoinformation function (AIF)53, and 
Hurst exponent estimated by detrended fluctuation analysis (DFA)63 were applied to measure the short-range, 
intermediate-range, and long-range temporal dependencies of microstate sequences within each run of condi-
tions.

Firstly, the finite estimate of the entropy rate of microstate sequences was calculated based on Eq. (4)
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where Xt+1 represents the next symbol of the microstate sequences, while X(k)
t  represents the past k values of 

the microstate sequences. H(·) represents joint entropy, while H(·|·) represents conditional entropy. We used 
the logarithm to the base 2 for all entropy calculations, resulting in a unit of bits per sample for entropy rates.

Secondly, the AIF of microstate sequences was calculated based on Eq. (5).

Thirdly, the Hurst exponent of microstate sequences was estimated by DFA. Microstate sequences were first 
mapped into the metric space S0 = {−1,+1}51. As we used 7 microstate classes, we used partitions into one set of 
3, and another one containing 4 microstate classes ( {{A,B,C}, {D,E, F,G}} , for instance). In total, we obtained 35 
different partitions and analyzed the arithmetic average of their DFA estimated Hurst exponent. Each microstate 
belonging to the first component of the partition was mapped to − 1, microstates from the second component to 
+ 1, to the effect that each microstate sequence was mapped to the {−1,+1} state space.

Based on the mapped microstate sequence x′ , the partially integrated sequence y(t) was calculated based on 
Eq. (6). Then, the partially integrated sequence y(t) was segmented into windows of various sizes △n that were 
logarithmically spaced on a scale between four samples and NT samples. In each segmentation with △n samples, 
the linear trend y△n(t) of the integrated signal y(t) was estimated by a least-squares fit, while the mean-squared 
residual between y(t) and y△n(t) was calculated based on Eq. (7). The fluctuation was calculated through aver-
aging F(△n) across all identically sized windows. Thus, the Hurst exponent was estimated by the slope of the 
fluctuations across the various window lengths.

Results
Behavioural results. In rating idea generation, self-rated mental demand was 49.01 (SE = 3.25); self-rated 
time demand was 39.79 (SE = 3.68); self-rated performance was 54.23 (SE = 3.08); self-rated effort was 42.38 (SE 
= 3.60); and self-rated stress was 41.84 (SE = 3.59). In rating idea evaluation, self-rated mental demand was 39.38 
(SE = 3.13); self-rated time demand was 32.14 (SE = 3.60); self-rated performance was 61.66 (SE = 3.04); self-
rated effort was 36.29 (SE = 3.22); and self-rated stress was 32.45 (SE = 3.82). Task completion time was 56.61 s 
(SE = 4.99) for problem understanding, 284.98 s (SE = 15.83) for idea generation, 32.67 s (SE = 1.32) for rating 
idea generation, 161.61 s (SE = 8.68) for idea evaluation, 29.12 s (SE = 1.35) for rating idea evaluation.

Post hoc paired t tests revealed significant decreases in self-rated mental demand ( p = 0.000 ), self-rated time 
demand ( p = 0.001 ), self-rated effort ( p = 0.007 ), and self-rated stress ( p = 0.003 ) from idea generation to idea 
evaluation, as well as significant increases in self-rated performance ( p = 0.010).

Task‑related power results. In the delta band, the 5× 5× 2 repeated measures ANOVA revealed 
two significant main effects of CONDITION ( F(4, 104) = 38.288, p = 0.000, η2 = 0.596 ) and AREA 
( F(2.749, 71.474) = 27.045, p = 0.000, η2 = 0.510 ), as well as three significant interaction effects of 
CONDITION × AREA ( F(5.330, 138.584) = 33.620, p = 0.000, η2 = 0.564 ), CONDITION × HEMI-
SPHERE ( F(4, 104) = 5.1987, p = 0.001, η2 = 0.166 ), and CONDITION × AREA × HEMISPHERE 
( F(5.688, 147.887) = 4.525, p = 0.000, η2 = 0.148).

Table 2 lists the p-values of pairwise comparisons of TRP delta with Bonferroni correction between CONDI-
TION on each AREA, while Fig. 2 shows grand average topographical maps and error bars of task-related delta 
power between conditions. It was found that delta power was higher over frontal, central, temporal, parietal, 
occipital sites during PU compared to IG ( ps = 0.000 ), as well as over frontal and central sites during PU com-
pared to during IE ( ps < 0.046 ), whereas it was lower over central sites during PU compared to during RIE. 
Delta power was lower over all sites during IG than during RIG, IE, and RIE ( ps < 0.019 ). Delta power was lower 
over frontal, central, temporal, and parietal sites during IE than during RIE ( ps < 0.024 ), as well as central and 
temporal sites during IE than during RIG ( ps < 0.009 ). In addition, it was found that delta power was larger 
over frontal sites of the left hemisphere compared to that of right hemisphere during PU and IG ( ps < 0.022 ). 
Delta power was larger over central sites of the left hemisphere compared to that of right hemisphere during 
RIG and RIE ( ps < 0.013 ). Delta power was larger over parietal sites of the right hemisphere compared to that 
of left hemisphere ( p = 0.040).

In the theta band, the 5× 5× 2 repeated measures ANOVA revealed two signif i-
cant  main  e f fec t s  of  C ONDITION (  F(4, 104) = 31.838, p = 0.000, η2 = 0.550  )  and  AREA 
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( F(2.528, 65.733) = 25.767, p = 0.000, η2 = 0.498 ), as well as three significant interaction effects of 
CONDITION × AREA ( F(5.994, 155.848) = 26.820, p = 0.000, η2 = 0.508 ), CONDITION × HEMI-
SPHERE ( F(4, 104) = 5.299, p = 0.001, η2 = 0.169 ), and CONDITION × AREA × HEMISPHERE 
( F(6.340, 164.833) = 3.756, p = 0.001, η2 = 0.126).

Table 3 lists the p-values of pairwise comparisons of TRP theta with Bonferroni correction between CONDI-
TION on each AREA, while Fig. 3 shows grand average topographical maps and error bars of task-related theta 
power between conditions. It was found that theta power was lower over frontal, central, temporal, parietal, and 
occipital sites during IG than during PU ( ps < 0.036 ), RIG ( ps < 0.016 ), IE ( ps < 0.007 ), and RIE ( ps < 0.001 ). 

Table 2.  P-values of pairwise comparisons with Bonferroni correction of TRP delta between AREA and 
CONDITION, including problem understanding (PU), idea generation (IG), rating idea generation (RIG), 
idea evaluation (IE), and rating idea evaluation (RIE). *ρ ≤ 0.050,   **ρ ≤ 0.010,   ***ρ ≤ 0.005. ր TRP delta 
increases. ց TRP delta decreases.

Activity

Area

Frontal Central Temporal Parietal Occipital

PU Vs. IG 0.0*** ց 0.0*** ց 0.0*** ց 0.000*** ց 0.0*** ց

PU Vs. RIG 1.0 0.499 1.0 1.0 0.498

PU Vs. IE 0.046* ց 0.005*** ց 0.69 0.271 1.0

PU Vs. RIE 0.499 0.023* ր 0.1 1.0 1.0

IG Vs. RIG 0.0*** ր 0.0*** ր 0.0*** ր 0.000*** ր 0.019* ր

IG Vs. IE 0.0*** ր 0.000*** ր 0.0*** ր 0.004*** ր 0.005*** ր

IG Vs. RIE 0.0*** ր 0.0*** ր 0.0*** ր 0.0*** ր 0.001*** ր

RIG Vs. IE 0.011 0.000*** ց 0.009** ց 0.370 1.0

RIG Vs. RIE 0.716 1.0 1.0 0.866 1.0

IE Vs. RIE 0.001*** ր 0.0*** ր 0.001*** ր 0.024* ր 1.0

Figure 2.  Task-related delta band power during problem understanding (PU), idea generation (IG), rating idea 
generation (RIG), idea evaluation (IE), and rating idea evaluation (RIE). (a) Grand average topographical maps 
of task-related delta power. (b) Error bars (SE) of task-related delta power.
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Theta power was significantly lower over central sites during PU than during RIG ( p = 0.015 ), and over central 
and temporal sites during PU than during RIE ( ps < 0.004 ), whereas it was significantly higher over central 
sites during PU than during IE ( p = 0.036 ). Theta power was significantly lower over central and temporal sites 
during IE than during RIG ( ps < 0.022 ), as well as over frontal, central, temporal sites during IE than during 
RIE ( ps < 0.005 ). Besides, it was found that theta power was larger over frontal sites of the left hemisphere 
compared to that of right hemisphere during PU ( p = 0.007 ). Theta power was larger over central sites of the 
left hemisphere compared to that of right hemisphere during RIG and RIE ( ps < 0.009).

In the alpha band, the 5× 5× 2 repeated measures ANOVA revealed two signif i-
cant  main  e f fec t s  of  C ONDITION (  F(4, 104) = 26.880, p = 0.000, η2 = 0.508 )  and  AREA 
( F(2.735, 71.105) = 51.801, p = 0.000, η2 = 0.666 ), as well as two significant interaction effects of CONDITION 

Table 3.  P-values of pairwise comparisons with Bonferroni correction of TRP theta between AREA and 
CONDITION, including problem understanding (PU), idea generation (IG), rating idea generation (RIG), 
idea evaluation (IE), and rating idea evaluation (RIE). *ρ ≤ 0.050,   **ρ ≤ 0.010,   ***ρ ≤ 0.005. ր TRP theta 
increases. ց TRP theta decreases.

Activity

Area

Frontal Central Temporal Parietal Occipital

PU Vs. IG 0.0*** ց 0.0*** ց 0.0*** ց 0.002*** ց 0.036* ց

PU Vs. RIG 1.0 0.015* ր 0.239 1.0 1.0

PU Vs. IE 0.556 0.036* ց 0.45 1.0 1.0

PU Vs. RIE 0.067 0.001*** ր 0.004*** ր 0.12 0.608

IG Vs. RIG 0.0*** ր 0.0*** ր 0.0*** ր 0.001*** ր 0.016* ր

IG Vs. IE 0.0*** ր 0.001*** ր 0.0*** ր 0.007** ր 0.001*** ր

IG Vs. RIE 0.0*** ր 0.0*** ր 0.0*** ր 0.0*** ր 0.001*** ր

RIG Vs. IE 0.074 0.001*** ց 0.022* ց 0.558 0.431

RIG Vs. RIE 0.335 1.0 1.0 1.0 0.414

IE Vs. RIE 0.005*** ր 0.0*** ր 0.002*** ր 0.08 1.0

Figure 3.  Task-related theta band power during problem understanding (PU), idea generation (IG), rating idea 
generation (RIG), idea evaluation (IE), and rating idea evaluation (RIE). (a) Grand average topographical maps 
of task-related theta power. (b) Error bars (SE) of task-related theta power.
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× AREA ( F(6.153, 159.978) = 21.723, p = 0.000, η2 = 0.455 ) and CONDITION × AREA × HEMISPHERE 
( F(6.512, 169.299) = 3.700, p = 0.001, η2 = 0.125).

Table 4 lists the p-values of pairwise comparisons of TRP alpha with Bonferroni correction between CON-
DITION on each AREA, while Fig. 4 shows grand average topographical maps and error bars of task-related 
alpha power between conditions. It was found that decreases in alpha power were significantly smaller over 
frontal, central temporal, parietal, and occipital sites during PU compared to IG ( ps < 0.001 ), as well as over 
occipital sites during PU compared to RIG ( p = 0.039 ), as well as over frontal, central, temporal, and parietal 
sites during PU compared to IE ( ps < 0.006 ). Decreases in alpha power were significantly larger over frontal, 
central, temporal, and parietal sites during IG compared to during RIG ( ps < 0.002 ), as well as over frontal and 
temporal sites during IG compared to during IE ( ps < 0.001 ), as well as over frontal, central, temporal, parietal, 

Table 4.  P-values of pairwise comparisons of TRP alpha with Bonferroni correction between AREA and 
CONDITION, including problem understanding (PU), idea generation (IG), rating idea generation (RIG), 
idea evaluation (IE), and rating idea evaluation (RIE). *ρ ≤ 0.050,   **ρ ≤ 0.010,   ***ρ ≤ 0.005. ր TRP alpha 
increases. ց TRP alpha decreases.

Activity

Area

Frontal Central Temporal Parietal Occipital

PU Vs. IG 0.0*** ց 0.0*** ց 0.0*** ց 0.001*** ց 0.001*** ց

PU Vs. RIG 0.297 1.0 1.0 0.246 0.039* ց

PU Vs. IE 0.004*** ց 0.001*** ց 0.004*** ց 0.006** ց 0.401

PU Vs. RIE 1.0 1.0 1.0 0.484 0.102

IG Vs. RIG 0.0*** ր 0.0*** ր 0.0*** ր 0.002*** ր 0.367

IG Vs. IE 0.0*** ր 0.052 0.01** ր 0.138 0.082

IG Vs. RIE 0.0*** ր 0.0*** ր 0.0*** ր 0.0*** ր 0.017* ր

RIG Vs. IE 0.088 0.001*** ց 0.015* ց 1.0 1.0

RIG Vs. RIE 0.89 1.0 1.0 1.0 1.0

IE Vs. RIE 0.015* ր 0.001*** ր 0.01** ր 0.431 1.0

Figure 4.  Task-related alpha band power during problem understanding (PU), idea generation (IG), rating idea 
generation (RIG), idea evaluation (IE), and rating idea evaluation (RIE). (a) Grand average topographical maps 
of task-related alpha power. (b) Error bars (SE) of task-related alpha power.
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and occipital sites during IG compared to during RIE ( ps < 0.017 ). In addition, decreases in alpha power were 
significantly larger over central and temporal sites during IE compared to during RIG ( ps < 0.015 ), as well as 
over frontal, central, and temporal sites during IE compared to RIE ( ps < 0.015).

In the beta band, the 5× 5× 2 repeated measures ANOVA revealed two significant 
main  e f fe c t s  of  C ONDITION (  F(2.864, 74.459) = 41.769, p = 0.000, η2 = 0.616  )  and  AREA 
( F(4, 104) = 43.514, p = 0.000, η2 = 0.626 ), as well as two significant interaction effects of CONDITION × 
AREA ( F(6.372, 165.660) = 30.607, p = 0.000, η2 = 0.541 ) and CONDITION × AREA × HEMISPHERE 
( F(6.241, 162.265) = 3.425, p = 0.003, η2 = 0.116).

Table 5 lists the p-values of pairwise comparisons of TRP beta with Bonferroni correction between CONDI-
TION on each AREA, while Fig. 5 shows grand average topographical maps and error bars of task-related beta 

Table 5.  P-values of pairwise comparisons of TRP beta with Bonferroni correction between AREA and 
CONDITION, including problem understanding (PU), idea generation (IG), rating idea generation (RIG), 
idea evaluation (IE), and rating idea evaluation (RIE). *ρ ≤ 0.050,   **ρ ≤ 0.010,   ***ρ ≤ 0.005. ր TRP beta 
increases. ց TRP beta decreases.

Activity

Area

Frontal Central Temporal Parietal Occipital

PU Vs. IG 0.0*** ց 0.0*** ց 0.0*** ց 0.0*** ց 0.001*** ց

PU Vs. RIG 1.0 0.945 0.463 0.412 0.547

PU Vs. IE 0.012* ց 0.002*** ց 0.031* ց 0.007** ց 0.988

PU Vs. RIE 1.0 0.264 0.711 1.0 0.751

IG Vs. RIG 0.0*** ր 0.0*** ր 0.0*** ր 0.0*** ր 0.041* ր

IG Vs. IE 0.0*** ր 0.001*** ր 0.001*** ր 0.001*** ր 0.135

IG Vs. RIE 0.0*** ր 0.0*** ր 0.0*** ր 0.0*** ր 0.001*** ր

RIG Vs. IE 0.029* ց 0.001*** ց 0.006** ց 1.0 1.0

RIG Vs. RIE 1.0 1.0 1.0 1.0 1.0

IE Vs. RIE 0.008** ր 0.001*** ր 0.007** ր 0.147 1.0

Figure 5.  Task-related beta band power during problem understanding (PU), idea generation (IG), rating idea 
generation (RIG), idea evaluation (IE), and rating idea evaluation (RIE). (a) Grand average topographical maps 
of task-related beta power. (b) Error bars (SE) of task-related beta power.
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power between conditions. It was found that beta power increased significantly over frontal, central, temporal, 
parietal, and occipital sites from IG to PU ( ps < 0.001 ), RIG ( ps < 0.041 ), and RIE ( ps < 0.001 ), as well as over 
frontal, central, temporal and parietal sites from IG to IE ( ps < 0.001 ). The beta power increased significantly 
over frontal, central and temporal from IE to RIG ( ps < 0.029 ) and RIE ( ps < 0.008 ), as well as over frontal, 
central, temporal, and parietal sites from IE to PU ( ps < 0.031 ). Furthermore, it was found that beta power was 
larger over frontal sites of the left hemisphere compared to that of right hemisphere during PU ( p = 0.009).

EEG microstate results. EEG microstate classes. Based on cross validation as shown in Eq. (3), the op-
timal number of individual microstate classes was found to be equal to 7.109 (SE = 0.134) for rest, 7.370 (SE = 
0.079) for problem understanding, 7.547 (SE = 0.080) for idea generation, 7.849 (SE = 0.089) for rating idea gen-
eration, 7.458 (SE = 0.087) for idea evaluation, and 7.156 (SE = 0.302) for rating idea evaluation. Figure 6 shows 
the topographic maps of seven microstate classes across and within conditions, which include rest, problem 
understanding, idea generation, rating idea generation, idea evaluation, and rating idea evaluation. The seven 
microstate classes were labelled as A, B, C, D, E, F, and G according to the studies of Michel and  Koenig42 and 
Custo et al.64. The number of individual microstate classes was defined as seven for each run, each condition and 
each participant because of comparability and simplicity of statistical analysis.

The seven individual microstate classes explained 68.6% (SE = 0.7) of the global variance of the original EEG 
topographies corresponding to peaks of GFP for rest, 67.1% (SE = 0.4) for problem understanding, 67.4% (SE 
= 0.3) for idea generation, 65.8% (SE = 0.4) for rating idea generation, 67.3% (SE = 0.4) for idea evaluation, and 
66.4% (SE = 0.4) for the rating idea evaluation.

EEG microstate parameters. For EEG microstate coverage, the 6 × 7 repeated measures ANOVA revealed a 
significant main effect CLASS ( F(3.737, , 97.159) = 4.498, p = 0.003, η2 = 0.147 ) and a significant interaction 
effect CONDITION × CLASS ( F(7.378, 191.837) = 37.213, p = 0.000, η2 = 0.589).

Table 6 lists p-values of post hoc paired t tests with Bonferroni correction on microstate coverage, while Fig. 7 
shows error bars of microstate coverage in each condition. In particular, the coverage of microstate class A was the 
lowest during REST compared to during PU, IG, RIG, IE, and RIE ( ps = 0.000 ), while the coverage of microstate 
class B was the lowest during REST compared to PU, RIG, IE, and RIE ( ps < 0.005 ). Similarly, the coverage of 
microstate class G was the lowest during REST compared to during PU, IG, RIG, and RIE ( ps < 0.040 ). On the 
contrary, the coverage of microstate class C was the highest during REST compared to during PU, RIG, IE, and 
RIE ( ps < 0.001 ), while the coverage of microstate class D was the highest during REST compared to PU, IG, 
RIG, and RIE ( ps < 0.009 ). The coverage of microstate class F was higher during REST compared to during 
RIG and RIE ( ps < 0.021).

In addition, the coverage of microstate class A decreased significantly from RIG and RIE to PU, IG, and IE 
( ps < 0.001 ), as well as from PU to IG ( p = 0.001 ). The coverage of microstate class B increased significantly from 
IG and IE to PU, RIG, and RIE ( ps < 0.001 ). The coverage of microstate class C decreased significantly from IG 

Figure 6.  The spatial configuration of the seven microstate classes (A, B, C, D, E, F, and G) for across conditions 
(global) and within conditions (rest, problem understanding, idea generation, rating idea generation, idea 
evaluation, and rating idea evaluation).
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to RIG, RIE, and IE ( ps < 0.003 ), as well as from PU to RIG and RIE ( ps < 0.002 ). The coverage of microstate 
class D decreased significantly from IG and IE to PU, RIG, and RIE ( ps < 0.002 ), as well as from PU to RIG and 
RIE ( ps < 0.001 ). The coverage of microstate class E increased significantly from PU to RIE ( p = 0.028 ). The 
coverage of microstate class F decreased significantly from IG and IE to PU, RIG, and RIE ( ps < 0.003 ). The 
coverage of microstate class G decreased significantly from RIG and RIE to IG and IE ( ps < 0.002).

For EEG microstate duration, the 6 × 7 repeated measures ANOVA revealed two signifi-
cant main ef fects  CONDITION ( F(3.099.80.585) = 48.401, p = 0.000, η2 = 0.651 )  and CLASS 

Table 6.  P-values of pairwise comparisons for microstate coverage with Bonferroni correction between 
CLASS (A, B, C, D, E, F, G) and CONDITION (rest (REST), problem understanding (PU), idea generation 
(IG), rating idea generation (RIG), idea evaluation (IE), and rating idea evaluation (RIE)). *ρ ≤ 0.050

,   **ρ ≤ 0.010,   ***ρ ≤ 0.005. ր microstate coverage increases. ց microstate coverage decreases.

Condition

Microstate classes

Class A Class B Class C Class D Class E Class F Class G

REST Vs. PU 0.0*** ր 0.0*** ր 0.001*** ց 0.0*** ց 1.0 0.91 0.008** ր

REST Vs. IG 0.0*** ր 0.064 0.734 0.009** ց 1.0 1.0 0.04* ր

REST Vs. RIG 0.0*** ր 0.0*** ր 0.0*** ց 0.0*** ց 1.0 0.021* ց 0.0*** ր

REST Vs. IE 0.0*** ր 0.005*** ր 0.001*** ց 0.071 1.0 0.054 0.394

REST Vs. RIE 0.0*** ր 0.0*** ր 0.0*** ց 0.0*** ց 1.0 0.009** ց 0.0*** ր

PU Vs. IG 0.001*** ց 0.0*** ց 0.056 0.0*** ր 1.0 0.002*** ր 0.962

PU Vs. RIG 0.001*** ր 1.0 0.002*** ց 0.001*** ց 0.881 0.272 0.379

PU Vs. IE 0.223 0.001*** ց 1.0 0.002*** ր 1.0 0.003*** ր 0.271

PU Vs. RIE 0.001*** ր 1.0 0.001*** ց 0.001*** ց 0.028* ր 0.335 0.488

IG Vs. RIG 0.0*** ր 0.0*** ր 0.0*** ց 0.0*** ց 1.0 0.001*** ց 0.001*** ր

IG Vs. IE 0.492 1.0 0.003*** ց 1.0 1.0 0.628 1.0

IG Vs. RIE 0.0*** ր 0.0*** ր 0.0*** ց 0.0*** ց 1.0 0.002*** ց 0.002*** ր

RIG Vs. IE 0.0*** ց 0.001*** ց 0.1 0.0*** ր 0.727 0.001*** ր 0.002*** ց

RIG Vs. RIE 1.0 1.0 1.0 1.0 1.0 1.0 1.0

IE Vs. RIE 0.0*** ր 0.0*** ր 0.055 0.0*** ց 0.388 0.001*** ց 0.001*** ր

Figure 7.  Microstate coverage during rest (REST), problem understanding (PU), idea generation (IG), rating 
idea generation (IE), idea evaluation (IE), and rating idea evaluation (RIE). P-values between rest and other 
conditions are annotated by black dots ( p > 0.050 ), blue dots ( p ≤ 0.050 ), yellow dots ( p ≤ 0.010 ), and red 
dots ( p ≤ 0.005 ). P-values between conditions are annotated by * ( p ≤ 0.050 ), ** ( p ≤ 0.010 ), *** ( p ≤ 0.005 ). 
Error bars: standard error of the mean.
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( F(3.616, 94.017) = 5.896, p = 0.000, η2 = 0.185 ), as well as a significant interaction effect CONDITION × 
CLASS ( F(6.911, 179.685) = 41.691, p = 0.000, η2 = 0.616).

Table 7 lists p-values of post hoc paired t tests with Bonferroni correction on microstate duration, while Fig. 8 
shows error bars of microstate duration in each condition. In particular, the duration of microstate class A was 
lower during REST compared to during RIG and RIE ( ps = 0.000 ). The duration of microstate class B was lower 
during REST compared to during PU ( p = 0.044 ), whereas it was higher during REST compared to during IG 
( p = 0.007 ). The duration of microstate classes C, D and E was the lowest during REST compared to PU, IG, 

Table 7.  P-values of pairwise comparisons with Bonferroni correction for microstate duration between 
CLASS (A, B, C, D, E, F, G) and CONDITION (rest (REST), problem understanding (PU), idea generation 
(IG), rating idea generation (RIG), idea evaluation (IE), and rating idea evaluation (RIE)). *ρ ≤ 0.050

,   **ρ ≤ 0.010,   ***ρ ≤ 0.005. ր microstate duration increases. ց microstate duration decreases.

Condition

Microstate classes

Class A Class B Class C Class D Class E Class F Class G

REST Vs. PU 0.079 0.044* ր 0.0*** ց 0.0*** ց 0.001*** ց 0.0*** ց 1.0

REST Vs. IG 1.0 0.007** ց 0.0*** ց 0.0*** ց 0.0*** ց 0.004*** ց 0.027* ց

REST Vs. RIG 0.0*** ր 0.113 0.0*** ց 0.0*** ց 0.001*** ց 0.0*** ց 1.0

REST Vs. IE 1.0 0.123 0.0*** ց 0.0*** ց 0.001*** ց 1.0 0.069

REST Vs. RIE 0.0*** ր 0.005*** ր 0.0*** ց 0.0*** ց 0.02* ց 0.0*** ց 1.0

PU Vs. IG 0.001*** ց 0.0*** ց 0.081 0.0*** ր 1.0 0.409 0.419

PU Vs. RIG 0.001*** ր 1.0 0.001*** ց 0.001*** ց 1.0 0.787 0.918

PU Vs. IE 0.062 0.001*** ց 1.0 0.01** ր 1.0 0.034* ր 0.108

PU Vs. RIE 0.001*** ր 1.0 0.007** ց 0.002*** ց 0.018* ր 1.0 0.17

IG Vs. RIG 0.0*** ր 0.0*** ր 0.0*** ց 0.0*** ց 1.0 0.077 0.001*** ր

IG Vs. IE 1.0 1.0 0.006** ց 1.0 1.0 0.741 1.0

IG Vs. RIE 0.0*** ր 0.0*** ր 0.0*** ց 0.0*** ց 0.381 0.282 0.0*** ր

RIG Vs. IE 0.0*** ց 0.001*** ց 0.455 0.0*** ր 1.0 0.003*** ր 0.001*** ց

RIG Vs. RIE 1.0 1.0 1.0 1.0 0.526 1.0 1.0

IE Vs. RIE 0.0*** ր 0.0*** ր 1.0 0.0*** ց 0.209 0.004*** ց 0.0*** ր

Figure 8.  Microstate duration during rest (REST), problem understanding (PU), idea generation (IG), rating 
idea generation (IE), idea evaluation (IE), and rating idea evaluation (RIE). P-values between rest and other 
conditions are annotated by black dots ( p > 0.050 ), blue dots ( p ≤ 0.050 ), yellow dots ( p ≤ 0.010 ), and red 
dots ( p ≤ 0.005 ). P-values between conditions are annotated by * ( p ≤ 0.050 ), ** ( p ≤ 0.010 ), *** ( p ≤ 0.005 ). 
Error bars: standard error of the mean.
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RIG, IE, and RIE ( ps < 0.002 ). The duration of microstate class F was higher during REST compared to during 
PU, IG, RIG, and RIE ( ps < 0.004 ). The duration of microstate class G was higher during REST compared to 
during IG ( p = 0.027).

Besides, the duration of microstate class A decreased significantly from RIG and RIE to PU, IG, and IE 
( ps < 0.001 ), as well as from PU to IG ( p = 0.001 ). The duration of microstate class B increased significantly 
from IG and IE to PU, RIG, and RIE ( ps < 0.001 ). The duration of microstate class C decreased significantly 
from PU to RIG and RIE ( ps < 0.007 ), as well as from IG to RIG, IE, and RIE ( ps < 0.006 ). The duration of 
microstate class D decreased from PU to RIG and RIE ( ps < 0.002 ), as well as from IG and IE to PU, RIG, and 
RIE ( ps < 0.001 ). The duration of microstate class E decreased significantly from RIE to PU ( p = 0.018 ). The 
duration of microstate class F decreased significantly from IE to PU, RIG, and RIE ( ps < 0.034 ). The duration 
of microstate class G decreased significantly from RIG and RIE to IG and IE ( ps < 0.001).

For EEG microstate occurrence, the 6 × 7 repeated measures ANOVA revealed two signifi-
cant main ef fects  CONDITION ( F(3.393.88.230) = 34.593, p = 0.000, η2 = 0.571 )  and CLASS 
( F(3.707, 96.380) = 10.582, p = 0.000, η2 = 0.289 ), as well as a significant interaction effect CONDITION × 
CLASS ( F(7.618, 198.068) = 33.086, p = 0.000, η2 = 0.560).

Table 8 lists p-values of post hoc paired t tests with Bonferroni correction on microstate occurrence, while 
Fig. 9 shows error bars of microstate occurrence in each condition. In particular, the occurrence of microstate 
classes A, B, and G increased significantly from REST to PU, IG, RIG, IE, and RIE ( ps = 0.000 ). Similarly, the 
occurrence of microstate class E increased significantly from REST to IG, RIG, and RIE ( ps < 0.043 ), while the 
occurrence of microstate class F increased significantly from REST to IG and IE ( ps = 0.000 ). On the contrary. 
the occurrence of microstate class D decreased significantly from REST to PU, RIG, and RIE ( ps < 0.011).

In addition, the occurrence of microstate class A decreased significantly from RIG and RIE to PU, IG, and IE 
( ps < 0.003 ), as well as from PU to IG ( p = 0.014 ). The occurrence of microstate class B increased significantly 
from IG and IE to PU, RIG, and RIE ( ps < 0.011 ). The occurrence of microstate class C decreased significantly 
from PU to RIG and RIE ( ps < 0.014 ), from IG to RIG, IE, and RIE(ps < 0.002 ), as well as from IE to RIE 
( p = 0.016 ). The occurrence of microstate class D decreased significantly from PU to RIG and RIE ( ps < 0.001 ), 
as well as from IG and IE to PU, RIG, and RIE ( ps < 0.001 ). The occurrence of microstate class F decreased 
significantly from IG and IE to PU, RIG, and RIE ( ps < 0.001 ). The occurrence of microstate class G increased 
significantly from IE to RIG and RIE ( ps < 0.047).

EEG microstate sequences. The finite entropy rate was 1.633 bits/sample (SE = 0.021) for REST, 1.663 bits/
sample (SE = 0.016) for PU, 1.826 bits/sample (SE = 0.018) for IG, 1.623 bits/sample (SE = 0.017) for RIG, 
1.782 bits/sample (SE = 0.017) for IE, and 1.595 bits/sample (SE = 0.017) for RIE, when considering the 
previous 6 microstate labels. The repeated measures ANOVA revealed a significant effect CONDITION 
( F(3.237, 84.153) = 40.629, p = 0.000, η2 = 0.610 ). Post hoc paired t tests with Bonferroni correction as shown 
in Fig. 10 indicated that the entropy rate was higher during IG and IE compared to during REST, PU, RIG, and 
RIE ( ps < 0.001 ), while the entropy rate was higher during PU compared to during RIE ( p = 0.006).

The first-peak latencies in milliseconds of AIF was 50 (SE = 1.6) for REST, 36 (SE = 1.1) for PU, 42 (SE = 1.6) 
for IG, 33 (SE = 0.9) for RIG, 36 (SE = 1.1) for IE, and 35 (SE = 1.1) for RIE, when time lags were considered up 
to 200 ms. Figure 11 shows the mean and 95% confidence interval of AIF for each condition.

Table 8.  P-values of pairwise comparisons with Bonferroni correction for microstate occurrence between 
CLASS (A, B, C, D, E, F, G) and CONDITION (rest (REST), problem understanding (PU), idea generation 
(IG), rating idea generation (RIG), idea evaluation (IE), and rating idea evaluation (RIE)). *ρ ≤ 0.050

,   **ρ ≤ 0.010,   ***ρ ≤ 0.005. ր microstate occurrence increases. ց microstate occurrence decreases.

Condition

Microstate classes

Class A Class B Class C Class D Class E Class F Class G

REST Vs. PU 0.0*** ր 0.0*** ր 1.0 0.011* ց 0.162 1.0 0.0*** ր

REST Vs. IG 0.0*** ր 0.0*** ր 0.406 0.387 0.043* ր 0.0*** ր 0.0*** ր

REST Vs. RIG 0.0*** ր 0.0*** ր 0.332 0.0*** ց 0.015* ր 1.0 0.0*** ր

REST Vs. IE 0.0*** ր 0.0*** ր 1.0 1.0 0.116 0.0*** ր 0.0*** ր

REST Vs. RIE 0.0*** ր 0.0*** ր 0.169 0.0*** ց 0.012* ր 1.0 0.0*** ր

PU Vs. IG 0.014* ց 0.0*** ց 0.229 0.001*** ր 1.0 0.001*** ր 1.0

PU Vs. RIG 0.001*** ր 1.0 0.014* ց 0.001*** ց 1.0 1.0 0.462

PU Vs. IE 0.999 0.003*** ց 1.0 0.001*** ր 1.0 0.001*** ր 0.997

PU Vs. RIE 0.003*** ր 1.0 0.002*** ց 0.001*** ց 0.335 0.404 1.0

IG Vs. RIG 0.0*** ր 0.001*** ր 0.0*** ց 0.0*** ց 1.0 0.0*** ց 0.084

IG Vs. IE 1.0 1.0 0.002*** ց 1.0 1.0 0.915 1.0

IG Vs. RIE 0.0*** ր 0.001*** ր 0.0*** ց 0.0*** ց 1.0 0.001*** ց 0.378

RIG Vs. IE 0.001*** ց 0.011* ց 0.11 0.0*** ր 0.554 0.001*** ր 0.028* ց

RIG Vs. RIE 1.0 1.0 1.0 1.0 1.0 1.0 1.0

IE Vs. RIE 0.001*** ր 0.006** ր 0.016* ց 0.0*** ց 0.751 0.0*** ց 0.047* ր
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In addition, the Hurst exponent averaged from 35 partitions was 0.628 (SE = 0.005) for REST, 0.628 
(SE = 0.004) for PU, 0.594 (SE = 0.003) for IG, 0.637 (SE = 0.005) for RIG, 0.604 (SE = 0.003) for IE, and 
0.644 (SE = 0.005) for RIE. The repeated measures ANOVA revealed a significant effect CONDITION 
( F(3.276, 85.182) = 24.696, p = 0.000, η2 = 0.487 ). Post hoc paired t tests with Bonferroni correction as shown 
in Fig. 12 revealed that the Hurst exponent was significantly lower during IG and IE compared to during REST, 
PU, RIG, and RIE ( ps < 0.041 ), while the Hurst exponent was significantly lower during PU compared to dur-
ing RIE ( p = 0.025).

Figure 9.  Microstate occurrence during rest (REST), problem understanding (PU), idea generation (IG), rating 
idea generation (IE), idea evaluation (IE), and rating idea evaluation (RIE). P-values between rest and other 
conditions are annotated by black dots ( p > 0.050 ), blue dots ( p ≤ 0.050 ), yellow dots ( p ≤ 0.010 ), and red 
dots ( p ≤ 0.005 ). P-values between conditions are annotated by * ( p ≤ 0.050 ), ** ( p ≤ 0.010 ), *** ( p ≤ 0.005 ). 
Error bars: standard error of the mean.

Figure 10.  Entropy rate of microstate sequences during rest (REST), problem understanding (PU), idea 
generation (IG), rating idea generation (IE), idea evaluation (IE), and rating idea evaluation (RIE). P-values 
between rest and other conditions are annotated by black dots ( p > 0.050 ), blue dots ( p ≤ 0.050 ), yellow 
dots ( p ≤ 0.010 ), and red dots ( p ≤ 0.005 ). P-values between conditions are annotated by * ( p ≤ 0.050 ), ** 
( p ≤ 0.010 ), *** ( p ≤ 0.005 ). Error bars: standard error of the mean.
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Discussion
Herein, we investigated the temporal dynamics of EEG-defined whole-brain neuronal networks during the con-
ceptual design process in a loosely controlled setting. First, the loosely controlled setting simulated the natural 
design process to facilitate an ecologically valid neurocognitive study. The experiment setting provides sufficient 
response time to accommodate the flexibility and freedom necessary for participants to explore potentially 
creative ideas. Simultaneously, the loosely controlled setting maintained certain degrees of control over the 
experiment by dividing the experiment into three main sub-design activities, which are problem understand-
ing (PU), idea generation (IG), and idea evaluation (IE). NASA Task Load Index was added after IG and IE, 
namely rating idea generation (RIG) and rating idea evaluation (RIE), to subjectively measure participants’ 
mental demand, time demand, performance, effort, and stress level. Secondly, the TRP analysis revealed that IG 

Figure 11.  The autoinformation function for each condition. The red line represents the mean autoinformation 
function across subjects for each condition, while the shaded area represents the 95% confidence interval for 
each condition.

Figure 12.  Hurst exponent of microstate sequences averaged from 35 partitions during rest (REST), problem 
understanding (PU), idea generation (IG), rating idea generation (IE), idea evaluation (IE), and rating idea 
evaluation (RIE). P-values between rest and other conditions are annotated by black dots ( p > 0.050 ), blue dots 
( p ≤ 0.050 ), yellow dots ( p ≤ 0.010 ), and red dots ( p ≤ 0.005 ). P-values between conditions are annotated by * 
( p ≤ 0.050 ), ** ( p ≤ 0.010 ), *** ( p ≤ 0.005 ). Error bars: standard error of the mean.
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was associated with significant decreases in delta, theta, alpha, and beta power, suggesting the highest cognitive 
workload and lowest cognitive control. Finally, the EEG microstate analysis indicated that microstate class C 
was more prevalent during IG while IG was associated with the shortest correlation times, supporting the lowest 
cognitive control in IG.

How are different conceptual design activities associated with cognitive workload? The alpha 
band TRP analysis suggests differences among three groups of experimental conditions, which are IG, IE, and 
PU/RIG/RIE. It was found that IG, IE, and PU/RIG/RIE were associated with decreases in alpha power while the 
degree of decreases in alpha power was the largest over almost all sites during IG, followed by during IE and PU/
RIG/RIE. Decreased alpha power is considered as a reliable indicator of cognitive workload for ecologically valid 
 tasks65–67. In addition, decreases in alpha power were associated with task  difficulty68–70, semantic  memory71,72, 
and  attention73, when these were manipulated to induce different levels of cognitive  workload74,75. These findings 
indicated that the IG task triggered the highest cognitive workload, followed by IE and PU/RIG/RIE.

Recent studies in the field of neurocognitive creativity demonstrated the functional role of changes in alpha 
power. Some studies indicated that alpha power decreased from rest to creativity-related  tasks17,19,68,76 while 
others reported that alpha power increased from rest to creativity related tasks following a U-shaped  curve77–80. 
The former is in line with the finding that a reduction of alpha power is associated with a more complex and ill-
defined problem, especially in ecologically valid settings where a higher cognitive workload is  triggered17,67,68. 
In more ecologically valid settings such as design, not only functional but also performance factors need to be 
considered at the same time. The more factors are considered, the more task-relevant information would be 
processed and maintained in working memory. Such increased maintenance of task-relevant information is 
associated with alpha  desynchronization81. The latter demonstrates an inhibitory top-down control process that 
inhibits task-irrelevant information to generate creative  solutions82–84. Therefore, IG would maintain the greatest 
amount of task-relevant information to generate solutions that meet design requirements, while IE would involve 
more task-relevant information to make preferential evaluations.

Besides, the obtained NASA-TLX results indicated that mental demand, time demand, effort, and stress 
decreased significantly from IG to IE, supporting the hypothesis that IG would trigger the highest cognitive 
workload. The degrees of cognitive workload may be affected by varying task difficulty and complexity, semantic 
process, and attention. The higher cognitive workload is associated with ill-defined problems compared to well-
defined  problems68, as well as increases in task  difficulty69,70. Along the same line, the degrees of ill-definedness 
and task difficulty are the highest during IG, the lowest during PU/RIG/RIE, and at an intermediate level during 
IE. More specifically, participants are confronted with the most well-defined problems during RIG and RIE, and 
read/comprehend/decompose design requirements during PU. During IG, on the contrary, participants are deal-
ing with ill-defined problems, synthesising and evaluating knowledge recursively to generate/detail/elaborate 
solutions, which in turn reformulate design requirements. IE is not as complex or ill-defined as IG, but is more 
complex than PU/RIG/RIE in that participants apply the knowledge generated in PU and IG to judge the existing 
solutions without pre-defined judging criteria/constraints. In sum, not only EEG but also behavioural findings 
suggest that IG would be associated with the highest cognitive workload.

Indeed, cognitive workload and mental stress in conceptual design could be triggered by uncertainty and 
recursivity, which are two fundamental characteristics of design. Uncertainty inherits from ill-defined design 
statements and would last throughout the conceptual design process due to recursivity. Incomplete and impre-
cise information collected from design statements may heighten the degree of uncertainty and unpredictability, 
which could be linked to mental stress such that Mental Stress = Perceived Workload/((Knowledge + Skills) * 
Affect) as defined in Nguyen and  Zeng4. Designer’s affect could be very low when uncertainty becomes high, as 
Grupe and Nitschke stated that “uncertainty diminishes how efficiently and effectively we can prepare for the 
future and thus contributes to anxiety”85. Consequently, the mental stress would increase and more knowledge 
and skills are required to compensate for the decreasing affect in designer’s effort to complete the task. Such 
variations in designer’s mental stress, affect, knowldge, and skills, indicate that cognitive workload may increase 
with increasing uncertainty, which is supported by a meta-analysis of fMRI studies showing that the brain is 
more active under conditions of uncertainty, compared to  certainty86. From this viewpoint, participants tend 
to experience the most uncertainty during IG whereas they are more certain about their solutions during RIG/
RIE. Therefore, the higher cognitive workload would be induced in IG due to its greater degree of uncertainty.

Furthermore, recursivity demonstrates continuous evolution during the conceptual design process in which 
goals, solutions, and knowledge evolve  simultaneously33–38. The newly generated solutions will not only improve 
the designer’s understanding but also help reformulate the design problem. The reformulated design problem 
will trigger the designer to identify new knowledge to elaborate the previous solutions or regenerate different 
tentative solutions, which in turn updates the design problem. High cognitive workload would be triggered 
during such a recursive process as designers need to maintain a large amount of multidimensional information 
and their relationships with goals, solutions, and knowledge. IG seems to share the most features of the recursive 
design process whereas PU/RIG/RIE share the most similarity with well-defined problem solving. Therefore, 
higher cognitive workload would be induced during IG compared to IE and PU/RIG/RIE.

How are different conceptual design activities associated with cognitive control? The TRP 
analysis in delta, theta, and beta bands suggests differences among three groups of experimental conditions, 
which are IG, IE, and PU/RIG/RIE. It was found that delta, theta, and beta power increased over frontal sites 
from REST to PU/RIG/RIE and IE, whereas they decreased over all sites from REST to IG. A comparison within 
design activities indicated that delta, theta, and beta power increased significantly over almost all sites from 
IG to IE, and PU/RIG/RIE, as well as from IE to PU/RIG/RIE, while delta, theta, and beta power did not show 
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significant differences over almost all sites in PU/RIG/RIE. Increased theta power over the frontal sites has been 
viewed as a function of working memory and cognitive control. Generally, increased frontal theta activity has 
been interpreted as a need for increased cognitive control in response to  conflict87,88, encoding and retrieval 
of information from working  memory58,89, while increased beta activity is associated with the maintenance of 
intended status  quo90. Besides, increases in delta power have been associated with heightened attention during 
mental tasks, reflecting the role of inhibiting  interferences91,92. These findings indicated that IG, IE, PU/RIG/RIE 
triggered cognitive control with the lowest to the highest intensities, respectively.

Higher cognitive control is beneficial to goal-directed contexts, whereas lower cognitive control is help-
ful to learning and creative problem-solving  contexts93. The heightened cognitive control in the PU/RIG/RIE 
group may result from ignoring distractors in the reading activity, which could improve reading speed and 
 comprehension94,95. Alternatively, the increased cognitive control in the PU/RIG/RIE group may result from the 
“structured” process, which could narrow the focus of attention on a well-defined target. Besides, increases in 
theta power over frontal sites from IE and RIG/RIE to REST indicated the involvement of more cognitive control 
during IE and RIG/RIE, which is in line with increases in theta power being associated with heightened cogni-
tive control during the complex decision-making25. Interestingly, IE involved less cognitive control compared to 
RIG/RIE due to the smaller increases in theta power, even if IE and RIG/RIE shared similar evaluative process. 
This difference in cognitive control may be ascribed to the properties of evaluative criteria, such as abstractness 
and quantity. Riddle and colleagues reported that a higher level of abstraction rules is linked to decreased beta 
amplitude while a larger number of rules is associated with increased theta  amplitude28.

Our analysis indicated the same findings in that beta power decreased significantly over frontal, central, and 
temporal sites from RIG/RIE to IE while theta power increased significantly over frontal, central, and temporal 
sites from IE to RIG/RIE. Indeed, IE involved higher level of abstraction rules compared to RIG/RIE in that 
participants needed to express their preferences without an explicit criterion. IE could be categorized as inter-
nally guided decision-making whereas RIG/RIE could be categorized as externally guided decision-making. The 
internally guided decision-making would involve less cognitive control compared to externally guided decision-
making96. Similarly, delta power increased significantly from IE to RIG/RIE, suggesting increases in attention 
during RIG/RIE91,92. These findings suggest that higher cognitive control results from the heightened attention 
during more “structured” processes such as PU/RIG/RIE, while less cognitive control results from internally 
oriented processes, such as IE.

Furthermore, the lowest cognitive control was associated with IG compared to IE and PU/RIG/RIE. IG is 
typically viewed as a mixed process between self-generated and task-initiated  thoughts93. A study of the role of 
inhibition in creativity revealed that lower cognitive control enhanced the frequency and originality of  ideas97. 
In the same vein, lower cognitive control may incubate a few critical activities, such as mind  wandering54 and 
 hypofrontality98,99, to improve creative performance. In addition, a study of musical improvisation indicated 
that creative improvisation was characterized by a dissociated pattern of activity in the prefrontal  cortex100. Less 
activation in the prefrontal cortex could reduce cognitive control, which may help participants overcome fixa-
tion or associate objects that are semantically less similar to reinterpret the design  problem101. In the same lines, 
neuroimaging studies indicated that creative idea generation is associated with activation of the DMN resulting 
from reduced cognitive  control10,102. However, a recent study reported interactions between the DMN and the 
cognitive control network underlying  creativity12, suggesting that the balance between the DMN and cognitive 
control network may benefit flexible regulation for creative  performance103,104. Our findings regarding decreased 
alpha and theta power in IG support the argument that IG involves not only increased cognitive workload but 
also reduced cognitive control. Further study is needed to shed light on the temporal dynamics of brain networks 
during the conceptual design process.

Interestingly, the right and left hemispheres may play different roles in cognitive control during conceptual 
design activities. PU was strongly associated with left hemispheric frontal activation in delta, theta, and beta 
bands, while RIG/RIE was strongly associated with left hemispheric central activation in delta and theta bands. 
This left hemispherical activation may result from heightened cognitive control being associated with language, 
judgements, and retrieval processing during PU and RIG/RIE105,106. Different from previous findings of right 
hemisphere dominance in  creativity107, our results indicated that IG led to different hemispheric specializations 
over distinct areas. This finding supports that the right-brain theory might not capture all aspects of creative 
 cognition108, which should be further investigated.

How are different conceptual design activities associated with the range of temporal correla‑
tions? Our analysis of microstate parameters and temporal correlations within microstate sequences suggests 
differences between two groups of experimental conditions, IG and IE on one side, and PU, RIG, RIE on the 
other side.

Summarizing the microstate parameters coverage, duration, and occurrence, we found a prevalence of 
microstate classes A and B during the conditions PU/RIG/RIE, whereas microstate classes C and D were more 
prominent during REST, IG and IE. An increased coverage and occurrence of classes C and D during rest is 
probably related to the fact that their topography reflects the parieto-occipital dominance of resting-state alpha 
oscillations. The relation with conditions IG and IE is less clear. One explanation is that all design tasks involved 
visuo-spatial imagery, which would activate occipital (visual) and parieto-occipital cortices. Combining EEG 
microstate analysis and source reconstruction, microstate class C has been found to correlate with activity 
in the  precuneus64, which is involved in visuospatial processing and introspection, both of which may play a 
role during IG. In regard to cognitive control, the microstate literature has not reached a consensus so far. As 
reviewed by Michel and  Koenig42, positive as well as negative correlations of microstate class C with cognitive 
control mechanisms have been reported. Assuming that the RIG/RIE conditions correspond to a higher level of 
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cognitive control, our results suggest that microstate class C is negatively correlated with cognitive control, and 
that microstate classes A and B indicate more control. This interpretation would agree with the results found in 
the studies of cognitive processes that microstate C reflects activity in the  DMN48,49.

The microstate classes (E,F,G) showed less pronounced differences between the experimental conditions. 
Microstate class F was more prominent during IE, and microstate class G was more pronounced during RIG/RIE.

The current literature on the relationship between individual microstate classes and cognitive functions still 
contains open  discussions42. Moreover, the assignment of topographies obtained from clustering algorithms 
to specific microstate classes (A–G) can be challenging, especially when more than four microstate classes are 
used. For this reason, and hypothesizing that cognitive activities might be better captured by dynamic microstate 
properties, we analyzed temporal correlations of microstate sequences and found marked differences between 
our experimental conditions.

We analyzed temporal microstate correlations for short, intermediate and long time scales, and observed 
the following patterns. Short- and long-range correlations, as measured by the finite entropy rate and Hurst 
exponents respectively, gave consistent results. The finite entropy rate in IG and IE was significantly larger than 
in the PU/RIG/RIE group. This indicates a faster decorrelation, or a lower predictability, in the former group. 
Thus, a short sequence of IG/IE microstates ( k = 6 samples in our case) encodes much less information about 
which network will activate next, compared to PU/RIE/RIG. A matching observation was made via Hurst expo-
nent analysis for time scales approximately 100 times longer compared to the scale assessed by the entropy rate. 
Conditions IG and IE showed Hurst exponents closer to H = 0.5 , which indicates uncorrelated activity, and 
therefore less long-range correlated activity than found in the PU/RIG/RIE conditions. Taken together, these 
findings suggest that functional brain networks, as measured by EEG microstates, retain less memory about their 
previous trajectory during IG and IE.

In terms of our cognitive control hypothesis, we conclude that during problem understanding (PU) and rating 
(RIG,RIE) the brain exerts a stronger cognitive control over network transitions, and that this control is reflected 
by a more deterministic brain state trajectory, eventually producing a more predictable microstate sequence. Dur-
ing IG and IE, the interplay of functional networks appears less restricted. Interpreting the microstate sequence 
as a process of stochastic transitions between functional brain networks, a larger entropy rate means that the 
brain has more degrees of freedom in choosing the next network configuration. In relation to the performed 
tasks, this less restricted mode of operation might reflect the creativity component of the task, especially during 
IG, which shows the maximum entropy rate and the lowest Hurst exponent. In our framework, the increasing 
entropy rate is mediated by a relaxation of cognitive control mechanisms.

In this context, it is interesting to look at intermediate time scales, where oscillatory brain activity becomes 
apparent. Microstate frequency analysis has been developed only recently, where periodic microstate patterns 
linked to alpha oscillations were described during the resting  state53. Our AIF analysis (Fig. 11) shows that the 
alpha frequency linked microstate oscillations (time lag 100 ms) of the resting state are substituted by higher 
frequencies as soon as the brain engages in the cognitive tasks. The conditions PU/RIG/RIE show the highest 
microstate frequencies (AIF peaks at the lowest time lags), corresponding to the lower beta frequency band 
around 14 Hz. These findings match the TRP analysis where beta and theta frequencies appear during PU/RIG/
RIE over bilateral fronto-temporal areas. Likewise, TRP analysis for IG showed a decrease in theta and beta 
oscillatory activity, explaining why the AIF during IG shows peaks at longer time lags, i.e. less beta frequency 
contributions. As cognitive control mechanisms are known to be mediated by theta  frequencies89, we conclude 
that our cognitive control model is consistent not only with the TRP results, but also with the temporal microstate 
analysis across all time scales. The added value of microstate frequency analysis is that the identified frequencies 
indicate periodic behaviour of entire large-scale brain networks, rather than analyzing oscillations at the single 
sensor level. Our data suggest that cognitive control is associated with periodic activity of large-scale networks 
in the beta frequency band.

Of note, entropy rates, Hurst exponents and AIF coefficients are independent of how the microstate label 
assignment to the microstate maps is chosen. As seen in Fig. 6, in the case of seven microstate classes the assign-
ment of the k-means output to the labels A-G reported in the literature can be ambiguous. As the entropy-based 
quantities (entropy rate, AIF) reported in this study would be the same for any label assignment, this methodol-
ogy adds further robustness to our results.

Limitations and future directions. A few limitations of the current study need to be addressed in the 
future. First, the objective of this present study is to understand the brain activities in problem understanding, 
idea generation, rating idea generation, idea evaluation, and rating idea evaluation during the conceptual design 
process. We did not take into account participants’ behaviour data except for NASA-TLX, since some aspects 
of behavioural analysis heavily rely on subjective criteria. For instance, evaluating design solutions depends on 
expert knowledge and experience, as well as sample size. Future studies should consider how to analyse par-
ticipants’ behavioural data in an objective manner and relate them to neurocognitive data. Second, there may 
be some effects of gender imbalance on brain activities during the conceptual design  process109. Future studies, 
including further investigations into the conceptual design process should consider gender-based analyses to 
avoid possible effects of gender imbalance.

Third, the aim of EEG microstate analysis is to infer the activity of functional brain networks from charac-
teristic EEG topographic patterns. As EEG signals are affected by volume conduction, tissue-dependent signal 
filtering, and discrete sampling via an electrode array, the relationship between microstates and functional net-
works is not one-to-one. Thus, functionally different networks may be represented by only one microstate map. 
Clustering algorithms reliably yield the same four canonical microstates during different cognitive  activities48, 
and even across different sleep  stages110, although network activity during sleep is likely to be different from 
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task execution, especially in regard to the cognitive control mechanisms discussed in this paper. Therefore, the 
approach of identifying cognitive processes with individual microstate maps is probably too simple, and can 
be the source of contradicting  findings42. Some aspects of task execution may be better characterized by the 
dynamic sequence in which networks are activated, rather than by the averaged prevalence or duration of a 
specific microstate map. We have tried to overcome these limitations by adding dynamic and label-independent 
measures (entropy rate, AIF, Hurst exponent) and we believe that the congruence with the results from TRP 
analysis corroborates our interpretations. To further clarify the networks involved in design task execution, future 
studies may benefit from methods such as high-density EEG combined with source localization, or functional 
MR imaging approaches, although the latter imposes restrictions on the experimental setting.

Conclusions
This present study was designed to investigate temporal dynamics of brain activity in response to distinct design 
activities during the conceptual design process through a loosely controlled setting. The loosely controlled set-
ting simulated the natural design process to facilitate an ecologically valid neurocognitive study, which offered 
sufficient response time for participants to freely explore potentially creative solutions while maintaining cer-
tain degrees of control through segmenting the conceptual design process into sub-design activities, including 
problem understanding, idea generation, rating idea generation, idea evaluation, and rating idea evaluation. 
Aligning our findings with those of other validated evidence, the TRP analysis revealed that idea generation 
was associated with significant decreases in delta, theta, alpha, and beta power, suggesting the highest cognitive 
workload and lowest cognitive control. In the same vein, the EEG microstate analysis indicated that microstate 
class C was more prominent during idea generation. Further temporal dynamics analysis found that idea gen-
eration was consistently associated with the shortest correlation times, as measured by the finite entropy rate, 
AIF, and Hurst exponent. This finding suggests that the interplay of functional brain networks is less restricted 
during idea generation, supporting the idea that the brain has more degrees of freedom during tasks involving 
creativity. Taken together, we conclude that idea generation is associated with the highest cognitive workload 
and lowest cognitive control, consistently supported by TRP and microstate analysis.

Data availability
The data set analysed in the current study and code of TRP and EEG microstate analysis are available in the 
G-Node repository as follows: https:// gin.g- node. org/ Design- Lab/ Netwo rk- oscil latio ns- in- open- ended- creat 
ion- tasks.

Code availability
The codes used for TRP and EEG microstate analysis are made publicly available in the G-Node repository as 
follows: https:// gin.g- node. org/ Design- Lab/ Netwo rk- oscil latio ns- in- open- ended- creat ion- tasks/ src/ master/ code.
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