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Integrated multilayer stretchable printed circuit
boards paving the way for deformable active matrix

Shantonu Biswas', Andreas Schoeberl?, Yufei Hao3, Johannes Reiprich?, Thomas Stauden?, Joerg Pezoldt? &
Heiko O. Jacobs?*

Conventional rigid electronic systems use a number of metallization layers to route all
necessary connections to and from isolated surface mount devices using well-established
printed circuit board technology. In contrast, present solutions to prepare stretchable elec-
tronic systems are typically confined to a single stretchable metallization layer. Crossovers
and vertical interconnect accesses remain challenging; consequently, no reliable stretchable
printed circuit board (SPCB) method has established. This article reports an industry com-
patible SPCB manufacturing method that enables multilayer crossovers and vertical inter-
connect accesses to interconnect isolated devices within an elastomeric matrix. As a
demonstration, a stretchable (260%) active matrix with integrated electronic and optoe-
lectronic surface mount devices is shown that can deform reversibly into various 3D shapes
including hemispherical, conical or pyramid.
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dramatic increase in research activities has been per-
ceived for last decade to enable mechanically stretchable
and deformable functional electronic devices!~%. Conse-
quently, a large number of stretchable devices have been realized
demonstrating a wide range of diverse applications that includes
soft robotics®®, actuators’, electronic eye cameras®, epidermal
electronics®, wearable electronics!®!!, metamorphic electronics!>!3,
edible electronics!4, acoustoelectronics!>16, health monitoring
devices!7-19, smart textiles?0 to give a few examples. Most of these
demonstrators often use highly specialized technologies and
unconventional materials that make these technologies more
interesting for research, but less favorable for industrial production
for mass people. Till today, there exist no reliable manufacturing
methods that can be generalized as stretchable printed circuit board
(SPCB) technology?!.

Conventional rigid printed circuit boards (PCB) typically
consists of more than one metallization layers to route metal
tracks to interconnect surface mount devices (SMDs) using well-
established manufacturing methods, which is one of the main
reasons behind the paramount success of this technology. On the
other hand, stretchable electronics mostly remains limited to a
single active layer with less complex device integration, which is
primarily due to the lack of reliable manufacturing methods.
Although, there are a few lab prototypes of stretchable devices
demonstrating multilayer electronic systems with different func-
tionalities?2-24, the materials and methods used to realize such
devices are unconventional and rarely suitable for industrial
production. This technological and materials lacking confines the
complexity of demonstrated stretchable electronic devices?”. For
instance, even the simplest functional active matrix requires at
least two metallization layers2®,

Additionally, vertical interconnect accesses (VIAs) are required
to interconnect between different active layers in the circuit
boards, which is not well-established in the manufacturing pro-
cess of stretchable electronics. Although, a few approaches have
been reported to realize VIAs in stretchable substrates using
liquid alloys27-28 or solid phase materials?>2, again, the methods
and the materials are incompatible to conventional processing.
Thus, an industry-compatible processing of multilayer metal
tracks and reliable VIAs, which are two important elements to
realize a SPCB technology, remains a primary challenge.

Recently, we demonstrated a single layer SPCB method that
enabled “on-hard-carrier” fabrication using conventional planar
microfabrication techniques that delays use of elastomeric sub-
strate to the end®. The reported method enabled high tem-
perature processing, high alignment and registration, and allowed
conventional chip assembly methods on a rigid carrier. However,
the previously demonstrated methods used only a single active
layer without complex routing of the metal tracks, which limited
the complexity of the circuit and the device!>13:30, In this article,
we engineered a similar method to realize integrated multilayer
SPCB and demonstrate an alternative development towards the
realization of stretchable electronics with higher integration
density capabilities by introducing stable VIAs through inter-
connection between different metallization layers. The method
used in this article is compatible with conventional micro fabri-
cation processes and uses commercially available pristine SMDs.

Here, we report a SPCB method which replaces the rigid
insulator substrate of conventional PCB with a highly stretchable
silicone elastomer (EcoFlex). Demonstrated manufacturing
method to realize SPCB can be divided in two steps, the first step
uses hard-carrier fabrication method that is fully compatible with
conventional planar microfabrication techniques, where the sec-
ond step introduces elastomeric substrate and no active fabrica-
tion is required during this. This method has several benefits over
other demonstrated methods in the field of stretchable

electronics?? since it delays the introduction of rubber substrate
which enables high temperature processing, higher registration
and alignment accuracy, and allows to use conventional robotic
or advanced self-assembly of SMD dies’!. Additionally, the
method allows testing the device functionality on hard-carrier
which is beneficial since it allows for the identification of failure
modes of the circuit and device layer before and after we detach,
bend or stretch the structure. Moreover, like conventional PCB
technology, this method allows direct use of SMD chips. To
realize VIAs in the SPCB, a similar method to the conventional
PCB technology is used here. A highly stretchable (elongated up
to 260% of the original length) multilayered integrated SPCB
design is discussed. To demonstrate the applicability, a fully
addressable LED active matrix has been realized. The integrated
LED display can be deformed to various three-dimensional (3D)
geometrical shapes to morph hemisphere, cone, and pyramid.

Results

On hard carrier fabrication. Figure 1 shows design and first part
of the multilayer SPCB manufacturing method on a hard carrier.
As an example, an active matrix LED display segment is realized.
As mentioned, active matrix LED array requires at least two
metallization layers, VIAs, and the integration of transistors and
LEDs (la) in an array type fashion. From materials and proces-
sing point of view, several elements are important to achieve this.
Figure 1b schematically presents elements of the first step of
SPCB manufacturing process on hard-carrier. The depicted
method uses a rigid Si wafer (500 um thick, MicroChemicals,
Ulm, Germany) as a carrier substrate and forgoing processing are
performed on this rigid substrate. The details of the processing
are added in the methods and supplementary methods (Supple-
mentary Fig. 1).

Release and peeling layer: Even though there are several benefits
of using a rigid carrier substrate for the processing, one drawback
of this method is that the final device has to be detached from
the rigid substrate to be stretchable. A few other demonstrators
use sequential transfer methods to retrieve different parts of the
device such as metal tracks, active components etc. from rigid
carriers to a stretchable substrate. This approach becomes highly
challenging when active elements of the device become fairly
small due to the alignments and registrations, and thus achieving
higher integration density becomes difficult. In the depicted
approach, we realize the complete functional electronics on-hard-
carrier and detach the entire device to a stretchable substrate by a
single step transfer technique using predefined two sacrificial
layers of poly(methyl-methacrylate) (PMMA) and polyimide (PI).
In this approach spin coated PMMA, (1 um thick, green in
Fig. 1b) and an eight um thick layer of PI (blue in Fig. 1b) is used
as a release and a peeling layer, respectively. The peeling layer
supports the buildup of the circuit and enables detachment of the
circuit after the fabrication is completed.

Metal I: One of the major elements of the stretchable electronic
devices is the conductive interconnects where rigid SMDs are
used, since the interconnects directly contribute to the stretch-
ability of the device. In the current demonstrator, we used 10 um
thick copper (Cu) tracks patterned as stress-adaptive meander
shaped3Z, Initially a 50 nm/200 nm thick sputter coated seed layer
of Al/Cu is deposited, which is patterned by photolithography to
electroplate 10 um thick layer of Cu (Supplementary Fig. 2) to
increase the mechanical robustness of the metal tracks (reddish in
Fig. 1b). Thick metal tracks (>5pum) were found to be more
robust than previously used thin (<1 pm) metallization layers33.
This metallization layer forms the columns in the addressing
system (Fig. 1c). Moreover, a part of it (50 nm Al) serves as a self-
aligned etch mask in a later plasma etching step, necessary to
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Fig. 1 First steps to realize integrated stretchable printed circuit boards. Schematic layout of an active matrix using LEDs and transistors (a), layers build-up
in the SPCB (b) and “on-hard-carrier” functionality test (c). Metal layers crossing: schematics (d) next to corresponding optical microscope image (e), and
colored SEM image (f); the two metal layers are separated by a 20 um thick photo-patternable Pl layer, the layer is black in the microscope and gray in the
SEM image. VIA: schematics (g) next to a colored tilted SEM image (h) depicting the Pl peeling layer (turquoise), bottom metal (yellow) (in parts covered
by photo-patternable PI, (darker turquoise), VIA (reddish), and top metal (reddish) and cross-section (i) of the same. Pl polyimide, PMMA poly(methyl-
methacrylate), PP Pl photo-patternable Pl, SMD surface mount device, VIA vertical interconnect access, SPCB stretchable printed circuit board

remove the sacrificial PI layer and the photo-patternable PI
insulation layer.

Insulation layer: Multilayer electronic systems require electrical
isolation in between different metal tracks to prevent electrical
short-circuits. In the depicted case, the rows and the columns are
separated using a photo-patternable PI layer (HD 4100) layer.
Specifically, a spin-coated 20 um thick photo-patternable PI layer
is used to entirely cover the first metal tracks. As illustrated in the
figure, the intermediate photo-patternable PI layer (Fig. 1d)
serves as an insulation layer. The optical microscope image
(Fig. le, Supplementary Fig. 3) shows a top view of one of the
crossing regions. The bottom metal appears darker, because it is
buried underneath the photo-patternable PI layer. The colored
SEM image (Fig. 1f) shows a tilted view. The photo-patternable PI
layer follows the surface profile and covers the top and sidewalls
of the first metal tracks. This results in a raised surface, and this
surface topography continues to the second metallization layer,
which produces the visible crossing. The thickness of the
insolation layer is 20 pm. This layer is selectively removed by
plasma etching after encapsulation and detachment using the first
metal tracks (Al) as a mask. As a result, in the final device
the isolation layer has a similar geometry as metal 1 and can
be stretched. Electrically we found no short-circuits or leakage
currents between individual rows and columns before or after the
detachment of the device.

VIAs: As mentioned earlier, metal tracks in different layers
require to be interconnected through VIAs and realizing reliable
VIAs in SPCB remained a challenge till today. In the depicted
approach, like the conventional PCB method, we use electro-
plated Cu to realize the VIAs. The photo-patternable PI layer is
also photolithographically patterned to define openings and
locations of the VIAs, which are subsequently filled with 20 pm of
electrodeposited copper. This second electrodeposition step is
necessary in order to ensure good electrical contact in between
the first metal tracks and the VIAs, which is difficult to achieve
using thin-film deposition methods through 20 pum deep holes. A
similar electrodeposition method is also used in conventional
PCB technologies to grow thick VIAs. As shown schematically in
Fig. 1g, the VIAs are grown using metal 1 as a seed layer through
predefined openings in the photo-patternable PI layer. A plasma
cleaning process is required prior to electrodeposit the VIAs in
order to remove the residues from photo-patternable PI
(Supplementary Fig. 4) to ensure good electrical and stable
mechanical contact between different metal layers in these
regions.

Metal 2: Second metal tracks are directly deposited on top of
the isolation layer and the VIAs ensuring good electrical contact
between metal 1, VIA, and metal 2. Another 10 um thick layer of
Cu is used as the second metallization layer (reddish layer). The
colored SEM image (Fig. 1h) shows a tilted view (and optical
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microscope image in Supplementary Fig. 5 shows top view) of the
VIA region, revealing the PI peeling layer, metal 1, the photo-
patternable PI layer, VIA, and metal 2, and the cross-sectional
SEM image (Fig. 1i) shows different metal layers in the VIA
region.

Solder bump application: The solder bumps are used to make
mechanical and electrical contact in between the metal tracks and
the active components. A low melting point solder (Indalloy
#117) is used for this purpose because the solder is applied by
a parallel dip-coating process in a liquid solder bath3* using a
10 um thick photoresist mask to define the solder bump locations
(see Supplementary Fig. 6). However, a higher melting point
solder could be used as well following other solder printing
methods.

Component assembly: The fabrication process is compatible
with various types of chip attachment and component assembly
methods, including solder bump-based interconnects3?, flip-chip
die attachment, robotic pick-and-place or engineered self-assembly
using molten solder3!l. In the demonstrated case, we use a semi-
automated pick-and-place process to mount the components. This
demonstrator contains a number of lab-fabricated (bare dies,
requiring flip-chip die assembly) field effect u-transistors (u-FET,
see Supplementary Fig. 7) (0.5x0.5x0.5mm) and an equal
number of commercially-bought standard surface mount LEDs
(1 x0.6x0.2mm, 459 nm, Creative LED GMBH, Schaan, Fiir-
stentum Liechtenstein).

On hard carrier functionality tests: The depicted approach
enables “on-hard-carrier” functionality tests. This is different
from other methods, which build on a soft elastomeric rubber
substrate. This is beneficial since it allows for the identification of
failure modes of the circuit and device layers before and after we
detach, bend, or stretch the structure. For example, in the
depicted hard carrier functionality tests (Fig. 1c) all the LEDs
function properly and response to the addressing system.

Introducing elastomeric substrate. In this step, an elastomeric
material is introduced in liquid form which will become the final
stretchable substrate after curing. A wide range of elastomeric
resin is available including silicone or plastic which make this
method compatible with a large variety of substrate materials with
different mechanical and optical properties. Mainly two proces-
sing steps are involved in this part.

Encapsulation and detachment: To detach the device layer
from the hard carrier, we use a castable 3 mm thick and thermo-
curable (room temperature, 15h) layer of EcoFlex (Smooth-On,
EcoFlex 00-30) as a stretchable encapsulation layer which is
poured evenly over the entire surface of the fabricated device. To
increase the bond strength between the active layers and the
EcoFlex, a preceding 5 min long O, plasma activation step is used.
The process is carried out without any mask, meaning the whole
surface is exposed to the plasma which includes the isolation
layer, metal 2, solder, and the SMDs. In general, the plasma cleans
the surfaces, increases the surface roughness and activates the
polymer surface with increasing ~-OH group.

As shown schematically in Fig. 2a (and Supplementary Fig. 8),
the molding process encapsulates the SMDs, meaning the EcoFlex
under fill the SMDs. It is known that elastomers with high
viscosities will require high local pressures to fill in small gaps.
However, we observed that EcoFlex 00-30 (viscosity, # = 3000 cP)
can fill smaller gaps than 10 um (see Supplementary Fig. 9).
Comparing with Polydimethylsiloxane (PDMS), which is well
known for micro-patterning through soft-lithography, has a
viscosity of 3500 cP. Both of these two polymers are strong
candidates as a stretchable substrate for high dense stretchable
electronics.

The detachment process uses the differential interfacial
adhesion of the stacked layers through an interface that can be
detached. Specifically, the PI layer has a low level of adhesion to
the PMMA coated carrier and this interface (PMMA < PI)
detached during this step. The detachment process works
particularly well using the introduced PI film, which forms a
uniform non-stretchable and supporting peeling layer beneath the
circuit. Figure 2b shows an image of the detachment process
while the LEDs are turn on and no damage to the device is
introduced during this process. It should be noted that no solvent
is required during the detachment process which increases the
robustness of the method since some electronic components get
damaged in some solvents.

Removal of unwanted PI: After detachment, the Cu metal
tracks continue to be covered with the PI peeling foil (schematics
in Fig. 2b inset and Supplementary Fig. 10), which needs to be
removed. Moreover, large sections of the intermediate PI foil are
treated as an unwanted layer, because a continuous film of PI
reduces the stretchability of the system. We used electron
cyclotron resonance (ECR) plasma etching process (40 SCCM
0,, 10 SCCM CF,, 100 W RF power, 30 min at 0.025 mbar) to
accomplish the removal of these two layers. The interesting part is
the second intermediate photo-patternable PI layer which is used
as an isolation layer between two metal layers. This layer will be
removed everywhere, except for the region that is covered with
metal 1. The first metal track acts as hard mask during the
plasma etching process which means that the photo-patternable
PI layer will have the same stretchable-meander shape structure
as Metal 1. The image in Fig. 2c shows that all the LEDs are
lighting in the EcoFlex substrate after completing the entire
fabrication process.

Device in rubber matrix. Figure 2d-f shows images of a single
pixel, crossing of two metal tracks, and VIA, respectively, in the
SPCB in EcoFlex matrix. The active devices remain completely
embedded in EcoFlex (surrounded and under-filled), which
provides protection during final stretching operations. The close-
up image reveals the bottom side of a single pixel in the active
matrix showing the transistor and the LED (Fig. 2d). The bottom
provides access to the metallization layer, meaning the structure
has a surface mount like geometry. Pads are accessible from the
bottom and all other elements are embedded and surrounded
with silicone; this is different from methods that build on top of
an elastomeric carrier. The SEM image (Fig. 2e) shows the
crossing of two metal tracks in the EcoFlex. After detachment, the
metal 1 becomes on top and metal 2 encapsulates in the EcoFlex
matrix. The insulator (photo-patternable PI layer follows the
shape of the meander of metal 1 and no critical alignment is
required to prevent short-circuits. Figure 2f shows a SEM image
of a VIA intentionally lifted off from the EcoFlex substrate con-
necting two metal tracks.

Reliability of VIAs. The VIAs play a major role in the system
with more than one metallization layers, and are the key
challenges in the field of multilayer stretchable electronics.
Specifically, the area of the VIAs had to be optimized in order
to achieve fully functioning arrays. The results of this optimi-
zation are summarized in Fig. 3 with computer simulated stress
profile at the VIA locations while stretched. VIAs connecting
bottom and top metal track in an open location (Fig. 3a, b) and
VIAs connecting a metal track to one of the contact pads of a
component (Fig. 3¢, d) can be distinguished. A goal was to
establish the maximum level of uniaxial elongation of the sys-
tem to cause an electrical discontinuity. The measured values of
the elongation ranged up to 260% of the original length can be
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Fig. 2 Second steps to realize integrated stretchable printed circuit boards. Schematic of silicone encapsulation of the device on hard carrier a. A
photograph of the detachment process of the device layer from the hard carrier while the device is under operation (b) and functionality test of the final
device in EcoFlex (c). Device in rubber matrix: Photograph of a single pixel of the active matrix encapsulated in EcoFlex showing a transistor and a LED (d).
SEM image of a crossing of two metal layers in EcoFlex (e) and a VIA lifted off from the silicone substrate connecting two metal tracks (f)

50 x 70 200 x 275 350 x 500 VIA size in um 50 x 70 200 x 275 350 x 500
VIA connectmg two metal tracks inan open Iocat|on VIA connectlng to one of the contact pads
- : 3 Gate | 7
a \/‘ Metal 1

VIA

Metal 2 —— .

Stress profile -
at 125%
elongation

contact

~ 0.2mm

d"’.-_-

Maximum level of
elongation

Fig. 3 VIA designs affecting the maximum level of elongation. a, b VIAs connecting bottom and top metal tracks in an open location and ¢, d VIAs
connecting a metal track to one of the contact pads of a SMD. Optical microscope photographs of the VIAs (a, ¢) and computer simulated stress profile in
the metal tracks while elongated 125% to its original length (b, d). The dimensions of the VIAs and corresponding maximum level of uniaxial elongation are
shown in the table. e, f Results of the stretching tests using a stress adaptive meander shaped metal track in unstretched condition (e) and while elongated
to 220% (up to 260%) to its original length (f). g Schematic dimensions of the meander shaped metal tracks and h image of a failure mode in the SPCB
using current design. VIA vertical interconnect access, PP Pl photo-patternable PI

achieved. Considering VIAs to the contact pads, it was found
that maximizing the footprint is beneficial. An increase in the
VIA size from 50x70um to 350 x 500 um improved the
elongation limit from 135 to 260%. As a comparison, in a
previous report, the elongation limit of a single metal layer
system was 320%32. This is interesting since the shape of the

meander was identical to the one reported here. Clearly, the
reported VIA limits the stretchability at the current state.
Moreover, the location of the VIA within the system has an
effect. For example, VIAs between metal tracks show a different
size dependent failure rate mechanism (Fig. 3a, ¢). Again, small
(50 x 70 um) VIAs failed first.
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Fig. 4 Deformable LED active matrix realized using SPCB method. The planar a addressable LED matrix can be deformed to different shapes without
altering its electrical functionality. The deformation involves deflation (b), inflation (¢), 3D guided shapes (d), and vacuum forming (e). The addressability

of the array remains unaltered after mechanical deformation (f)

These results are supported by computer aided stress profile
simulations at the VIA locations for different VIA dimensions
and conditions (Fig. 3b, d). As can be seen, the local stresses in
the metal tracks connected to the VIAs vary gradually. At the
same time, the stress concentrations for smaller VIAs are higher
than the larger VIAs, which provides higher mechanical stability
to the larger VIAs (see Supplementary Fig. 11). Also technically,
relatively large VIAs are beneficial since this will result uniform
deposition of materials during the electrodeposition process.
However, the effects of different locations of VIAs are not well
understood from the simulated stress profile. This is probably due
to the additional support from the mounted component, which is
not the case for the VIAs between two metal tracks.

Figure 3e, f present photographs of an array of the active
matrix while the device is in unstretched condition and while
being stretched to 220% to its original length using a stress
adaptive meander shape metal track, respectively. The design
parameters of the metal track are presented in the schematic
image (Fig. 3g). Experimentally, we observed that the primary
mechanism involved to fail the device is due to the detachment of
the metal tracks from the stretchable substrate which eventually
results electrical shorts between the metal tracks as shown in
Fig. 3h.

It is worth to mention that the rigid components are embedded
and the second metal tracks are submerged within the elastomeric
matrix, meaning the second metallization tracks are surrounded
by the stretchable substrate from three sides. However, the first
metallization tracks are only attached with the substrate from one
side via the photo-patternable PI layer (see Fig. 2e). Experimen-
tally, we observed that this metal layer is at risk to be peeled off
from the elastomeric substrate after prolonged and improper use
(Fig. 3h, Supplementary Fig. 12). Full encapsulation using an
additional 20 pm thick spin coated layer of EcoFlex decreases the
risk of detachment.

The depicted active matrix contains 36 pixels, 6 arrays, and 6
columns of LEDs and transistors within a rubber substrate. In the
current array, the pitch of each pixel is 1 cm. However, the spatial
resolution of the matrix is not limited by the manufacturing
method since the approach uses standard microfabrication
techniques to define the metal tracks and the VIAs. The spatial
resolution is primarily limited by the physical dimensions of the

surface mount components. However, since the approach uses
non-stretchable SMDs as functional elements connected via
meander-shape metal tracks, the total stretchability of the device
depends on the stretchable interconnects and the available
stretchable areas in the device, which means that highly dense
rigid SMDs will reduce the total stretchability of the system.

On the other hand, direct use of commercial chips is beneficial
since those chips are highly developed, integrated and miniatur-
ized with a wide range of functionalities, which eliminates the
requirements of developing new electrical components. The
miniaturized commercial components in the stretchable electro-
nics will also advance the sensing and actuation capabilities.
Furthermore, their integration into free form metamorphic
systems will allow to target new applications in robotics, wearable
health care, bioengineering, and in biomedicines.

The structure is robust enough to demonstrate deformation
behavior. In the device shown, the integrated LED matrix is
deformed using different methods to morph from a planar shape
(Fig. 4a) to a concave (Fig. 4b) or convex (Fig. 4c) shapes through
air deflation or inflation, respectively. Additional deformation
involves 3D guided shape or vacuum forming to form cone
(Fig. 4d) or to a pyramid (Fig. 4e), respectively (see Supplemen-
tary Fig. 13). Since the guiding structure is printed using a 3D
printer, a large variety of 3D shapes can be made; other topologies
have been demonstrated previously!>30, Figure 4f (and Supple-
mentary Fig. 14) shows the addressability of the active LED
arrays, where two sides of the pyramid are addressed. In other
words, 18 addressing lines, 36 VIAs, and 252 electrical
connections to the 72 devices remained intact.

Discussion

In summary, we reported a design and the fabrication of a
stretchable electrical wiring with crossovers and VIAs to isolated
devices within an elastomeric matrix. The process shares some
similarities with current PCB based fabrication concepts. The goal
was to find a solution to transform these commonly rigid struc-
tures into a stretchable and deformable counterpart. Currently,
only two metallization layers were required from a signal routing
point of view. However, the described method can, in principle,
be scaled to greater numbers of metal layers with local VIAs in
between; a simple solution to prepare “global VIAs”, ie., VIAs
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crossing the entire stack is yet to be found. A systematic study led
to optimized dimensions of VIA that could achieve a 260% sys-
tem level elongation. Still the VIA remains the most fragile ele-
ment from a system level failure point of view.

The recent research trends in stretchable electronics clearly
indicate that this emerging technology will not be limited to only
lab-based prototypes, it will pursue enormous attraction in
commercial products as well. Devices which are already demon-
strated in stretchable electronics proof that the technology will
find many new types of applications and will improve the per-
formance of many existing devices in various manners. Thus, the
limitations remain to be technology related. Stretchable electro-
nics continues to be limited when it comes to a large number of
interconnects or multilayer designs with highly integrated elec-
tronics which cannot be manufactured reliably for long-term
performance using the current state-of-the-art. However, once
fully developed, most electronic system known to mankind could
be stretchable and could morph to take on new interesting form
factors in the future. Many interesting shape adaptive functions
could be demonstrated.

Methods

Fabrication of multilayer integrated stretchable printed circuit boards. A
525 um thick Si wafer (MicroChemicals, Ulm, Germany) was spin coated with a
1 um thick layer of PMMA (AR-P 6510, Allresist, Strausberg, Germany) and with
an 8 um thick layer of PI (PI 2611, HD Microsystem, Neu-Isenburg, Germany) and
cured in a convection oven at 250 °C for 5 hours under N, flow. 50 nm/200 nm
thick layers of Al/Cu was sputter deposited on top of plasma-activated PI layer. The
wafer was then patterned for electroplating by photolithography using a negative
resist (AZ 15NXT, MicroChemicals, Ulm, Germany). A 10 um thick layer of Cu
was electroplated using Cu 100 electrolyte (NB Technologies, Bremen, Germany).
A current density of ~15 mA/cm? was applied to grow a smooth Cu layer at room
temperature. Unwanted Cu and Al were chemically removed using standard Cu
and Al etchant (MicroChemicals, Ulm, Germany).

A 20 um thick photo-patternable polyimide (HD 4100, HD Microsystem, Neu-
Isenburg, Germany) was spin coated, baked at 150 °C for 10 min on a hotplate, and
patterned for VIA openings by photolithography. A subsequent descumming
process (5min, 50 W, 50 SCCM O,) was performed to remove any residues from
the patterned photo-patternable PI in the opening. Then, a 20 um tall VIA of Cu
was electroplated at the openings using the first metal tracks as the seed layer.

Another 20 nm/200 nm of Ti/Cu was sputter deposited as a second
metallization layer and the wafer was then patterned for electroplating by
photolithography. Another 10 um thick layer of Cu was electroplated on top of the
Cu seed layer. A chemical etching process was carried out to etch the unwanted
Ti/Cu. The wafer was then patterned for soldering by photolithography using AZ
1518 positive resist and baked at 120 °C for 10 min. The pads were coated by dip
coating in a solder bath (Indalloy #117, MP. 47 °C, Indium Corp., NY).

Assembly of the SMD components. The SMD components were assembled on the
wafer following a standard pick-and-place technique. The wafer was heated from the
back to melt the solder and then the surface mounted components were assembled.
Device tests were performed on the wafer to check the interconnections and the
device performance was compared before and after the detachment process.

Encapsulation and detachment. The silicone EcoFlex (Smooth-On, EcoFlex 00-
30) resin was prepared by mixing Part A and Part B (1:1 volume ratio) and by
degassing the mixture in a desiccator. The liquid resin of silicone was poured on
top of the substrate with assembled components and cured overnight at room
temperature. First, EcoFlex was removed manually from the edges of the wafer as
EcoFlex is strongly bonded to bare Si. Then the EcoFlex layer was peeled using the
sacrificial PI layer. As a final step, the sacrificial PI peeling layer was etched in ECR
(40 SCCM O, + 10 SCCM CF,, 100 W RF power, 0.025 mbar) for 30 min.

Code availability
The article does not contain any codes. However, the simulation parameters that were
used to support the findings of this study are available from the corresponding author
upon reasonable request.

Data availability

The data that support the findings of this study are available from the corresponding
author upon reasonable request. The source data for all figures are provided with
the paper.
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