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Two methods for reconstructing intragranular strain fields are developed for

scanning three-dimensional X-ray diffraction (3DXRD). The methods are

compared with a third approach where voxels are reconstructed independently

of their neighbours [Hayashi, Setoyama & Seno (2017). Mater. Sci. Forum, 905,

157–164]. The 3D strain field of a tin grain, located within a sample of

approximately 70 grains, is analysed and compared across reconstruction

methods. Implicit assumptions of sub-problem independence, made in the

independent voxel reconstruction method, are demonstrated to introduce bias

and reduce reconstruction accuracy. It is verified that the two proposed methods

remedy these problems by taking the spatial properties of the inverse problem

into account. Improvements in reconstruction quality achieved by the two

proposed methods are further supported by reconstructions using synthetic

diffraction data.

1. Introduction

Modern synchrotrons provide X-ray beams of sufficiently high

brilliance to enable the study of granular and inter-granular

phenomena in dense polycrystalline materials. Relying on the

use of parallel and monochromatic X-rays, Poulsen (2004) and

co-workers developed three-dimensional X-ray diffraction

(3DXRD). The 3DXRD technique provides a nondestructive

way of studying polycrystalline materials on a grain-by-grain

basis. Since then, the method has been refined and adopted in

several synchrotron facilities across the globe.

In 3DXRD, to avoid diffraction spot overlap, the beam

cross section can be reduced, thus limiting the number of

simultaneously illuminated grains. The sample must then be

rotated and translated to multiple positions to cover a full

volume, a procedure which is sometimes known under the

name of scanning 3DXRD (Hayashi et al., 2015). If the beam

cross section is small enough, diffraction originating from sub-

parts of grains is measured. This opens up the possibility to

reconstruct intragranular variations in the crystal structure.

For near-field 3DXRD measurements, using a line beam,

suggestions on intragranular orientation reconstructions were

first put forth by Rodek et al. (2007), as an extension to

previous work on discrete grain mapping (Alpers et al., 2006).

The method was refined by Kulshreshth et al. (2009) to

provide access to the intragranular orientation map on a per-

voxel basis. None of this work, however, considers intra-

granular strain, and although it is well known that grain

average strain can be determined from far-field 3DXRD

measurements, only recently has scanning 3DXRD been used
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to retrieve intragranular strain variations (Hayashi et al., 2017;

Hektor et al., 2019). The work of Hayashi et al. (2017) is the

first suggestion on how to perform the reconstruction of

intragranular strain variations from far-field measurements.

The method refines the crystal structure at every point by

fitting the orientation and lattice parameters of a single crystal

to the subset of reflections that illuminate the point. However,

several problems exist with this approach; we have found it

may produce artefacts related to both strain state and grain

orientation (Henningsson, 2019).

It has also been suggested, in the case of powder diffraction,

that the full strain tensor can be retrieved using filtered back

projection with a sufficient number of measurement directions

(Lionheart & Withers, 2015). Similar ideas could, perhaps, be

applied to scanning 3DXRD, which measures discrete

diffraction events rather than powder rings. If the full strain

tensor is to be retrieved via back projection, it would seem

that rotations about several different axes are necessary. The

time constraints, which are already severe for 3D scanning

methods, make such a technique unfeasible. Instead, this

paper explores reconstruction techniques that utilize infor-

mation gathered from rotations about a single axis. As pointed

out by Hendriks et al. (2019), the information gathered from

rotations about a single axis might be enough to accurately

reconstruct the strain distribution. We will present two

methods that are capable of reconstructing an intragranular

strain tensor field from scanning 3DXRD data. We compare

our results with an implementation of the approach suggested

by Hayashi et al. (2017) and show how our developments

improve the quality of the reconstruction.

Sections 2 and 3 describe the experimental setup and data

preprocessing. The frameworks for all three reconstruction

approaches are then presented in sections 4, 5 and 6. Recon-

structions of the 3D strain field present in a columnar Sn grain

embedded in a polycrystalline sample [data originating from

the study of Hektor et al. (2019)], together with reconstruc-

tions from synthetic diffraction data and error analysis, are

presented in Section 7. Finally, the results and their implica-

tions are discussed in Section 8.

2. Experimental setup

For scanning 3DXRD, a sample is mounted on an ! turntable

that carries a rigidly attached sample coordinate system,

subscripted ! (Fig. 1).

The sample coordinate system is associated with a labora-

tory coordinate system, subscripted l, which serves as a fixed

reference point in all measurements. Both of these coordinate

systems are Cartesian, and the xl axis is taken as parallel with

the incident X-ray beam. During acquisition, the turntable

holding the sample is free to rotate around the z! axis and to

translate along the fixed transverse beam directions yl and zl.

For alignment, the turntable has the freedom to translate in

three dimensions, (xl; yl; zl), as well as to rotate around each of

the three axes (x!; y!; z!). Initially, when no motors of the

turntable have been used, the laboratory and sample coordi-

nate systems are by definition aligned. As the detector, situ-

ated a distance D from the sample, will in general not be

mounted perfectly perpendicular to the incoming X-ray beam,

an initial calibration of detector tilt and distance is needed.

The detector tilt in relation to yl and z!, as well as the wedge

angle between zl and w!, was calibrated following the proce-

dure described in the documentation of the software package

ImageD11 (Wright, 2005). For further discussion see e.g.

Oddershede et al. (2010) and Borbely et al. (2014). The

intersection between beam centre and detector forms the

origin of the 2D Cartesian coordinate system yd–zd. The

relation between a vector, v, in the laboratory coordinate

system and in the sample system now becomes

vl ¼ Xv! ¼

cosð!Þ � sinð!Þ 0

sinð!Þ cosð!Þ 0

0 0 1

2
4

3
5v!: ð1Þ

Defining � as the azimuthal angle measured from zd to a

considered diffraction peak, the geometry of Fig. 1 gives the

scattering vector, Gl, in the laboratory frame as

Gl ¼
2�

�

cosð2�Þ � 1

� sinð2�Þ sinð�Þ
sinð2�Þ cosð�Þ

2
4

3
5; ð2Þ

where � is the X-ray wavelength and � the Bragg scattering

angle. On the basis of the conventions of Busing & Levy

(1967) together with the modified definitions given by Laur-

idsen et al. (2001), the transformation of a scattering vector

from reciprocal space, subscripted hkl, to the laboratory frame

is

Gl ¼ X UB Ghkl; ð3Þ

where the columns of the UB matrix are the reciprocal space

lattice vectors. Note that in equation (3), in contrast to

Lauridsen et al. (2001), we refer here to a point within a grain

rather than the grain average properties, similarly to the work

of Alpers et al. (2006). Furthermore, to avoid confusion, it

should be noted that, in the work of Lauridsen et al. (2001), an

additional coordinate system is used, allowing the sample

coordinate system to not be aligned with the ! coordinate

system. In our formulation, however, we have taken these

coordinate systems to be aligned, and thus the ! system and

sample system are one and the same thing. Naturally, the
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Figure 1
Experimental setup of scanning 3DXRD. The ! turntable holding the
sample is rotated around z! and translated in the fixed ylzl plane during
acquisition.



choice of coordinate systems is arbitrary, as long as the

transformation operation into the laboratory system is known.

To acquire information on an intragranular length scale the

X-ray beam must not illuminate the entire grain during

diffraction. The spatial resolution will be limited by the X-ray

beam size and the number of different angular projections that

can be recorded. To collect data from the entire volume of

interest, the turntable, which holds the sample, is translated

across the X-ray beam. This means that the rotation axis, z!, is

given a new position in relation to the laboratory coordinate

system. At each position the sample is rotated continuously

about the z! axis and images are integrated and read out every

d! degrees. The recorded 2D diffraction pattern at each yl, zl,

! setting is the integrated intensity measured over the step

length, d!. In the following we refer to the collection of frames

taken over a range of ! but at a single yl, zl setting as a ‘frame-

stack’. A point in the frame-stack is defined either by the three

diffraction angles (�, �, !) of Fig. 1 or by use of the detector

plane coordinates (yd, zd, !). The dimensionality of the

complete data set is 5D (sample stage position yl, zl, ! and

diffraction angles �, �).

3. Data preprocessing

Before strain reconstruction can take place, the 2D diffraction

patterns need to be processed to determine the average

properties of the grains. The following four steps of analysis

summarize the preprocessing:

(1) Image processing: spatial corrections, background

subtraction, thresholding and peak centre-of-mass extraction.

(2) Calibration of experimental geometry and determina-

tion of scattering vectors G.

(3) Peak/grain indexing.

(4) Grain shape reconstruction.

Because the experimental data originated from a

FReLoN4M detector, spatial corrections are necessary. These

were performed using a dedicated lookup table provided by

the ESRF ID11 beamline [see Borbely et al. (2014) for further

discussion]. Background correction was then performed, for

each frame-stack, on a per-pixel basis, such that for each

individual pixel the minimum intensity recorded by the pixel,

throughout the frame-stack, was subtracted.

To calculate peak centre-of-mass coordinates, the frame-

stack was thresholded and analysed as a volume. Each

diffraction peak was extended to a 3D object and assigned the

yd, zd, ! coordinates of the centre of mass of the 3D intensity

distribution. Scattering vectors and Bragg angles can be

deduced from the peak centre of mass, after calibration of the

experimental setup.

Peak/grain indexing is the procedure to find a set of crys-

tallographic orientations, strains and grain centroid positions

that together can correctly account for the observed diffrac-

tion data. Grains were indexed using the indexing algorithm in

ImageD11. To fit an average set of unit-cell parameters to

individual grains, methods analogous to those of Oddershede

et al. (2010) and Edmiston et al. (2011) were used.

There are several ways to reconstruct the grain shapes from

the diffraction data. In this paper we have used filtered back

projection, as described by Poulsen & Schmidt (2003). The

sample volume is reconstructed by computing one slice in zl at

a time and forming, for each grain, a sinogram of diffracted

intensities. The inverse Radon transform of the sinogram

provides an approximation of the grain shapes and location in

the slice. To define grain boundaries, each grain shape was

thresholded using a threshold proportional to the most intense

voxel within the grain. Overlap between grains was resolved

by selecting the grain with the highest intensity at each conflict

voxel as the occupant of that voxel. Note that discrete

reconstruction methods could provide higher-quality grain

maps (cf. Alpers et al., 2006; Rodek et al., 2007; Kulshreshth et

al., 2009). In this paper, however, we had access to a high

number of reflections per grain (>100), and thus the filtered

back projection approach performed satisfactorily.

In summary, after preprocessing the diffraction data, we are

left with

(1) a list of peak positions (yd, zd, !) with corresponding

sample stage (yl, zl) settings;

(2) a list of grain average orientations and strains;

(3) a mapping of diffraction peaks to grains;

(4) a voxelated volume describing the grain shapes.

Assuming that the above quantities are available, we

proceed, in sections 4–6, to describe three methods for intra-

granular strain reconstruction. Each of these methods relies

on the minimization of a cost function. The starting guess in

the minimization procedure is taken as the grain average

properties emerging from the preprocessing steps described

above.

4. Single-crystal refinement (SCR)

It has previously been suggested by Hayashi et al. (2017) that

the lattice state at a point P ¼ ðx!; y!; z!Þ within a grain can

be approximated by refining the lattice parameters with

respect to the subset of diffraction peaks which intersect P.

The sample stage translation, �yl, that will ensure that P is

illuminated at a given ! is found via rotation around the z!
axis:

�ylð!Þ ¼ x! sinð!Þ þ y! cosð!Þ: ð4Þ

By use of equation (4) the subset of measured diffraction

peaks that include scattering from P can be extracted.

Forward-modelled peak positions, produced using a single-

crystal scattering model, are then fitted to the measured peak

centre-of-mass coordinates. The resulting lattice orientation

and strain tensor are assigned to point P.

For a given lattice orientation (U), unit cell (B) and Miller

plane (Ghkl), the resulting forward-modelled peak position,

expressed in terms of the angles �, �, !, is found by combining

equations (2) and (3).

In this paper we implement the above concepts, introducing

weights to the errors formed between observed and modelled

peak positions. The weighted errors (��, ��, �!) are taken as
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�! ¼ W!ð!o � !mÞ where W! ¼ 2=d!; ð5Þ

�� ¼ W2�ð2�o � 2�mÞ where W2� ¼ D=spix; ð6Þ

�� ¼ W�ð�o � �mÞ where W� ¼ W2� tan 2�: ð7Þ

The subscripts o and m stand for observed and modelled,

respectively, D is the detector-to-sample distance, and spix is

the detector pixel size. Note that weighting is essential to

account for the experimental resolution being variable with

the Bragg angle, �, and dependent on the selected step size d!.

We assign to P the UB matrix [equation (3)] that minimizes

the cost function

S ¼
PK
i¼1

ð�!2
i þ��2

i þ��2
i Þ: ð8Þ

The sum is here taken over all reflections, K, that were

assigned to P via equation (4). From the resulting optimal UB

matrix, strain can be computed, given some reference lattice

parameters that define a relaxed unit cell.

The minimization of (8) was performed using a least-

squares algorithm provided in the Python library SciPy (Jones

et al., 2001). The implementation was based on the ImageD11

software and can be found at (https://github.com/FABLE-

3DXRD/S3DXRD).

The full strain tensor field is retrieved by repeating the

single-crystal refinement procedure for all points on a uniform

grid with spacing equal to the beam width. As pointed out by

Hayashi et al. (2015), the best possible spatial resolution of this

approach is limited by double the beam width. This is apparent

by considering that equation (4) is fulfilled as long as any part

of the beam intersects P.

4.1. Inaccuracy and bias

The key assumption in SCR is that measurements of single

points within the volume of a grain can be made. An observed

diffraction peak is, however, the result of a volume integral

taken over the region of the grain intersected by the beam.

The properties of a diffraction peak (�, �, !) are therefore

average properties, measured over a sub-volume of the grain.

In fact, the reconstruction of strain and lattice orientation is a

tomography problem, and in general the solution to a ray

transform cannot be replaced by a point-by-point fit. By

neglecting this fact, SCR will introduce a bias in the recon-

structed lattice. Letting the operator L map from the

combined strain-orientation field, fðxÞ, to measurements, and

letting V denote the volume of an integration region R, we

illustrate the problem in Fig. 2.

When integration is performed over an illuminated region,

the difference between a point measurement, L½fðPÞ�, and the

integrated value, ð1=VÞ
R
R
L½fðPÞ� dx, will naturally depend on

the distribution of the integrated field. In the case where the

integrated field is uniform over the illuminated region, the

difference will be zero. If, however, the field varies over the

illuminated region, the difference will in general not be zero. If

fðxÞ displays sharp features, these will be especially difficult to

capture. Likewise, if gradients are present, their magnitudes

will in general be reduced, and this damping will be some

complicated function of fðxÞ and the distribution of

measurements. As we will demonstrate through simulations

later (Section 7), the magnitude of these errors can be severe,

which motivates the development of new reconstruction

methods that respect the tomographic nature of the problem

in hand.

5. Polycrystal refinement (PCR)

To remedy the bias of SCR, we seek to formulate a recon-

struction method that takes the spatial variation across the

grain into account. We propose to discard equation (4) and

instead consider all points of the grain simultaneously. This is

made possible by modelling diffraction not from one single

crystal but from a set of single crystals, similarly to the

approach developed by Rodek et al. (2007). Each crystal is

made to occupy a discrete voxel within the grain, as illustrated

in Fig. 3.

For a given yl, zl, ! setting, all voxels within the grain slice

intersected by the beam take part in diffraction. Scattering

vectors are assigned using equation (3) and propagated to the

detector plane, resulting in clusters of predicted single-crystal

diffraction peaks. To form a peak centre-of-mass coordinate
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Figure 2
X-ray measurement from a region R in a grain experiencing a non-
uniform vector field, fðx), of strain and lattice orientation (illustrated by
colour variation). The measured signal from R is related to the integral
over the intersected regionR, which in general is different from the state
at point P.

Figure 3
Diffraction is modelled as a set of cubic single crystals. Each crystal
carries an independent lattice orientation and strain tensor (illustrated as
colour variation).



from the clustered, simulated, diffraction peaks, the scattered

intensities must be taken into account. The intensity scattered

from a single crystal is, in general, a function of several vari-

ables. However, as the peak centre of mass is sought, only the

intensity variation within the peak need be captured. The

volume formed by the intersection of beam and voxel is

proportional to the number of illuminated unit cells of the

single crystal, which in turn is believed to be what dominates

intensity variation within a single peak. Using the volume

fractions as intensity weights, each peak cluster can be

converted to a peak position, (yd, zd, !). More details on the

forward model are provided by Henningsson (2019).

Similarly to SCR, the cost function must be a measure of the

mismatch between the observed and modelled diffraction

data. Using the Euclidean norm of the peak centre-of-mass

coordinates we take the cost as

P ¼ 1
2

PM
j¼1

ð�y2
dj þ�z2

dj þ�!2
j Þ; ð9Þ

where �yd, �zd and �! are the differences between observed

and modelled peak positions expressed in units of pixels and

rotation step lengths, d!, respectively. The sum in equation (9)

ranges over M, defined as the total number of observed

diffraction peaks of the grain. Notice that no weights with

respect to detector position are necessary in (9), as the

involved quantities are expressed in units of pixels and rota-

tion step lengths. Instead, in this formulation the modelled and

measured diffraction patterns are compared directly using the

in-plane detector variables yd and zd together with the

normalized rotation angle !/d!. Therefore, no discrimination

should be made, but all modelled peaks should be considered

to fit equally well to the data, as the weighting is already built

in to the forward model. Naturally, other factors might also be

considered to be included in the weighting, such as photon

counts and peak shapes (cf. Edmiston et al., 2011). However,

in this work, weighting has been limited to detector positions

of the diffraction peaks.

The orientation and strain tensor of each single-crystal

voxel composing the reconstructed grain slice is found by

minimizing the cost function P. The minimization could be

done with respect to Euler angles and lattice parameters, the

nine components of the UB matrix, or Euler angles and the six

strain tensor components. In this paper we used the Euler

angles and the six strain tensor components. We emphasize

that in PCR, like in SCR, the Jacobian of the cost function is

determined numerically and the inverse problem is solved by

iterative forward modelling. The computational effort of

finding the Jacobian can be greatly reduced by using a kine-

matic approximation such that each voxel scatters indepen-

dently of its neighbours. This means that the derivative of P

with respect to a single variable, x, can be deduced from the

current model by replacing only the scattered rays of the voxel

affected by the perturbation in x. Here the cost (9) was

minimized using a standard steepest-descent method (Barzilai

& Borwein, 1988) together with a three-point finite difference

scheme.

6. Algebraic strain refinement (ASR)

Polycrystal refinement succeeds in accounting for the spatial

dependency of the inverse problem. However, the computa-

tional efficiency and complexity of implementation can be

improved. Especially desirable would be an easy and efficient

implementation of constraints to suppress high-frequency

variations in the strain tensor field, emerging from the mini-

mization of equation (9). Such a regularization incorporates

the assumption that the strain at a point in the grain is highly

correlated to the strain at neighbouring points. To formulate

such a method, we drop the concept of a forward model, and

instead we seek to find a linear system of equations that will fit

a discretized strain-orientation field to diffraction data

directly.

In the pursuit of grain average properties, Poulsen et al.

(2001) suggested that equation (3) could be used to simulta-

neously fit strain and orientation for a single grain. In scanning

3DXRD, each measurement provides information on the

average scattering vector, �GG!, in the region of the grain illu-

minated by the beam. To accommodate a matrix formulation,

linear in the components of the UB matrix, we recast equation

(3) as

G! ¼ UB Ghkl ¼ ho; ð10Þ

where h is a 3 � 9 matrix containing the Miller indices (h, k, l)

and o is a 9 � 1 vector that holds the components of the UB

matrix, UBij, i.e.

h ¼

h 0 0

k 0 0

l 0 0

0 h 0

0 k 0

0 l 0

0 0 h

0 0 k

0 0 l

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

T

; o ¼

UB11

UB12

UB13

UB21

UB22

UB23

UB31

UB32

UB33

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

T

: ð11Þ

Let us now consider an illuminated region, R, formed by the

intersection between beam and grain. Assuming that all points

in R scatter in the rotation interval d!, the average scattering

vector becomes

�GG! ¼ ð1=VtotÞ
R
R

hoðx!; y!; z!Þ dx! dy! dz!; ð12Þ

where

Vtot ¼
R
R

dx! dy! dz! ð13Þ

and o is allowed to vary inR. Discretizing the grain into voxels

and approximating o as constant over each voxel, equation

(12) gives

�GG! ’ ð1=VtotÞ
PN
i¼1

Vihoi; ð14Þ

where N is the number of voxels and Vi the volume of inter-

section between R and voxel number i. If all observed
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scattering vectors of a grain are considered simultaneously, a

matrix formulation is achieved:

H|{z}
3M�9N

u|{z}
9N�1

¼ g|{z}
3M�1

; ð15Þ

where

H ¼

ðV1=V1
totÞh

1 � � � ðVN=V1
totÞh

1

..

. . .
. ..

.

ðV1=VM
totÞh

M � � � ðVN=VM
totÞh

M

2
664

3
775;

u ¼

o1

..

.

oN

0
BB@

1
CCA; g ¼

�GG1
!

..

.

�GGM
!

0
BB@

1
CCA;

ð16Þ

and the total number of measured scattering vectors is M. By

solving equation (15) in a least-squares sense, the orientation

and strain state of the grain can be retrieved. Before doing so,

however, the incorporation of weights to account for variable

experimental resolution is needed. Additionally, some

constraint of smoothness to the strain is required. These seem

possible to derive and impose, but not trivial to implement. If

the constraints are to be formulated in terms of absolute

smoothness of strain, the conversion into o makes them

nonlinear. Although methods for solving such problems exist,

they seem to scale poorly with the number of unknowns unless

the derivatives of the constraints can be provided analytically.

Therefore we choose a simpler formulation, where the matrix

equation is linear in the strain tensor components directly.

This is possible by converting the peak centre-of-mass coor-

dinates into average strain measurements.

6.1. Peak position to average strain

As pointed out by Poulsen et al. (2001) and Margulies et al.

(2002), for hard X-rays and small Bragg angles the strain

associated with a reflection is well approximated by

�""m ¼
sinð�rÞ � sinð�mÞ

sinð�mÞ
; ð17Þ

where �m is the measured angle of diffraction and �r is the

corresponding angle of diffraction expected for a relaxed

reference state. The scalar measured strain, �""m, is an average

property of the region R, and as explained by Lionheart &

Withers (2015), it exists in the direction perpendicular to the

diffracting Miller planes.

Considering the definition of the scattering vector,

Gl ¼ s� s0, illustrated in Fig. 4, a unit vector, �nn!, in the strain

direction is given as

�nn! ¼ XTGl=kGlk: ð18Þ

Using equations (17) and (18), each measured peak position

can be converted to a corresponding average strain, �""m, and

average strain direction, �nn!. Considering multiple measure-

ments from a single grain, the strain tensor can be deduced

from the two quantities ( �""m; �nn!), as laid out by Poulsen et al.

(2001) and Margulies et al. (2002). In their original work, part

of the strain tensor was retrieved as a grain average property.

Here, we seek to extend these concepts to the scanning

3DXRD case and compute the full strain tensor field, as it

varies spatially within a grain.

6.2. Matrix formulation

In analogy with equation (12), we have

�""m ¼ ð1=VtotÞ
R
R

�nnT
!E! �nn! dx! dy! dz!; ð19Þ

where E! is the strain tensor at point ðx!; y!; z!Þ given in the !
coordinate system. The discrete form becomes

�""m ’ ð1=VtotÞ
PN
i¼1

Vi �nn
T
!Ei �nn!: ð20Þ

Considering all measured scattering vectors of a grain we can

introduce a projection matrix, A, that projects a given strain

tensor field, specified by the vector s, into average strain

measurements, �""m. If the measured average strains are stored

in the vector m, we seek the solution, s, to the linear equation

system

A|{z}
M�6N

s|{z}
6N�1

¼ m|{z}
M�1

: ð21Þ

Explicitly, the matrices A, s and m take the form

A ¼

ðV1
1=V1

totÞa
1 � � � ðV1

N=V1
totÞa

1

..

. . .
. ..

.

ðVM
1 =VM

totÞa
M � � � ðVM

N =VM
totÞa

M

2
664

3
775;

s ¼

���1

..

.

���N

0
BB@

1
CCA; m ¼

�""1

..

.

�""M

0
BB@

1
CCA;

ð22Þ

where a contains the components of the strain direction �nn! as

a ¼ n2
1 n2

2 n2
3 2n2n3 2n1n3 2n1n2

� �
ð23Þ

and ��� contains the six independent strain components of a

voxel in Voigt notation:

��� ¼ E11 E22 E33 E23 E13 E12

� �T
: ð24Þ
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Figure 4
Bragg scattering from a 2D lattice. The direction in which the average
strain �""m exists is parallel to Gl.



6.3. Weighting

Since equation (21) is formulated in terms of average strain,

which is a function of diffraction angle �, the weights should be

related to the measurement uncertainty in �. For a given

measurement we choose here the weight, w, as

w ¼ �r
@ �""m

@r

� ��1

; ð25Þ

where �r is the measurement uncertainty in the radial

direction of the detector, r, and @ �""m=@r can be found

numerically from equation (17). The value of �r can be

extracted from peak-by-peak fits (Edmiston et al., 2011). In

the specific cases presented in this paper, we make a simpli-

fication and assume a constant value �r = 0.1 pixels (Borbely

et al., 2014). This is motivated by a low-angle approximation

for high-energy diffraction. In the work presented here, the

maximum angle of diffraction was 2� = 16�. The constant value

selected for �r will have no impact on the weighted solution

to the problem. However, if one seeks to evaluate the fit

quality of computed strains, s, to data, m, a selection of �r is

necessary to indicate the error margin of the measurements.

In matrix format we now have

wAs ¼ wm; ð26Þ

where w is a diagonal matrix holding the weights.

6.4. Constraints

If the least-squares solution to (26) is sought, the corre-

sponding cost function could be formulated as

A ¼ 1
2 jjwAs� wmjj22; ð27Þ

where ||�||2 is the Euclidean norm. We formulate the desired

smoothness constraint for each component of strain, Eij, as

b1 � �Eijðx!; y!; z!Þ � b2; ð28Þ

where �Eij(x!, y!, z!) is the difference in strain between two

neighbouring voxels. The fixed bounds b1 and b2 provide a

lower and upper bound, respectively, and therefore regulate

the maximum change in strain between two voxels. Neigh-

bours are here defined as two voxels in a grain slice that share

at least one corner point. The minimization of (27) under the

constraint of (28) can be performed in several ways. Here, we

have used a trust-region algorithm described by Byrd et al.

(1999) and implemented in the Python library SciPy. Whatever

iterative scheme is deployed, it is emphasized that both the

Jacobian and the Hessian of the problem are known analyti-

cally, something which simplifies the minimization of

equation (27).

7. Results

The strain state of a columnar tin (Sn) grain was reconstructed

with the presented methods: SCR, PCR and ASR. The

diffraction data originated from the experiment described by

Hektor et al. (2019) and were collected at the nanostation of

the ESRF ID11 synchrotron beamline. The grain selected for

reconstruction (Fig. 5) was chosen because it exhibited a strain

gradient, found in previous work using the SCR method. In

principle, there is no hindrance to performing reconstructions

for full sample volumes, featuring many grains. However, the

focus of this article is to validate the theory and approxima-

tions underlying the presented reconstruction methods. For

further practical applications the implementations should be

optimized, and we note that when reconstructing many grains

simultaneously all three methods are easily run in parallel.

Relevant experimental parameters can be found in Table 1.

Preprocessing of the diffraction data was performed

primarily using the FABLE software suite (Sørensen et al.,

2012). The grain shapes were deduced using filtered back

projection as discussed in Section 3. Implementation of the

back projection is available at https://github.com/FABLE-

3DXRD/S3DXRD, together with implementations of the

three reconstruction algorithms.

Owing to time constraints, the experiment was performed

with a step size of 0.5 mm in z, which is to be compared with

the beam size of 0.25 mm. Linear interpolation between

reconstructed slices has thus been performed in the presen-

tation of 3D strain fields. Further specifics regarding the

sample preparation, background of the experiment and

diffraction data preprocessing are given by Hektor et al.

(2019).

As strain is a measure of relative displacement, a reference

configuration must be selected. Here we have used the lattice

parameters of Table 2 to define a relaxed Sn unit cell. These
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Figure 5
Sample cross section at z = 0 of the sample scanned by Hektor et al.
(2019), produced via filtered back projection. The grains are randomly
coloured by index, with the grain selected for strain reconstruction
highlighted. The voxel dimension is 0.25 � 0.25 � 0.25 mm.

Table 1
Experimental parameters.

Wavelength 0.22 Å
Sample-to-detector distance 163 mm
Dectector pixel size 50 � 50 mm
Detector dimensions 2048 � 2048 pixels
Beam size 0.25 � 0.25 mm
! rotation interval [0�, 180�]
! step length 1�



parameters represent the sample average lattice parameters,

calibrated during grain indexing using the ImageD11 software.

All strain fields presented in this paper are given in the !
coordinate system. In ASR, the constraint imposed on the

strain difference, �Eij, between two neighbouring voxels was

taken as

j�Eijj< 5� 10�4: ð29Þ

The resulting reconstructions of the selected grain are

presented in Fig. 6.

The agreement between the reconstructions provides

important information on the accuracy of the methods. A set

of residual fields are introduced to illustrate this. These are

defined as the difference in reconstructed strain fields between

the three methods. Three such fields can be formed,

subtracting the results of SCR from the results of ASR and

PCR, and the results of PCR from those of ASR. The Eucli-

dean norms of these residual fields are presented in Fig. 7 and

provide an overview measure of agreement between the three

methods.

Regarding ASR, the fit of the solution, s, to measurements,

m, can be evaluated by analysing individual diffraction peaks.
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Table 2
Relaxed reference lattice parameters.

a b c � � 	

5.81127 Å 5.81127 Å 3.17320 Å 90.0� 90.0� 90.0�

Figure 6
Reconstruction of axial strain tensor components, E33 in (a) and E11 in
(b), for a tin grain. The result is seen to vary with reconstruction method
from left to right. A smoothing filter has been applied to the topology of
the 3D grain surface for visualization purposes. Two-dimensional cross
sections, at z = 0, are illustrated, with the method varying from left to
right.

Figure 7
Normalized Euclidean norms of the difference in reconstructed strain
compared between SCR, PCR and ASR. PCR-SCR corresponds to
taking the solution of SCR at every point and subtracting it from the
solution of PCR etc. The data correspond to the grain in Fig. 6.

Figure 8
Subsets of computed average strains (As) compared with subsets of
measured average strains (m) for ASR. Each subplot corresponds to the
strain profile of a single selected diffraction peak. This means that
different subsets of the scalar instances of the vectors As and m are
displayed in the six subplots. The data originate from the grain in Fig. 6,
where a total number of 321 diffraction peaks were used for fitting. The
error bars were computed as the reciprocal of the weights in equation
(25), with �r = 0.1.



Such analysis can also serve as verification that any recon-

structed strain gradients are indeed present in the underlying

data. In Fig. 8 the product As is plotted against the measured

average strains, m, for six selected diffraction peaks out of 321

used peaks, at grain slice zl = 0. The peaks were selected to

give a good spread in �, ! and to have a relatively high

diffraction angle, �, since such peaks have a higher influence

(weight) on the solution of the least-squares problem. Each

presented diffraction peak is associated with a set of Miller

indices (h, k, l) and an angular setting (�, �, !), as indicated in

the subplots of Fig. 8. As the grain is translated across the

X-ray beam the Miller planes experiencing a favourable Bragg

condition will diffract, creating a profile of average strain

along the beam. Multiplying the constant uncertainty in peak

position, �r, by the strain sensitivity, @ �""m=@r, provides an

estimate of the local strain uncertainty of each measurement

[i.e. the inverse of the weights in equation (25)]. To illustrate

this, error bars have been put on the measurement points in

Fig. 8. The expected uncertainty was taken as �r = 0.1 pixels,

in accordance with the work of Borbely et al. (2014).

To evaluate the impact of noise on the reconstructed strain

fields, the peak positions were perturbed and a secondary

reconstruction performed. Noise was drawn from a normal

distribution with expectation value 0 and standard deviation 
:


! ¼ 0:5�; 
yd
¼ 0:5 pixels; 
zd

¼ 0:5 pixels: ð30Þ

It is important to appreciate that noise is introduced into the

peak centre-of-mass coordinates rather than the raw detector

images. The peak positions are normally computed by

combining several pixel intensities, and thus a given pertur-

bation of the peak position will, in general, correspond to a

greater measurement noise in the raw data. However, to

investigate the worst-case scenario, when a diffraction peak is

composed of a single pixel, we select the noise as stated in

equation (30). Residual fields were defined as the difference

between reconstructed strain fields using the perturbed and

original peak centre-of-mass positions, respectively. An esti-

mate of the propagated error is retrieved by down-sampling

the residual fields into 2 � 2 voxel sub-regions. If instead the

field is not down-sampled the propagated error will appear
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Figure 9
Error in strain fields due to normally distributed noise in peak positions.
Outliers are defined by deviations from the mean value by more than
	1.5 times the interquartile range. The data correspond to the grain in
Fig. 6.

Figure 10
Input topology, strain state and mosaicity of a simulated tin grain slice
comprising a total of 109 voxels. In both A and B all three Euler angles
(’1, �, ’2) vary linearly with x, from 0� (left) to 0.5� (right).

Figure 11
Reconstruction of axial strain tensor components corresponding to the
two simulations presented in Fig. 10. The result is seen to vary with
reconstruction method from left to right. The strain along the central
vertical line of the grain is illustrated as line plots for each of the
simulations.



greater. However, the resolution of the SCR method is two

times the beam width as discussed previously. Furthermore, it

is reasonable to define error in terms of low-frequency

variations in the strain field. The down-sampled residual fields

are presented as a box plot in Fig. 9, including all three

methods and six strain components.

Finally, we present reconstructions of synthetic diffraction

data produced using the forward model coupled to PCR.

Before peak centre-of-mass coordinates were computed, the

modelled data were binned by d! and detector pixel size. The

parameters of the simulations were taken to equal those of

Tables 1 and 2 and equation (29). Diffraction from an Sn slice

was simulated two separate times, featuring a linear strain

gradient in either E33 or E11. The input to these two simula-

tions is presented in Fig. 10.

To mimic a mosaic spread, a gradient in each of the three

Euler angles (’1, �, ’2) was introduced. Starting from a crystal

orientation aligned with the ! coordinate system, ’1 = � = ’2 =

0, the gradient was made to increase in the positive x! direc-

tion by uniformly increasing all of the Euler angles to a

maximum of ’1 = � = ’2 = 0.5�. The results of the two

simulations are presented in Fig. 11.

To investigate the reconstruction of more complex strain

states, a third simulation has been performed (Appendix A).

This simulation features strain in all six components of the

strain tensor and can thus provide insight into the recon-

struction of shear strains, which have not been covered much

in the above.

8. Discussion

Fig. 7 indicates that the greatest discrepancy in reconstructed

strain between the three methods is found in the E11 and E33

strain components. Turning first to the E33 strain, we find that

ASR and PCR are in agreement while the reconstruction of

SCR deviates. Indeed, the 3D reconstructions in Fig. 6(a)

reveal reduced amplitudes for SCR. As discussed in Section 4,

this is explained by the invalid assumption of sub-problem

independence made in SCR. Reflections probing the E33 strain

are available from all ! angles, and thus the single-crystal fit to

a point will be influenced by points across the entire grain.

Simulation A, presented in Fig. 11, further implies that ASR

and PCR here provide more accurate descriptions of the strain

state than SCR.

Regarding the E11 strain, Fig. 7 shows a higher level of

agreement between PCR and SCR than between ASR and

PCR. This is an example of when the assumption of sub-

problem independence happens to work. Examining Fig. 6(b)

we see a strain gradient with a significant component along the

x axis. This strain will be probed mostly at ! ’ 90�, i.e.

perpendicular to the gradient direction. This means that the

single-crystal fit to any point will be influenced mostly by

points featuring the same E11 strain. If instead the E11 strain

state had featured a gradient with a significant component in

the y direction, SCR would again break down. This is verified

by simulation B, also presented in Fig. 11, where the E11 strain

gradient has been selected to align with the y direction instead

of the x direction.

Apart from the confirmation of bias in SCR, which is

related to the direction of the gradient, we also note that

simulations A and B imply that the E33 strain component is

more retrievable than the E11 component for ASR and PCR.

To understand this we emphasize that, in general, measure-

ments of a specific strain component are not uniformly

sampled. In this case, although the strain in the direction of the

rotation axis, E33, has an equal chance of being sampled at any

given ! setting, the strain along the beam direction, E11, will

mostly be probed close to ! = 90�. Therefore, the recon-

struction of the E11 strain will be a less well posed tomography

problem than the reconstruction of E33. This was also noted by

Margulies et al. (2002).

The diffraction peak analysis presented in Fig. 8 verifies that

the reconstructed strain gradients are indeed present in the

underlying data. In regards to the fit quality of ASR, we draw

attention to the use of absolute strains in the reconstruction

procedure. If the average position of each diffraction peak had

been subtracted before reconstruction, it is possible that some

systematic errors could be avoided. However, such a method

would unfortunately not be able to give approximations to the

absolute values of strain but would be limited to recon-

structing relative strain variations within the grains.

The interquartile range of the propagated errors in Fig. 9 is

approximately 2 � 10�4 or lower for all three methods. The

elevated sensitivity of ASR and PCR compared with SCR is

believed to be related to the incorporation of volume weights.

In ASR and PCR, few reflections can carry a high weight in

relation to a strain component for a voxel. This leads to a

diminished probability for noise to cancel out between

reflections. In SCR, all reflections related to a voxel are

equally weighted in terms of illuminated voxel volume, and

thus the perturbations in peak position are more likely to

cancel out. This is a necessary deficit of PCR and ASR, as any

method taking the spatial dependence of the problem into

account must also incorporate some sort of weighting based on

illuminated fractions. Therefore, it would seem that the

precision of SCR, seen as compact distributions in Fig. 9, is a

symptom of the damping of the strain field.

It should be recognized that the inverse problem being

undertaken features coupling between strain and orientation.

This means that a strain state can give diffraction peak posi-

tion shifts not only in 2� but also in ! and �. PCR aims to

recover both orientation and strain, while ASR assumes a

uniform orientation within the grain. However, Figs. 11, 14 and

15 (see Appendix A) indicate that the input orientation

gradient has a small impact on the strain reconstruction of

both ASR and PCR. In fact, the strain reconstruction of ASR

is more accurate than that of PCR. This is promising as ASR is

both computationally faster and easier to implement than

PCR.

For further work it could be interesting to incorporate a

compatibility or equilibrium constraint into the strain recon-

struction, similar to what is suggested by Jidling et al. (2018)

and for equilibrium constraints demonstrated through simu-

lations of bulk materials by Hendriks et al. (2019). Such

constraints enjoy a simple physical interpretation and would in
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this sense be a superior choice over the smoothness constraint

adopted in ASR. Furthermore, in the case of considerable

plastic deformation, when the crystals display abrupt lattice

discontinuities, the validity of the smoothness constraint could

be questioned.

Additionally, the PCR method suggests that more detailed

information in the raw data could be taken into account since

the driving model produces synthetic diffraction patterns. For

instance, the match between peak shapes could be used

instead of peak centre-of-mass coordinates to enhance accu-

racy. This could be performed by modifying the cost function

(9) to incorporate the activated pixel pattern, similarly to

Suter et al. (2006) and Li & Suter (2013).

9. Conclusions

Work towards reconstructing the strain tensor variation on an

intragranular level for scanning 3DXRD experiments is

presented. It is established that reconstruction methods

should take the spatial (tomographic) properties of the inverse

problem into account. Through simulations, the PCR and

ASR methods developed in this paper have been shown to

provide more consistent approximations to the input strain

tensor fields than the previously suggested method, SCR. The

ASR method operates on the assumption of a smooth strain

field and should be used with caution in the presence of lattice

discontinuities. The methods have been shown to be compu-

tationally viable in the context of synchrotron diffraction data

by reconstructions of a tin grain embedded within a poly-

crystalline sample. By analysing individual diffraction peaks, it

was verified that the reconstructed strain gradient was a real

feature of the underlying data.

APPENDIX A
Further reconstructions from synthetic diffraction data

To further investigate the reconstruction quality of the full

strain tensor, Eij, an additional simulation and reconstruction

set is presented. The simulation was defined similarly to that of

Fig. 10 with two exceptions. (i) Strain gradients were intro-

duced in all six strain tensor components simultaneously. (ii)

The linear strain gradients were taken to vary in the x direc-

tion. The simulation input is illustrated in Fig. 12. Note that in

the corresponding reconstructions of SCR, PCR and ASR

(Figs. 13–15) the colour bar is rescaled to facilitate strain
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Figure 12
Input topology, strain state and mosaicity of a simulated tin grain slice
comprising a total of 109 voxels. All three Euler angles (’1, �, ’2) vary
linearly with x, from 0� (left) to 0.5� (right). Likewise all six strain
components vary linearly with x, from �20 � 10�4 (left) to +20 � 10�4

(right).

Figure 13
Reconstruction by SCR of full strain tensor corresponding to the
simulation presented in Fig. 12. The top-left sub-figure represents the
simulation input strain field, rescaled to the current colour range.

Figure 14
Reconstruction by PCR of full strain tensor corresponding to the
simulation presented in Fig. 12. The top-left sub-figure represents the
simulation input strain field, rescaled to the current colour range.



values that exceed the simulation input range. Each figure

therefore includes a reference input grain slice to enable

comparisons.
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Figure 15
Reconstruction by ASR of full strain tensor corresponding to the
simulation presented in Fig. 12. The top-left sub-figure represents the
simulation input strain field, rescaled to the current colour range.
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