
biomolecules

Review

Recent Advances in Understanding the Complexity of
Alcohol-Induced Pancreatic Dysfunction and
Pancreatitis Development

Karuna Rasineni 1,2,*, Mukund P. Srinivasan 3, Appakalai N. Balamurugan 4,
Bhupendra S. Kaphalia 3, Shaogui Wang 5, Wen-Xing Ding 5, Stephen J. Pandol 6, Aurelia Lugea 6,
Liz Simon 7, Patricia E. Molina 7, Peter Gao 8, Carol A. Casey 1,2,9 , Natalia A. Osna 1,2 and
Kusum K. Kharbanda 1,2,9

1 Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
ccasey@unmc.edu (C.A.C.); nosna@unmc.edu (N.A.O.); kkharbanda@unmc.edu (K.K.K.)

2 Research Service, Veterans’ Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
3 Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555-0419, USA;

msprathi@utmb.edu (M.P.S.); bkaphali@utmb.edu (B.S.K.)
4 Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center,

Department of Surgery, University of Cincinnati, Cincinnati, OH 45229, USA; Bala.appakalai@cchmc.org
5 Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center,

Kansas City, MO 66160, USA; swang4@kumc.edu (S.W.); wxding@kumc.edu (W.-X.D.)
6 Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; stephen.pandol@cshs.org (S.J.P.);

aurelia.lugea@cshs.org (A.L.)
7 Department of Physiology, Louisiana State University Health Sciences Center-New Orleans, New Orleans,

LA 70112, USA; lsimo2@lsuhsc.edu (L.S.); pmolin@lsuhsc.edu (P.E.M.)
8 Program Director, Division of Metabolism and Health Effects, National Institute on Alcohol Abuse and

Alcoholism, Bethesda, MD 20892-6902, USA; gaozh@mail.nih.gov
9 Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha,

NE 68198-5870, USA
* Correspondence: karuna.rasineni@unmc.edu; Tel.: +1-402-995-3548; Fax: +1-402-995-4600

Received: 7 February 2020; Accepted: 15 April 2020; Published: 27 April 2020
����������
�������

Abstract: Chronic excessive alcohol use is a well-recognized risk factor for pancreatic dysfunction and
pancreatitis development. Evidence from in vivo and in vitro studies indicates that the detrimental
effects of alcohol on the pancreas are from the direct toxic effects of metabolites and byproducts
of ethanol metabolism such as reactive oxygen species. Pancreatic dysfunction and pancreatitis
development are now increasingly thought to be multifactorial conditions, where alcohol, genetics,
lifestyle, and infectious agents may determine the initiation and course of the disease. In this review,
we first highlight the role of nonoxidative ethanol metabolism in the generation and accumulation
of fatty acid ethyl esters (FAEEs) that cause multi-organellar dysfunction in the pancreas which
ultimately leads to pancreatitis development. Further, we discuss how alcohol-mediated altered
autophagy leads to the development of pancreatitis. We also provide insights into how alcohol
interactions with other co-morbidities such as smoking or viral infections may negatively affect
exocrine and endocrine pancreatic function. Finally, we present potential strategies to ameliorate
organellar dysfunction which could attenuate pancreatic dysfunction and pancreatitis severity.
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1. Introduction

Based on a 2018 report from the World Health Organization (WHO), alcohol abuse accounted for
~3 million deaths (5.3% of all deaths) worldwide in 2016 [1], and in the United States alone an estimated
economic cost for excessive alcohol use was $249 billion in 2010 [2]. Extensive evidence indicates
that alcohol abuse targets both exocrine [3,4] and endocrine functions [5] of the pancreas. There is
supportive evidence that stresses and cellular abnormalities are the initiating factors for pancreatic
dysfunction [6] and pancreatitis development [7,8].

Pancreatic islet cells are responsible for the secretion of metabolic hormones insulin and glucagon.
Insulin is a critical hormone that regulates carbohydrate and lipid homeostasis. Several clinical and
preclinical studies have revealed that alcohol consumption impairs basal and glucose-stimulated
insulin secretion [6,9–12] and mechanistic insights have also been documented [5,6,11,13–16].

The pancreatic acinar cells are normally responsible for synthesizing, processing, and secreting
huge quantities of digestive enzyme proteins that require folding and processing in the endoplasmic
reticulum (ER) for appropriate transportation to the cell organelles for secretion upon physiologic
stimulation. Studies have suggested that chronic alcohol consumption increases the mRNA levels of
pancreatic digestive enzymes [17] but impairs their secretion [18], resulting in accumulation of zymogen
granules in the gland. Alcohol-induced excessive unfolded/misfolded proteins form toxic aggregates
in the ER of the pancreatic acinar cells causing unfolded protein response (UPR) and multiple organelle
dysfunctions, which sensitize the acinar cell to premature activation of zymogens and activation of
pro-inflammatory and cell death signaling [8,19–21]. Alcohol also induces the fragility of pancreatic
zymogen granules [22], leading to increased intra-acinar activation of these digestive enzymes causing
acinar cell death. The injured acinar cells induce endothelial cell dysfunction, immune cell infiltration,
and activation of pro-fibrotic pancreatic stellate cells and wound healing responses. Thus, unresolved
acinar and endothelial damage together with progressive profibrotic and pro-inflammatory responses
lead to alcoholic pancreatitis. In addition, extensive acinar cell death results in pancreas atrophy [23,24]
resulting in both exocrine and endocrine glandular dysfunction.

Chronic pancreatitis (CP) can result from recurrent episodes of acute pancreatitis (RAP) which
results in permanent structural and functional damage and a high risk for pancreatic cancer
development [25–27]. Although extensive epidemiological evidence indicates that alcohol abuse
is a major risk factor for both RAP and CP [28–30], the volume, patterns, and timing of alcohol
consumption required for the clinical development of pancreatitis are not clearly defined, and may
vary depending on the presence of co-factors such as genetic mutations, smoking, and other lifestyle
factors [31]. RAP or unexplained first episodes of acute pancreatitis (AP) in patients younger than
35 years of age are associated with pathogenic genetic variants in nearly half of the patients [32].
Smoking and alcohol consumption augment the effect of genetic mutations, stressing the potential for
interactions between lifestyle factors and genetic susceptibility to pancreatitis [29,30,33–35].

Meta-analysis of observational studies have shown a dose-response relationship between average
alcohol consumption and the risk of pancreatitis in men and women, and defined some thresholds
required for increased risk of CP and RAP [28,31]. Other reports show that an estimated 10% of heavy
alcohol users consuming 180 g/day for 10–15 years will eventually develop clinically overt CP [29,36].
A meta-analysis study of 51 international population-based reported studies [37], concluded that
heavy alcohol use (>20 drinks per week on a regular basis) increases the risk of pancreatic diseases
by nearly 40% compared to non-heavy, alcohol users; and the risk is modified by other co-factors
including smoking, obesity, and diet habits. These reports support the concept that high average
alcohol consumption increases the risk of pancreatitis, but more investigations are needed to determine
how patterns of drinking, such as short-term and long-term heavy drinking as well as inter- and
intra-individual variability affect the onset and clinical progression of AP to CP pathophysiology.

In this review we discuss the recent advances in understanding the complexity of
alcohol-induced pancreatic dysfunction and development of alcoholic pancreatitis under the following
pathophysiological themes:
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(i) Metabolic basis for alcoholic pancreatitis
(ii) Role of the UPR in the development of alcoholic pancreatitis
(iii) Role of impaired autophagy in the pathogenesis of alcoholic pancreatitis
(iv) Chronic alcohol consumption dysregulates pancreatic endocrine function and exacerbates

metabolic alterations in people living with human immunodeficiency virus (HIV)

2. Metabolic Basis for Alcoholic Pancreatitis

About 90% of the ingested ethanol is metabolized oxidatively in the liver by cytosolic alcohol
dehydrogenase (ADH) and microsomal cytochrome P450 2E1 (Cyp2E1) to acetaldehyde, which is
further metabolized to acetate by mitochondrial aldehyde dehydrogenase. Acetaldehyde is a reactive
aldehyde and can alone cause oxidative stress in the target tissue. During chronic alcohol ingestion,
ADH activity is commonly reduced in experimental animals and human subjects [38–40], and
Cyp2E1-mediated ethanol metabolism results in the production of high levels of reactive oxygen
species causing substantial oxidative stress.

The metabolic capacity to oxidize ethanol in the pancreas is much lower compared to the
liver [41]. However, pancreatic acinar cells possess abundant amount of lipase(s)/esterase(s) that
metabolize ethanol by nonoxidative pathways [3,42]. These enzymes are induced during chronic
alcohol intoxication/abuse and catalyze the conjugation of alcohol with endogenous fatty acids to
generate fatty acid ethyl esters (FAEEs) [3]. In fact, nonoxidative metabolism of ethanol to FAEEs is
predominant in the pancreas and is several fold greater than that in the liver during chronic alcohol
abuse/intoxication [3,42]. Further inhibition of hepatic ADH was reported to increase the formation
of FAEEs in the pancreas [43]. However, FAEE formation appears largely dependent on a high body
burden of alcohol. During chronic alcohol abuse, nonoxidative metabolism of ethanol to FAEEs by
FAEE synthase seems to be one of the key pathways for its disposition in the pancreas. In addition
to the pancreas, FAEEs have also been reported in the plasma, liver, adipose tissue, and heart of
individuals diagnosed with a history of chronic alcohol abuse [3]. Of importance, FAEE synthase
was reported to be higher in patients with alcohol-related pancreatitis [44]. Further, we found that
plasma FAEE levels in humans positively correlate with blood alcohol levels [45]. In this study, a higher
increase in total blood FAEE levels was observed in patients with a history of chronic alcohol ingestion
compared to those with acute alcohol use, suggesting that reduced oxidative metabolism of ethanol
may be associated with increased biosynthesis of FAEEs.

The relative role of oxidative and non-oxidative metabolites of ethanol during chronic alcohol
abuse in inducing pancreatic damage is not well understood. It has been reported that the oxidative
metabolism of ethanol sensitizes the pancreas and promotes cell damage in acinar cells [46,47].
In addition, ethanol and acetaldehyde alter a variety of signaling systems and cellular programs that
elicit activation and fibroinflammatory responses in pancreatic stellate cells [48–52], the main cell type
responsible for fibrosis in CP and pancreatic cancer [53,54].

The large amounts of highly lipophilic FAEEs that accumulate in the pancreas after acute and
chronic ethanol exposure [25,42,55] have also been shown to cause toxicity to pancreatic acinar
cells [36,43,56]. To understand the metabolic basis and the specific role of FAEEs in ethanol-induced
pancreatic injury, hepatic ADH deficient (ADH−) deer mice were utilized [57]. ADH− and hepatic ADH
normal (ADH+) deer mice were fed daily for two months a liquid diet containing 1, 2 or 3.5 g% ethanol,
doses relevant to those consumed by alcoholic subjects. A dose-dependent onset of lipid phenotype
along with ~5-fold increases in FAEE levels in the pancreas were seen in ADH− vs. ADH+ deer mice fed
with 3.5 g% ethanol [25]. Further, FAEE levels were increased in pancreas and plasma of ADH− deer
mice but not in ADH+ mice when these mice were fed 3.5 g% ethanol for four months [57]. The increases
in FAEE levels were associated with significant degenerative histological changes including pancreatic
atrophy and acinar cell loss. Furthermore, ultrastructural analysis of the pancreas of ethanol-fed ADH−

deer mice revealed significant ER stress as evidenced by swelling and disintegration of ER cisternae
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in acinar cells, and activation of the protein kinase RNA-like endoplasmic reticulum kinase (PERK)
branch of the UPR for ER stress [57].

The time and concentration-dependent formation of FAEEs and the cytotoxicity of ethanol
exposure has also been demonstrated in rat pancreatic exocrine tumor (AR42J) cells [58] and in isolated
human pancreatic acinar cells (unpublished data) exposed to ethanol. In these cellular systems,
significant ER stress with upregulation of the ER regulator glucose regulated protein 78 (GRP78), and
AMP-activated protein kinase deactivation was observed with increasing concentrations of ethanol.
In addition, treatment of AR42J cells with ADH inhibitors significantly increased generation of FAEEs,
cell death, and necrosis [59]. These findings underscore the key role of nonoxidative ethanol metabolism
on the pathogenesis of CP.

3. Unfolded Protein Response in Pancreatitis Development

Acinar cells are specialized in the production, storage, and secretion of digestive enzymes and
other proteins. To enable this high rate of protein production, acinar cells have extensive ER networks.
The ER regulates the folding, processing, and trafficking of all secretory and membrane proteins,
as well as the degradation of permanently misfolded/unfolded proteins by autophagy and the ubiquitin
system. ER homeostasis is modulated by the UPR, a signaling program activated when the ER fails to
properly process proteins, a condition termed ER stress [60,61]. The UPR aims to restore ER function
and proteostasis, but severe or prolonged ER stress activates death programs. Two main branches of
the UPR have been studied in pancreatitis: the inositol requiring enzyme 1 (IRE1) and the PERK branch.
Activation of the IRE1 branch causes splicing of X-box binding protein 1 (XBP1u) mRNA, which gives
rise to the potent transcription factor XBP1s (spliced form) that promotes adaptive responses to ER
stress. XBP1s upregulates a large network of proteins needed to maintain ER function and the acinar
cell secretory phenotype [62–66]. Activation of the PERK branch contributes to an adaptive UPR
when well-tuned and transient, but persistent PERK activation upregulates DNA damage inducible
transcript 3 (DDIT3, or CHOP), a transcription factor that regulates effectors of programmed cell death,
autophagy, and inflammation [61,67–70].

Chronic alcohol feeding in rodents does not cause pancreatitis but increases levels of XBP1s
in the pancreas, an effect likely due to ethanol-induced oxidative stress and with many potential
consequences. XBP1s control transcription of many chaperones and oxidoreductases required for
ER disulfide bond formation and folding of digestive enzymes, as well as components of protein
degradation systems designed to degrade misfolded proteins. In acinar cells, XBP1s also have UPR
independent functions and regulate post-ER protein trafficking and secretion, mitochondria-ER and
lysosomal-ER communication, ER-dependent autophagy, and secretory vesicle formation [19,20].
Genetic inhibition of XBP1 in mice decreases digestive enzyme production and significantly reduces
pancreatic secretion [19,20], while XBP1s overexpression in mice acinar cells increases pancreatic
secretion [71]. To test the role of XBP1s in maintaining acinar cell homeostasis during alcohol feeding,
its expression was genetically inhibited (Xbp1+/- mice). While partial inhibition had no effect in
control-fed animals, it caused pancreatitis responses in the ethanol-fed animals. In ethanol-fed
XBP1-deficient mice, widespread redox changes in ER proteins and ER dysfunction were observed
and associated with histological evidence of pancreatitis [71,72]. All these observations suggest that
the reason alcohol abuse does not cause pancreatitis in a large percentage of individuals is because of
the ability of the pancreas to upregulate adaptation systems that prevent disease. This also led to the
speculation that perhaps blocking the adaptation process could lead to pancreatitis development.

Due to epidemiologic observations that smoking augments the effects of alcohol abuse on
pancreatitis [30,31], one hypothesis was entertained that smoking may promote alcoholic pancreatitis
via inhibiting XBP1s. Indeed, a recent report indicated that although ethanol feeding upregulates XBP1s
which prevents experimental pancreatitis, the addition of cigarette compounds or exposure to cigarette
smoke results in inhibition of XBP1s and pathobiologic responses of pancreatitis [73]. In this study,
smoking-induced XBP1s inhibition was associated with marked increases in proapoptotic CHOP and
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acinar cell death. Redox alterations are likely responsible for the observed effects of ethanol/smoking on
XBP1s activity and CHOP levels as treatment with the anti-oxidant N-acetylcysteine (NAC) prevents
the increase in CHOP and acinar death responses [73].

These studies indicate that, while alcohol alone can cause ER protein folding disorders, the adaptive
UPR processes with alcohol abuse maintain ER homeostasis and prevent pancreatitis responses in
the acinar cell. However, additional stresses such as smoking and possibly genetic mutations in
digestive enzymes folded within the ER can incapacitate or overwhelm the adaptive and protective
UPR resulting in a pathologic UPR and pancreatitis. Agents that attenuate ER stress are being tested in
experimental models to determine potential benefits to treat pancreatitis in humans.

4. Impaired Autophagy-Lysosomal Pathway in the Pathogenesis of Pancreatitis

Autophagy is a cellular degradative process that requires the formation of double membrane
autophagosomes that carry autophagic cargoes to lysosomes for degradation. Lysosomes sit at the
end stage of the autophagic process and play a critical role in the completion of the autophagy
process (or autophagic flux). Thus, it is critical to maintain the number and quality of lysosomes
to meet the needs of autophagic degradation in response to various types of stresses. Lysosomal
biogenesis is regulated by a family of proteins belonging to the microphthalmia family of basic
helix-loop-helix-zipper (bHLH-Zip) transcription factors (MiT family) [74], which include transcription
factor EB (TFEB), transcription factor E3 (TFE3), transcription factor EC (TFEC), and microphthalmia
associated transcription factor (MiTF) that regulate the transcription of lysosomal biogenesis and
autophagy [75]. These transcription factors bind to the conserved 10-base E-box-like sequence called
coordinated lysosomal expression and regulation (CLEAR) motif [76]. Therefore, TFEB coordinates an
efficient transcriptional program to control cellular degradation and facilitates intracellular clearance by
regulating expression of genes for both lysosomes and autophagy. TFEB and its family of proteins are
mainly regulated at the posttranslational level. TFEB is phosphorylated by MAPK1 (mitogen-activated
protein kinase 1) and MTORC1 (mechanistic target of rapamycin complex 1) at Ser142, Ser211, and
Ser122, resulting in the cytosolic retention and proteasomal degradation of TFEB [77–79]. In contrast,
PRKCβ (protein kinase Cβ) phosphorylates TFEB at Ser461, Ser466, and Ser468, which stabilizes and
activates TFEB [80].

Emerging evidence implicates an impaired autophagy-lysosomal pathway in the pathogenesis
of pancreatitis [81–83]. Accumulation of autophagy vacuoles and positive LC3 puncta staining in
acinar cells were described in a rat model of alcoholic AP elicited by alcohol feeding and inflammatory
stimuli [84]. Decreased pancreatic lysosomal-associated membrane protein 1/2 (LAMP1/2) and
lysosomal dysfunction have been reported in human and mouse alcoholic pancreatitis [85,86],
which may account for the accumulation of large vacuoles in acinar cells in subjects with pancreatitis.
Moreover, mice with genetic deletion of Atg5, an autophagy-related gene that regulates the formation
of autophagosomes, or that of lysosomal-associated membrane protein 1/2 (LAMP1/2), led to the
development of spontaneous pancreatitis [85,87].

It was recently demonstrated that in an experimental pancreatitis mouse model, cerulein decreased
pancreatic TFEB proteins and TFEB-mediated lysosomal biogenesis, causing decreased lysosome
numbers and insufficient autophagic flux [81]. Mice with a specific deletion of TFEB in acinar cells
have exacerbated pancreatic damage induced by cerulein. Furthermore, mice with defective pancreatic
lysosomal biogenesis by double deletion of TFE3 and acinar cell TFEB also develop spontaneous
pancreatitis [81].

Using the chronic feeding plus binge (Gao-binge) alcohol model, two laboratories recently
reported that alcohol increased levels of serum amylase and lipase [88,89]. Gao-binge alcohol also
increased pancreatic edema, accumulation of zymogen granules, and expression of inflammatory
cytokines. All these are hallmarks of pancreatitis although the extent of the pancreatitis was
less severe compared with cerulein-induced pancreatitis in mice. Just as observed with cerulein
treatment [81], mice subjected to a Gao-binge alcohol regimen also had decreased pancreatic TFEB
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and TFEB-mediated lysosomal biogenesis resulting in insufficient autophagy in mouse pancreas.
Remarkably, cerulein treatment activated, whereas Gao-binge alcohol inhibited, mechanistic target of
rapamycin (mTOR) in mouse acinar cells, suggesting alcohol inhibits TFEB in a mTOR-independent
manner. Indeed, further investigations revealed that Gao-binge alcohol increased the levels of
phosphorylated extracellular-signal-regulated kinase (ERK) in mouse pancreas, suggesting alcohol
may inhibit acinar TFEB through MAPK-mediated phosphorylation of TFEB. How alcohol and cerulein
activate different kinases to inactivate TFEB is currently not clear and needs to be studied in the
future. Nevertheless, overexpression of TFEB in mouse pancreas attenuated Gao-binge alcohol-induced
pancreatic injury. More importantly, human pancreatitis tissues either from alcohol or non-alcohol
etiology show decreased TFEB nuclear staining. Together, these recent findings strongly indicate that
impaired TFEB-mediated lysosomal biogenesis and autophagy play critical roles in promoting the
pathogenesis of pancreatitis. Ongoing work is underway to investigate the mechanisms by which
TFEB is inactivated during alcohol consumption, and hopefully to identify small molecules targeting
TFEB for preventing/treating pancreatitis. Further evidence suggests that autophagy may help to
selectively remove fragile zymogen granules and in turn prevent pancreatitis [90,91].

5. Chronic Alcohol Consumption Dysregulates Pancreatic Endocrine Function and Exacerbates
Metabolic Alterations in People Living with HIV

In addition to the vast data on the risk for alcohol-mediated effects on pancreatitis development,
there is increasing evidence that chronic alcohol consumption also impairs endocrine pancreatic
function. Clinical [92–94] and preclinical studies [95–97] demonstrate that at risk alcohol use promotes
metabolic dysregulation and is an independent risk factor for development of type 2 diabetes [98,99].
Type 2 diabetes is characterized by insensitivity to insulin action in liver, muscle, and adipose tissue
progressing to impaired pancreatic insulin release and eventually β-cell death. While most studies have
focused on how alcohol alters peripheral tissue insulin sensitivity (reviewed in [12]), little is known
regarding the effect of alcohol on pancreatic endocrine function. The overall morbidity and mortality of
subjects with acute pancreatitis is higher in individuals with type 2 diabetes [100]. Thus, understanding
endocrine pancreatic dysfunction associated with chronic alcohol consumption is imperative for
developing therapeutic strategies to ameliorate the burden of disease.

Clinical studies have shown that alcohol decreases circulating basal insulin secretion [9], and
circulating insulin and c-peptide in response to a glucose load [10]. Rodent studies reveal that chronic
alcohol administration significantly decreases circulating insulin levels [11] and glucose-stimulated
insulin secretion from the pancreatic islets [12]. Studies have revealed that the alcohol-induced
elevation of circulating ghrelin, a hormone mainly secreted from the stomach, inhibits insulin secretion
from pancreatic β-cells [11,13]. In other experimental studies, rodents on a chronic alcohol diet show
decreased pancreatic expression of glucokinase [5], glucose transporter-2 [5], and gamma-aminobutyric
acid (GABA) receptors [14], all potential mechanisms for decreased insulin release. Moreover, in vitro
alcohol exposure decreases glucose-stimulated insulin secretion from human [15] and rodent [11,14,16]
islets and increases β-cell apoptosis [5,6]. All these studies indicate alcohol-mediated impairment of
pancreatic β-cell function that can negatively impact glucose homeostasis and metabolic regulation.

The metabolic stress mediated by alcohol, including a chronic inflammatory milieu, oxidative
stress, and mitochondrial dysfunction leads to islet cell dysfunction and could result in the decreased key
transcriptional factors regulating islet cell function. Increases in blood glucose increase the transcription
of the insulin gene [101]. The canonical pancreatic transcription factors, Pdx-1 (pancreatic and duodenal
homeobox-1), NeuroD1 (neurogenic differentiation 1)/Beta2, and MafA (V-maf musculoaponeurotic
fibrosarcoma oncogene homologue A) are critical for insulin gene transcription and release [101–103].
Evidence in the literature suggest that increases in inflammation and oxidative stress decrease the
expression of these transcription factors [104–106]. Pancreatic function is also epigenetically regulated,
and it has been demonstrated that alcohol alters the epigenomic profile in the muscle, brain, and
liver [107–115]. It is of interest to understand how alcohol-mediated histone modifications or altered
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microRNAs regulate the expression of the canonical transcription factors and thus affect insulin
expression and release. Furthermore, similar mechanisms responsible for the pathophysiology of
alcoholic pancreatitis can also result in impaired pancreatic endocrine function.

The detrimental effects of chronic alcohol consumption on pancreatic function is enhanced under
comorbid conditions such as viral infections. The prevalence of alcohol use disorder (AUD) in people
living with HIV (PLWH) is higher than the prevalence of AUD in the general population [116,117].
Antiretroviral therapy (ART) has significantly reduced patient mortality, and HIV infection has emerged
as a chronic disease, increasing the incidence of non-acquired immunodeficiency syndrome defined
comorbidities including metabolic dysregulation, insulin resistance (IR), and diabetes.

Studies in SIV-infected macaques have shown that chronic binge alcohol (CBA) alters metabolic
homeostasis [118–120]. Results from a frequently sampled intravenous glucose tolerance test (FSIVGTT)
with a third-phase insulin infusion (modified minimal model; MINMOD) showed that CBA/SIV animals
have decreased disposition index (DI), an indicator of IR, and markedly reduced insulin release and
c-peptide levels (impaired endocrine pancreas response) following a glucose load [120]. These metabolic
alterations were not associated with fasting hyperglycemia or hyperinsulinemia, suggesting they likely
precede a phase of overt glucose intolerance developing with SIV disease progression. Preliminary
data show that CBA decreases pancreatic expression of insulin, insulin:glucagon ratio, and NKX2.2
and PDX1. Data also demonstrate that CBA decreased circulating levels of high molecular weight
(HMW) adiponectin in SIV-infected macaques [120]. Similarly, several studies indicate that alcohol
decreases circulating adiponectin levels [121–125]. Adiponectin is an insulin sensitizing adipokine
that stimulates exocytosis of insulin granules, increases insulin expression [126], and promotes β-cell
survival [127]. Whether the alcohol-mediated decrease in adiponectin contributes to the observed
pancreatic islet dysfunction has yet to be investigated.

Thus, increasing clinical and preclinical evidence points to alcohol-induced pancreatic endocrine
dysfunction, increasing the risk for metabolic comorbidities. Further studies are warranted to
understand the crosstalk between the pancreas and other organs such as the gut, adipose tissue, and
skeletal muscle that could potentially contribute to pancreatic endocrine dysfunction. Whether lifestyle
modifications including exercise or diet interventions can improve pancreatic function directly or
indirectly by improving muscle and adipose health should be examined. Moreover, continuing to gain a
better understanding of how alcohol-mediated alterations in epigenomic mechanisms impair pancreatic
function, both exocrine and endocrine, is likely to identify targets for therapeutic interventions.

6. Conclusions

Overall, this review on the metabolic basis of ethanol-induced pancreatic cell injury provides
valuable information for a better understanding of mechanisms of pancreatic insufficiency and
pancreatitis pathogenesis such that appropriate therapeutic strategies could be developed. Figure 1
summarizes the take-home message of our current understandings of mechanisms of ethanol-induced
pancreatic dysfunction: (i) inhibition of hepatic ADH during chronic alcohol abuse could be a
key metabolic event resulting in an increased formation of FAEEs via nonoxidative metabolism in
the pancreas that ultimately promotes the pathogenesis of CP; (ii) an adaptive UPR maintains
ER homeostasis with alcohol abuse and prevents pancreatitis responses in the acinar cell.
However, additional stresses such as smoking and possibly genetic mutations in digestive enzymes
can incapacitate or overwhelm the adaptive and protective UPR resulting in a pathologic UPR and
pancreatitis, reaffirming that lifestyle factors can cause ER protein folding disorders; (iii) impaired
TFEB-mediated lysosomal biogenesis and autophagy play critical roles in promoting the pathogenesis
of pancreatitis; and (iv) chronic alcohol consumption alters pancreatic endocrine function contributing
to increasing metabolic comorbidities among people living with HIV.
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Figure 1. Schematic of ethanol-induced pancreatic dysfunction and pancreatitis development.
Pathophysiological mechanisms involved in ethanol-induced pancreatic dysfunction include:
(i) inhibition of hepatic alcohol dehydrogenase (ADH) during chronic alcohol abuse which could be a
key metabolic event resulting in increased formation of fatty acid ethyl esters (FAEEs) via nonoxidative
metabolism in the pancreas that ultimately promotes the pathogenesis of CP; (ii) an adaptive unfolded
protein response (UPR) maintains endoplasmic reticulum (ER) homeostasis with alcohol abuse and
prevents pancreatitis responses in the acinar cell. However, additional stresses such as smoking and
possibly genetic mutations in digestive enzymes can incapacitate or overwhelm the adaptive and
protective UPR resulting in a pathologic UPR and pancreatitis, reaffirming that lifestyle factors can
cause ER protein folding disorders; (iii) impaired transcription factor EB (TFEB)-mediated lysosomal
biogenesis and autophagy play critical roles in promoting the pathogenesis of pancreatitis; and
(iv) alcohol can alter pancreatic endocrine function contributing to increasing metabolic comorbidities
among people living with human immunodeficiency virus (HIV).

Based on these considerations, it is predicted that agents that can reduce ER stress and improve
autophagic mechanisms may be beneficial for preventing or treating pancreatitis. Further, lifestyle
modifications including exercise or diet interventions could also improve both exocrine and endocrine
pancreatic function.
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