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Abstract 

Background:  The high mortality of patients with non-small cell lung cancer (NSCLC) emphasizes the necessity of 
identifying a robust and reliable prognostic signature for NSCLC patients. This study aimed to identify and validate a 
prognostic signature for the prediction of both disease-free survival (DFS) and overall survival (OS) of NSCLC patients 
by integrating multiple datasets.

Methods:  We firstly downloaded three independent datasets under the accessing number of GSE31210, GSE37745 
and GSE50081, and then performed an univariate regression analysis to identify the candidate prognostic genes from 
each dataset, and identified the gene signature by overlapping the candidates. Then, we built a prognostic model 
to predict DFS and OS using a risk score method. Kaplan–Meier curve with log-rank test was used to determine the 
prognostic significance. Univariate and multivariate Cox proportional hazard regression models were implemented 
to evaluate the influences of various variables on DFS and OS. The robustness of the prognostic gene signature was 
evaluated by re-sampling tests based on the combined GEO dataset (GSE31210, GSE37745 and GSE50081). Further-
more, a The Cancer Genome Atlas (TCGA)-NSCLC cohort was utilized to validate the prediction power of the gene 
signature. Finally, the correlation of the risk score of the gene signature and the Gene set variation analysis (GSVA) 
score of cancer hallmark gene sets was investigated.

Results:  We identified and validated a six-gene prognostic signature in this study. This prognostic signature stratified 
NSCLC patients into the low-risk and high-risk groups. Multivariate regression and stratification analyses demonstrated 
that the six-gene signature was an independent predictive factor for both DFS and OS when adjusting for other clini-
cal factors. Re-sampling analysis implicated that this six-gene signature for predicting prognosis of NSCLC patients is 
robust. Moreover, the risk score of the gene signature is correlated with the GSVA score of 7 cancer hallmark gene sets.

Conclusion:  This study provided a robust and reliable gene signature that had significant implications in the predic-
tion of both DFS and OS of NSCLC patients, and may provide more effective treatment strategies and personalized 
therapies.
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Background
Lung cancer is the leading cause of cancer death world-
wide, and non-small cell lung cancer (NSCLC) composes 
the majority (approximately 85%) of all lung cancers [1, 
2]. Despite advances in treatment strategies, the high 
mortality rate for lung cancer patients has not consid-
erably declined, due to the late diagnosis of the disease 
[3]. The major clinical determinants of NSCLC progno-
sis include tumor extension, performance status and his-
tological type [4, 5]. However, various disease outcomes 
have been identified in patients with similar clinical and 
pathological features, suggesting that the current clini-
cal prognostic factors used may be insufficient to con-
sistently predict individual clinical outcomes [6]. This 
emphasizes the necessity of identifying robust and reli-
able prognostic markers with higher sensitivity and accu-
racy in NSCLC.

Transcriptome profiling has widely been used to char-
acterize prognostic signatures in patients with lung can-
cer, and has generated a number of candidate biomarkers 
with potential clinical values [7–9]. However, the sug-
gested signatures lack consistency among studies and 
provide limited prognostic information, partially due to 
the limited sample size and technical factors. Moreover, 
NSCLC is a highly heterogeneous disease, thus it is criti-
cal to identify a reliable signature that can define patients 
who are at a high-risk to develop disease recurrence. To 
this end, integrating the results from multiple studies 
holds promise for more robust prognostic signatures. In 
addition, most investigations used overall survival (OS) 
rather than tumor recurrence as an end point [9–11]. 
Disease-free survival (DFS) is defined as the interval from 
surgery to the first diagnosis of any type of relapse or 
death, and is used as a possible alternative for OS.

Therefore, we attempted to identify and validate a 
robust and reliable prognostic signature for DFS and OS 
prediction by integrating multiple datasets of NSCLC 
patients. In the present study, we revealed a six-gene 
signature with a reliable prognostic value in NSCLC, 
which might complement conventional clinical prognos-
tic factors, and further provide more effective therapeu-
tic interventions and personalized therapies for NSCLC 
patients.

Methods
Patient data
Gene expression data and corresponding clinical 
information data of NSCLC patients were obtained 
from the publicly available database Gene Expres-
sion Omnibus (GEO, http://www.ncbi.nlm.nih.gov/
geo/). Three independent datasets were collected in 

this study, under the accessing number of GSE31210 
[12, 13], GSE37745 [14] and GSE50081 [15]. These 
gene expression data were generated using the same 
chip platform Affymetrix HG-U133 Plus 2.0 plat-
form. GSE31210 consisted of a total of 226 lung ade-
nocarcinoma cases. GSE37745 included 196 NSCLC 
cases, including 106 adenocarcinoma, 24 large cell 
carcinoma, and 66 squamouscarcinoma. GSE50081 
included 181 NSCLC cases, including 127 adenocarci-
noma, 7 large cell carcinoma, 43 squamous carcinoma, 
and 4 adenosquamous carcinoma. A total of 603 cases 
were enrolled for  OS analysis, including 226 patients 
from GSE31210, 196 patients from GSE37745, and 
181 patients from GSE50081. For DFS analysis, a total 
of 499 patients were finally included, including 226 
patients from GSE31210, 96 patients from GSE37745, 
and 177 patients from GSE50081. The details of the 
patients’ clinical information in each dataset are 
described in Tables 1 and 2. All microarray data were 
normalized using robust multi-array average (RMA) 
and microarray Suite 5 (MAS5) methods, and log2-
scale transformed in this study. 

The genomic data and clinical information of NSCLC 
patients in The Cancer Genome Atlas (TCGA) were 
obtained from the University of California Santa Cruz 
Xenabrowser (UCSC Xena, http://xena.ucsc.edu/) [16]. 
This cohort has 761 NSCLC patients with the corre-
sponding gene expression data (read count) and clinical 
information (including survival data).

Prognostic gene signature screening
In this study, we firstly screened candidate prognostic 
genes from each cohort, and selected the common ones 
for constructing the prognostic gene signature. Then, 
the prognostic value of the signature was validated using 
each cohort. The flow diagram of this study is illustrated 
in Fig. 1. An univariate Cox proportional hazard regres-
sion model was implemented to determine the associa-
tion of gene expression with DFS and OS in each cohort. 
Genes under a cutoff value of P < 0.05 were defined as 
candidate genes related to OS and DFS, and the common 
genes among three datasets were selected to construct 
the prognostic signature. Hazard ratio (HR) from the uni-
variate Cox regression analysis was used to determine the 
protective (HR < 1) and risky genes (HR > 1).

Then, a risk score was established for each patient by 
calculating the expression values of the selected genes 
weighted by regression coefficients in the univariate Cox 
regression analysis. The formula used was as follows:

Riskscore =

n∑

i=1

expi ∗ βi

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://xena.ucsc.edu/
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Where n is the number of selected genes, expi is the 
expression level of gene i, and βi represents the regres-
sion coefficient of gene i. Subsequently, the risk score was 

dichotomized at the median value, and patient whose risk 
score was greater than the median value was divided into 
a high-risk group, otherwise into alow-risk group.

Table 1  Univariate and  multivariate Cox regression analysis of  the  gene signature and  disease-free survival of  NSCLC 
patients

HR: hazard ratio; CI: confidence interval; Adeno: adenocarcinoma; Large: large cell carcinoma; Squamous: squamous cell carcinoma

Variables Patients
(N)

Univariate analysis Multivariate analysis

HR (95% CI) P HR (95% CI) P

GSE31210

 Age ≤ 65/> 65 176/50 1.89 (1.12–3.18) 1.70E−02 2.36 (1.37–4.04) 1.83E−03

 Gender Female/male 121/105 1.27 (0.78–2.07) 3.38E−01

 ALK fusion +/− 215/11 0.74 (0.18–3.02) 6.73E−01

 EGFR mutation +/− 99/127 0.60 (0.37–0.98) 4.29E−02 1.98 (0.88–4.47) 1.00E−01

 KRAS mutation +/− 206/20 0.98 (0.42–2.26) 9.56E−01

 Triple negative No/yes 158/68 1.87 (1.14–3.08) 1.39E−02 2.91 (1.30–6.54) 9.71E−03

 Myc copy Low/high 207/17 1.04 (0.42–2.59) 9.33E−01

 Stage I/II 168/58 3.16 (1.92–5.21) 6.09E−06 2.77 (1.63–4.71) 1.62E−04

 Smoking No/yes 115/111 1.33 (0.82–2.18) 2.52E−01

 Risk score Low/high 123/103 3.26 (1.92–5.53) 1.24E−05 3.10 (1.77–5.41) 7.17E−05

GSE37745

 Age ≤ 65/> 65 45/51 0.89 (0.50–1.55) 6.70E−01

 Gender Female/male 46/50 1.01 (0.58–1.78) 9.60E−01

 Stage I/II 63/18 1.13 (0.54–2.38) 7.45E−01

 Stage I/III 63/14 1.78 (0.81–3.91) 1.48E−01

 Stage I/IV 63/1 5.71 (0.75–43.63) 9.32E−02

 Histological type Adeno/large 53/13 1.05 (0.46–2.42) 9.08E−01

 Histological type Adeno/squamous 53/30 1.12 (0.60–2.10) 7.17E−01

 WHO performance status 0/1 54/32 2.21 (1.21–4.03) 1.02E−02 2.43 (1.32–4.47) 4.31E−03

 WHO performance status 0/2 54/6 1.04 (0.25–4.42) 9.52E−01 1.12 (0.26–4.75) 8.77E−01

 WHO performance status 0/3 54/4 1.66 (0.50–5.53) 4.08E−01 1.62 (0.49–5.38) 4.34E−01

 Risk score Low/high 46/50 2.31 (1.27–4.21) 6.08E−03 2.49 (1.36–4.55) 3.10E−03

GSE50081

 Age ≤ 65/> 65 59/118 1.24 (0.69–2.24) 4.77E−01

 Gender Female/male 81/96 1.68 (0.95–2.99) 7.59E−02

 Stage I/II 124/53 1.87 (1.06–3.28) 3.03E−02 1.71 (0.97–3.01) 6.30E−02

 Histological type Adeno/large 124/7 1.04 (0.25–4.31) 9.59E−01

 Histological type Adeno/squamous 124/42 0.73 (0.10–5.36) 7.61E−01

 Histological type Adeno/other 124/4 0.74 (0.38–1.45) 3.79E−01

 Smoking No/yes 24/133 0.70 (0.35–1.40) 3.14E−01

 Risk score Low/high 83/94 2.42 (1.33–4.43) 4.02E−03 2.30 (1.26–4.22) 6.97E−03

All patients

 Age ≤ 65/> 65 280/219 1.36 (1.00–1.84) 5.04E−02

 Gender Female/male 248/251 1.31 (0.96–1.78) 8.51E−02

 Stage I/II 355/129 2.05 (1.47–2.85) 2.02E−05 1.72 (1.23–2.40) 1.50E−03

 Stage I/III 355/14 3.45 (1.68–7.11) 7.74E−04 2.62 (1.27–5.43) 9.41E−03

 Stage I/IV 355/1 22.26 (3.01–164.44) 2.36E−03 14.79 (2.00–109.7) 8.40E−03

 Histological type Adeno/large 403/20 1.48 (0.75–2.93) 2.61E−01

 Histological type Adeno/squamous 403/72 0.76 (0.11–5.44) 7.85E−01

 Histological type Adeno/other 403/4 1.17 (0.77–1.78) 4.52E−01

 Risk score Low/high 252/247 2.7 (1.94–3.76) 4.16E−09 2.39 (1.70–3.35) 4.47E−07
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Evaluation of the robustness of prognostic gene signature 
by re‑sampling tests
The data from three GEO datasets (GSE31210 [12, 13], 
GSE37745 [14] and GSE50081 [15]) were combined. 

Then a subset that contained 70% samples of the 
combined GEO dataset (re-sampling) was randomly 
selected and used to determine the prediction power 

Table 2  Univariate and multivariate Cox regression analysis of the gene signature and overall survival of NSCLC patients

HR: hazard ratio; CI: confidence interval; Adeno: adenocarcinoma; Large: large cell carcinoma; Squamous: squamous cell carcinoma

Variables Patients
(N)

Univariate analysis Multivariate analysis

HR (95% CI) P HR (95% CI) P

GSE31210

 Age ≤ 65/> 65 176/50 2.58 (1.31–5.08) 5.99E−03 3.51 (1.72–7.15) 5.44E−04

 Gender Female/male 121/105 1.52 (0.78–2.96) 2.19E−01

 ALK fusion +/− 215/11 1.49 (0.36–6.24) 5.82E−01

 EGFR mutation +/− 99/127 0.47 (0.24–0.93) 2.96E−02 1.87 (0.65–5.37) 2.47E−01

 KRAS mutation +/− 206/20 0.87 (0.27–2.85) 8.17E−01

 Triple negative No/yes 158/68 2.19 (1.12–4.26) 2.12E−02 2.95 (1.06–8.19) 3.76E−02

 Myc copy Low/high 207/17 0.7 (0.17–2.9) 6.18E−01

 Stage I/II 168/58 4.23 (2.17–8.24) 2.17E−05 3.45 (1.72–6.93) 5.06E−04

 Smoking No/yes 115/111 1.64 (0.84–3.2) 1.50E−01

 Risk score Low/high 129/97 6.14 (2.68–14.07) 1.84E−05 5.47 (2.3–12.99) 1.21E−04

GSE37745

 Age ≤ 65/> 65 102/94 1.35 (0.98–1.88) 6.88E−02

 Gender Female/male 89/107 1.1 (0.79–1.52) 5.85E−01

 Stage I/II 130/35 1.22 (0.79–1.87) 3.66E−01 1.14 (0.73–1.77) 5.68E−01

 Stage I/III 130/27 1.86 (1.19–2.93) 6.88E−03 1.63 (1.02–2.63) 4.27E−02

 Stage I/IV 130/4 1.31 (0.42–4.15) 6.43E−01 1.97 (0.61–6.35) 2.57E−01

 Histological type Adeno/large 106/24 0.89 (0.52–1.53) 6.75E−01

 Histological type Adeno/squamous 106/66 1.26 (0.88–1.79) 2.05E−01

 WHO performance status 0/1 105/75 1.91 (1.35–2.7) 2.38E−04 1.96 (1.39–2.79) 1.53E−04

 WHO performance status 0/2 105/12 1.95 (1.01–3.79) 4.83E−02 1.81 (0.92–3.57) 8.66E−02

 WHO performance status 0/3 105/4 1.13 (0.36–3.61) 8.32E−01 1.09 (0.34–3.54) 8.80E−01

 Risk score Low/high 97/99 1.56 (1.12–2.16) 8.31E−03 1.44 (1.02–2.04) 3.80E−02

GSE50081

 Age ≤ 65/> 65 59/122 1.56 (0.93–2.61) 9.04E−02

 Gender Female/male 83/98 1.93 (1.19–3.14) 7.80E−03 2 (1.23–3.26) 5.47E−03

 Stage I/II 127/54 1.69 (1.05–2.72) 3.10E−02 1.63 (1.01–2.63) 4.71E−02

 Histological type Adeno/large 127/7 1.71 (0.62–4.74) 3.01E−01

 Histological type Adeno/squamous 127/43 1.84 (0.57–5.92) 3.03E−01

 Histological type Adeno/other 127/4 0.8 (0.46–1.39) 4.35E−01

 Smoking No/yes 24/136 1.39 (0.66–2.92) 3.89E−01

 Risk score Low/high 79/102 2.21 (1.34–3.64) 1.81E−03 2.09 (1.27–3.45) 3.91E−03

All patients

 Age ≤ 65/> 65 337/266 1.92 (1.5–2.46) 2.48E−07 1.83 (1.42–2.35) 2.94E−06

 Gender Female/male 293/310 1.45 (1.13–1.86) 3.79E−03 1.27 (0.98–1.64) 7.14E−02

 Stage I/II 425/147 1.67 (1.26–2.21) 3.43E−04 1.5 (1.13–2) 5.31E−03

 Stage I/III 425/27 3.6 (2.34–5.56) 7.02E−09 2.79 (1.79–4.36) 6.58E−06

 Stage I/IV 425/4 2.53 (0.81–7.93) 1.12E−01 3.23 (1.02–10.23) 4.58E−02

 Histological type Adeno/large 459/31 1.76 (1.1–2.81) 1.83E−02 1.51 (0.94–2.43) 9.16E−02

 Histological type Adeno/squamous 459/109 2.29 (0.73–7.18) 1.56E−01 1.92 (0.6–6.1) 2.70E−01

 Histological type Adeno/other 459/4 1.85 (1.39–2.45) 2.09E−05 1.27 (0.94–1.72) 1.18E−01

 Risk score Low/high 305/298 2.11 (1.63–2.72) 1.03E−08 1.65 (1.26–2.18) 3.32E−04
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Fig. 1  Flow diagram of this study
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of the gene signature for DFS and OS of the NSCLC 
patients. This re-sampling test was repeated 100 times.

Association of prognostic gene signature and cancer 
hallmarks
A total of 50 hallmark gene sets which are currently rec-
ognized were downloaded from the molecular signature 
database (MSigDB, http://softw​are.broad​insti​tute.org/
gsea/msigd​b). Next, gene set variation analysis (GSVA) 
package and its ssGSEA method (http://www.bioco​nduct​
or.org) were implemented for these 50 hallmark gene 
sets to further obtain the GSVA scores of each gene set 
for each sample in the combined GEO datasets [17]. The 
GSVA score devotes the degree of absolute enrichment 
of a gene set in each sample. After that, Pearson’s corre-
lation analysis was performed to investigate whether the 
GSVA score of the members of the given gene set was 
correlated with the risk score. The correlation coefficients 
(R), confidence interval (CI) and P values were calculated.

Statistical analysis
The DFS and OS were calculated using Kaplan–Meier 
curves, and the statistical difference was determined by 
log-rank test. Influences of various variables on DFS and 
OS were evaluated by univariate and multivariate Cox 
proportional hazard regression models. HR and the 95% 
CI were generated using Cox proportional hazards mod-
els. The receiver operating characteristic (ROC) curve 
analysis was carried out to compare the predictive accu-
racy of the gene signature. A P value < 0.05 was set as the 
statistically as the significant difference.

Results
Identification of a six‑gene prognostic signature
We firstly identified survival-related genes using uni-
variate Cox regression analysis in each dataset. Under 
the cut-off threshold of Cox P < 0.05, 7217 genes in 
GSE31210, 1195 genes in GSE37745 and 2813 genes in 
GSE50081 were identified as candidate predictive genes 
that presented close association with DFS. Similarly, 
2539 genes in GSE31210, 1720 genes in GSE37745 and 
2453 genes in GSE50081 were identified to be involved 

in OS. By overlapping these candidate genes among three 
datasets, a set of 6 common genes was screened finally, 
including one risky gene (HR > 1) and 5 protective genes 
(HR < 1). The general information of these 6 genes is dis-
played in Table 3.

The six‑gene signature predicts survival of NSCLC patients
According to the gene expression and regression coeffi-
cients of the 6 genes, a prognostic model was developed 
to predict prognosis using a risk score method. In the 
prognostic model, each patient was endowed a risk score. 
Using the median risk score value as the cut-off point, 
patients in each dataset were classified into low-risk and 
high-risk groups. The DFS prediction power of the six-
gene signature for patients in each dataset is displayed in 
Fig. 2. The distribution of gene risk scores, gene expres-
sion levels, and patients’ relapse status in each dataset are 
shown in Fig. 2a.

Kaplan–Meier curves showed that patients in the high-
risk groups presented significantly shorter DFS than 
those in the low-risk groups (GSE31210: HR = 3.26, 95% 
CI 1.92–5.53, P < 0.05; GSE37745: HR = 2.31, 95% CI 
1.27–4.21, P < 0.05; GSE50081: HR = 2.42, 95% CI 1.33–
4.43, P < 0.05) (Fig.  2b). Furthermore, a time-dependent 
ROC curve was performed to evaluate the sensitivity 
and specificity of the six-gene signature for DFS predic-
tion. Notably, the six-gene signature achieved AUC val-
ues of 0.713 in GSE31210, 0.727 in GSE37745 and 0.746 
in GSE50081 (Fig. 2c), suggesting a substantially effective 
performance for DFS prediction.

The OS prediction value of the six-gene signature for 
patients in each dataset is shown in Fig. 3. Figure 3a illus-
trates the distribution of gene risk scores, gene expression 
levels and patients’ survival status in each dataset. Con-
sistent with our previous finding, patients in the high-
risk groups had significantly shorter OS when compared 
with those in the low-risk groups (GSE31210: HR = 6.14, 
95% CI 2.68–14.07, P < 0.05; GSE37745: HR = 1.56, 95% 
CI 1.12–2.16, P < 0.05; GSE50081: HR = 2.21, 95% CI 
1.34–3.64, P < 0.05) (Fig.  3b). Patients with high risk 
scores tended to have poorer clinical outcomes com-
pared with those with low risk scores. In addition, the 

Table 3  Overall information of the 6 genes for constructing the prognostic signature

Gene stable ID Gene name Gene type Chromosome Gene start (bp) Gene end (bp)

ENSG00000152527 PLEKHH2 Protein coding 2 43,637,273 43,767,987

ENSG00000136003 ISCU Protein coding 12 108,562,582 108,569,384

ENSG00000079101 CLUL1 Protein coding 18 596,988 650,334

ENSG00000101938 CHRDL1 Protein coding X 110,673,856 110,795,819

ENSG00000124374 PAIP2B Protein coding 2 71,182,739 71,227,083

ENSG00000163814 CDCP1 Protein coding 3 45,082,278 45,146,422

http://software.broadinstitute.org/gsea/msigdb
http://software.broadinstitute.org/gsea/msigdb
http://www.bioconductor.org
http://www.bioconductor.org


Page 7 of 16Zuo et al. J Transl Med          (2019) 17:152 

time-dependent ROC curve was implemented to meas-
ure the sensitivity and specificity of the six-gene sig-
nature for OS prediction in each dataset. Markedly, the 

signature achieved AUC values of 0.749, 0.685 and 0.667 
in GSE31210, GSE37745 and GSE50081, respectively 
(Fig. 3c), implying a high OS prediction performance.

Fig. 2  Correlation between the six-gene signature and the disease-free survival (DFS) of patients in three datasets. a The distribution of risk scores, 
gene expression levels and patient relapse status. b Kaplan–Meier curves of DFS of the low- and high-risk groups. c ROC curve for the 5-year survival 
prediction by the six-gene signature. The black dotted line in a represents the median risk score cut-off dividing patients into low- and high-risk 
groups
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Fig. 3  Correlation between the six-gene signature and overall survival (OS) of patients in three datasets. a The distribution of risk scores, gene 
expression levels and patient survival status. b Kaplan–Meier curves of OS of low- and high-risk groups. c ROC curve for the 5-year survival 
prediction by the six-gene signature. The black dotted line in a represents the median risk score cut-off dividing patients into low- and high-risk 
groups
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The six‑gene prognostic signature is robust
Previous study has demonstrated that tumor heterogene-
ity limits the generation of robust prognostic biomarker 
[18]. Thus, we conducted re-sampling tests for valida-
tion of the robustness of the prognostic gene signature. 
As shown in Additional file 1: Table S1, we found that in 
all the random 100 model validations of prediction power 
of the gene signature for OS by re-sampling, the P values 
were less than 0.0001 in each univariate Cox and Kaplan–
Meier analysis. Notably, the six-gene signature achieved 
the AUC values of more than 0.650 for 1, 2, 3, 4, and 
5-year OS in the combined GEO datasets, demonstrating 
a high OS prediction performance. Similarly, among all 
the random 100 model validations of prediction power of 
the gene signature for DFS, the P values were less than 
0.0001 in each univariate Cox and Kaplan–Meier analysis 
(Additional file 2: Table S2). Moreover, the six-gene sig-
nature obtained the AUC values of more than 0.610 for 
1, 2, 3, 4, and 5-year DFS in the combined GEO datasets 
(Additional file  2: Table  S2), which implicates that this 
signature has an effective performance for DFS predic-
tion. Overall, these results suggest this six-gene signature 
for predicting prognosis of NSCLC patients is robust.

The six‑gene signature is an independent prognostic factor
Here, we performed univariate and multivariate Cox 
regression models in these three datasets. The six-gene 
risk score and other clinicopathological factors, includ-
ing age, gender, stage, histological type, gene mutation, 
smoking and performance status were used as covariates. 
The association between these factors and DFS is shown 
in Table  1. Univariate regression analysis indicated that 
age, EGFR mutation, triple negative status, disease stage 
and risk score were significantly associated with the DFS 
of NSCLC patients in GSE31210; WHO performance 
status and risk score were significantly associated with 
the DFS of patients in GSE37745; and stage and risk 
score were related to the DFS of patients in GSE50081. 
In the entire cohort, stage and risk score were identified 
to have significant correlation with the DFS of NSCLC 
patients. Moreover, in order to determine whether the 
six-gene signature was independent of other clinical fac-
tors, we performed a multivariate regression analysis, 
and found a significant correlation of the six-gene signa-
ture with DFS in three datasets (GSE31210: HR = 3.10, 
95% CI 1.77–5.41, P = 7.17E−05; GSE37745: HR = 2.49, 
95% CI 1.36–4.55, P = 3.10E−03; GSE50081: HR = 2.30, 
95% CI 1.26–4.22, P = 6.97E−03) and the entire cohort 
(HR = 2.39, 95% CI = 1.70−3.35, P = 4.47E−07),after 
adjusting for other clinical factors. The result indicated 
that the six-gene risk score was an independent adverse 
DFS factor for NSCLC patients.

The correlation of risk score and other clinicopatho-
logical factors with the OS of NSCLC patients is shown 
in Table  2. We performed an univariate regression 
analysis to determine the correlation between these 
factors and OS. Our results indicated that age, EGFR 
mutation, triple negative status, stage and risk score 
were OS prognostic factors for NSCLC patients in 
GSE31210; stage I/III, WHO performance status and 
risk score were significantly related to OS of patients 
in GSE37745; and age, stage and risk score were OS 
prognostic factors for patients in GSE50081. In the 
entire cohort, age, gender, stage and risk score were 
correlated with OS of NSCLC patients. Subsequent 
multivariate regression analysis indicated that the six-
gene signature was an independent OS prognostic fac-
tor in three datasets (GSE31210: HR = 5.47, 95% CI 
2.30–12.99, P = 1.21E−04; GSE37745: HR = 1.44, 95% 
CI 1.02–2.04, P = 3.80E−02; GSE50081: HR = 2.09, 
95% CI 1.27–3.45, P = 3.91E−03) and entire cohort 
(HR = 1.65, 95% CI 1.26–2.18, P = 3.32E−04), after 
adjusting for other clinical factors. Taken together, 
our data show that the six-gene risk score was an inde-
pendent adverse prognostic factor for both DFS and 
OS of NSCLC patients.

Furthermore, we performed a data stratification 
analysis on the entire cohort. These patients (499 
patients for DFS and 603 for OS) were factitiously 
stratified based on their clinical parameters, such as 
age (≤ 65/> 65), gender (female/male), stage (I/II) and 
histological type (adenocarcinoma/squamous carci-
noma). Because of the small sample size, patients in 
stage III and IV, and patients with large cell cancer were 
removed from the stratification analysis. The results 
showed that the six-gene risk score remained the abil-
ity of predicting the DFS and OS within each stratum. 
In Fig.  4a, the results of stratification analysis showed 
that high-risk patients in each stratum of age, gender 
and early stage had significantly shorter DFS than low-
risk patients (P < 0.05). For patients with adenocarci-
noma, high-risk patients showed significantly shorter 
DFS than low-risk patients (P < 0.05), while there was 
no significant difference between high-risk and low-risk 
patients for patients with squamous carcinoma, might 
due to the small sample size of patients with squamous 
carcinoma. In Figure  4b, the results of stratification 
analysis indicated that high-risk patients in each stra-
tum presented significantly poorer OS than low-risk 
patients (P < 0.05), except for patients in stage II and 
patients with squamous carcinoma. Taken together, our 
findings suggested that the six-gene signature was inde-
pendent of other clinical features for DFS and OS pre-
diction in NSCLC patients.
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Further validation of the six‑gene signature using another 
independent dataset
To investigate the reliability of the six-gene signa-
ture, another independent dataset from the TCGA was 
used for further validation. The risk score of each sam-
ple in this dataset was calculated, and the samples were 

then classified into low- and high-risk groups using the 
median risk score value as the cut-off point (Fig. 5a, b). 
Kaplan–Meier and univariate Cox regression analysis 
exhibited that the patients in the high-risk group had 
obviously shorter DFS than those in the low-risk groups 
(HR = 1.33, 95% CI 1.02–1.73, P < 0.05) (Fig.  5a and 

Fig. 4  Kaplan–Meier analysis of DFS and OS for NSCLC patients stratified by age, gender, stage and histological type
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Table  4). Similarly, patients in the high-risk group pre-
sented remarkably shorter OS compared to those in the 
low-risk groups (HR = 1.54, 95% CI 1.20–1.96, P < 0.05) 
(Fig. 5b and Table 4). Univariate Cox regression analysis 
also indicated that stage II, stage III and squamous histo-
logic type were poor prognostic factors for prediction of 
DFS, and stage II, stage III and stage IV were poor prog-
nostic factors for prediction of OS (Table  4). However, 
subsequent multivariate regression analysis indicated 
that only stage II, stage III and risk score were independ-
ent prognostic factors for prediction of both DFS and OS 

(P < 0.05). These results suggest that the six-gene signa-
ture is valid and reliable across datasets and platforms. 

The six‑gene signature is association with several 
hallmarks
To identify the six-gene signature associated biologi-
cal processes, the correlation of the risk score of the 
gene signature for predicting DFS/OS and the GSVA 
score of cancer hallmark gene sets was investigated. 
As shown in Fig.  6, a total of 7 hallmark gene sets 
(E2F_TARGETS, G2M_CHECKPOINT, GLYCOLYSIS, 

Fig. 5  Correlation between the six-gene signature and DFS/OS of patients in the TCGA dataset. a The distribution of risk scores, patient relapse 
status, and Kaplan–Meier curves of DFS of low- and high-risk groups. b The distribution of risk scores, patient survival condition, and Kaplan-Meier 
curves of OS of low- and high-risk groups
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MITOTIC_SPINDLE, MTORC1-SIGNALING, MYC-
TARGETS-V1, MYC-TARGETS-V2) were identified to 
be correlated with risk score [correlation coefficients (R) 
is higher than or equal to 0.4; P < 0.0001]. Interestingly, 
these biological processes and the risk score displayed 
the same trend, suggesting that activation of theses hall-
marks might participate in the process of tumor progres-
sion and affect the survival of the patients with NSCLC.

Discussion
Numerous reports have indicated that disturbed gene 
expression may be implicated in various aspects of tumor, 
including tumorigenesis, progression and prognosis [19–
21]. Some genes have been considered as prospective 
biomarkers to predict prognosis in NSCLC patients [14, 
22, 23]. However, several concerns limit their prognos-
tic and predicative power, such as inadequate samples, 
lack of DFS prediction, and lack of effective validation. In 
this study, we developed and validated a novel prognos-
tic six-gene signature that was found to be significantly 
associated with both the DFS and OS of NSCLC patients. 
Our results revealed that this classifier could success-
fully identify high-risk and low-risk NSCLC patients with 
significant differences in both DFS and OS. In addition, 
the prognostic value of the six-gene signature was veri-
fied in three GEO datasets and an independent TCGA 
dataset, suggesting the reproducibility and reliability of 
the six-gene signature for both DFS and OS prediction in 
NSCLC.

The clinical prognostic factors in NSCLC include stage, 
age, gender and performance status [6, 24]. Our study 
showed that stage and age were significantly correlated 
with both the DFS and OS of patients in GSE31210; per-
formance status was significantly associated with DFS, 
and stage and performance status were related to OS of 
patients in GSE37745; stage and gender were significantly 
involved in OS of patients in GSE50081. In the entire 
patient cohort, stage was identified as an independent 
prognostic factor for DFS, and age and stage were associ-
ated with OS of NSCLC patients. Furthermore, we per-
formed a stratification analysis on the entire cohort, and 
found that the prognostic power of the six-gene signa-
ture was independent of age, gender and stage. Interest-
ingly, Birim et al. [24] indicated that non-squamous cell 
histology was a risk factor for postoperative outcome in 
NSCLC. Our study showed that histological type had no 
significant association with either DFS or OS in NSCLC. 
While stratification analysis indicated that high-risk 
group had significantly shorter DFS and OS than low-risk 
group for patient with adenocarcinoma but not squa-
mous carcinoma.

Currently, tumor stage has been broadly utilized as a 
strong indicator of survival in NSCLC [25]. However, the 
current staging system is far from accurate in the aspect 
of survival prediction at the individual level [26]. As 
expected in our study, univariate and multivariate analy-
sis showed that stage II, stage III, and stage IV were sig-
nificantly associated with OS and DFS in the entire GEO 

Table 4  Univariate and multivariate Cox regression analysis of the gene signature and survival of NSCLC patients in TCGA 
cohort

HR: hazard ratio; CI: confidence interval; Adeno: adenocarcinoma; Squamous: squamous cell carcinoma

Variables Group Patients
(N)

Univariate analysis Multivariate analysis

HR (95% CI) P HR (95% CI) P

DFS

 Age ≤ 67/> 67 383/378 0.97 (0.75–1.26) 8.30E−01 1.11 (0.85–1.45) 4.30E−01

 Gender Female/male 326/435 0.96 (0.74–1.25) 7.60E−01 1.08 (0.81–1.43) 6.00E−01

 Stage I/II 410/220 1.64 (1.21–2.22) 1.30E−03 1.74 (1.28–2.37) 3.60E−04

 Stage I/III 410/109 2.16 (1.51–3.08) 2.20E−05 2.25 (1.57–3.22) 9.30E−06

 Stage I/IV 410/22 1.76 (0.82–3.80) 1.50E−01 1.56 (0.71–3.40) 2.70E−01

 Histological type Adeno/squamous 395/366 0.65 (0.50–0.85) 1.60E−03 0.58 (0.43–0.77) 1.60E−04

 Risk score Low/high 380/381 1.33 (1.02–1.73) 3.70E−02 1.40 (1.08–1.83) 1.30E−02

OS

 Age ≤ 67/> 67 383/378 1.25 (0.98–1.58) 7.10E−02 1.34 (1.05–1.70) 1.90E−02

 Gender Female/male 326/435 1.22 (0.96–1.57) 1.10E−01 1.19 (0.92–1.53) 2.00E−01

 Stage I/II 410/220 1.51 (1.14–2.00) 4.30E−03 1.45 (1.09–1.93) 1.10E−02

 Stage I/III 410/109 2.07 (1.50–2.85) 9.60E−06 2.04 (1.47–2.83) 1.80E−05

 Stage I/IV 410/22 2.77 (1.59–4.83) 3.20E−04 2.83 (1.60–5.00) 3.40E−04

 Histological type Adeno/squamous 395/366 1.13 (0.89–1.44) 3.20E−01 0.93 (0.71–1.22) 5.90E−01

 Risk score Low/high 380/381 1.54 (1.20–1.96) 5.50E−04 1.48 (1.14–1.91) 3.30E−03
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cohort. However, stage II, and stage III were found to be 
the independent prognostic factors for prediction of both 
DFS and OS in the TCGA database. As documented, 
age is a main indicator of patient survival, and younger 
patients are tended to survive longer than the older ones 
[27–29]. Nevertheless, age alone is not a survival indi-
cator for cancer patients because older patients are less 
likely to receive adjuvant therapy [30]. Multivariate anal-
ysis showed that age was significantly associated with 

OS in the entire GEO cohort and the TCGA cohort, but 
there was no correlation between DFS and age in these 
two cohorts. Thus, compared to age and stage, the risk 
score was a more reliable prognostic factor for NSCLC 
patients.

Several gene mutations have been revealed to be asso-
ciated with the pathogenesis of NSCLC, such as EGFR 
and KRAS mutations [31]. Notably, EGFR or KRAS 
mutated lung cancer accounts for a significant subgroup 

Fig. 6  Association between the risk score of the six-gene prognosis signature and the GSVA score of 7 cancer hallmark gene sets
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of NSCLC, especially in adenocarcinoma [32, 33]. Mark-
edly, targeting EGFR mutations has changed the thera-
peutic paradigm in NSCLC patients harboring EGFR 
mutations [34]. Over the last decade, multiple EGFR 
tyrosine kinase inhibitors (TKIs) have been developed to 
target mutated EGFR, and have achieved a better survival 
in patients with EGFR mutations than in those with the 
wild type [35]. Whereas, KRAS mutations predict a worse 
prognosis among NSCLC patients treated by chemo-
therapy and EGFR-TKIs [36, 37]. In the present study, 
univariate analysis indicated that EGFR mutations, but 
not KRAS mutations, were correlated with both DFS and 
OS, whereas multivariate analysis indicated that EGFR 
mutation status did not act as an independent prognostic 
factor.

In this study, we developed a prognostic six-gene sig-
nature for both DFS and OS prediction in NSCLC. Most 
of these genes have not been well characterized in tumor 
biology, except for CDCP1. CDCP1, also known as CUB 
domain-containing protein 1, is a transmembrane gly-
coprotein, whose phosphorylation is linked with the 
progression and metastasis of several cancers [38, 39]. 
In addition, blocking of CDCP1 has been shown to be a 
potential mode for therapeutic intervention against met-
astatic disease [38, 40]. Chiu et al. [41] showed that the 
ADAM9 metalloprotease enhanced CDCP1 expression 
via activating EGFR signaling pathways in advanced lung 
cancer disease. Ikeda et  al. [42] revealed that CDCP1 
expression was an independent prognostic factor for 
both OS and DFS, and could be used as an useful marker 
for survival prediction of patients with lung adenocarci-
noma. Our study combined these 6 genes into a single 
panel, and established its prognostic value in both DFS 
and OS in NSCLC.

As reported, the complexity of cancer can be decreased 
and presented by a few cancer hallmarks that enable can-
cer cell proliferation and metastasis. These hallmarks 
can offer a framework to understand the cancer diver-
sity. Hence, we focused on detecting the association of 
prognostic gene signature and cancer hallmarks [43]. 
Studies have revealed that DNA replication, cell cycle, 
DNA damage repair, apoptosis, chromosome and gene 
instability, energy supply play important roles in cancer 
progression [44–47]. Coincidentally, the GSVA results 
demonstrated that the six-gene signature was remarkably 
connected with these biological processes.  Specifically, 
E2F targets have been demonstrated to participate in 
DNA replication, cell cycle, DNA damage repair, apopto-
sis [48]. G2M checkpoint, mitotic spindle, and MYC tar-
gets have been reported to contribute to the instability of 
chromosome and gene [49–51]. Utilization of glycolysis-
related metabolic pathway has been implicated to provide 

ATP as a main source of energy supply for cancers [52]. 
Moreover, mTORC1 signaling has been suggested to be 
activated in human fibrolamellar liver carcinoma [53]. 
Demonstrated here, the results of present study demon-
strated that the six-gene signature correlated with several 
cancer-progression associated biological processes which 
supported the DFS/OS predictive ability of the signature. 
Significantly, the correlation analysis in our study showed 
that patients having these activated biological processes 
tended to have adverse outcomes. Thus, this further con-
firmed that our six-gene signature used for predicting 
prognosis was reasonable and reliable.

In this work, some limitations need to be acknowl-
edged. First, a few clinical characters presented an unbal-
anced distribution, such as an overwhelming majority of 
patients in stage I/II and presenting a histological ade-
nocarcinoma type. Thus, the robustness of the six-gene 
signature requires further validation in large-scale pro-
spective investments. Second, most of the genes identi-
fied here are rarely reported in the academic literature, 
and there are no experimental data regarding the identi-
fied signature, thus more evidence is needed to elucidate 
the inherent correlation between the six-gene signature 
and the prognosis of NSCLC patients. Despite these 
drawbacks, our results demonstrate valuable information 
on the importance and significance of the six-gene signa-
ture in both DFS and OS prediction in NSCLC.

Conclusions
In this study, we developed an innovative six-gene prog-
nostic signature for both DFS and OS prediction in 
NSCLC patients. The six-gene signature was an inde-
pendent prognostic factor, and might complement clin-
icopathological factors and facilitate the personalized 
treatment of NSCLC patients. Large-scale prospective 
investments should be applied for further assessment of 
the robustness of this signature in future studies.
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