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Abstract
Background: Cognitive impairment, increasingly recognized 
as a major social burden, is commonly found in chronic kid-
ney disease (CKD) patients. Summary: Vascular damage, ure-
mic toxicity, oxidative stress, and peripheral/central inflam-
mation induced by CKD might be involved in brain lesions 
and ultimately result in cognitive decline. Uncovering the 
pathophysiology of CKD-associated cognitive impairment is 
important for early diagnosis and prevention, which un-
doubtedly prompts innovative pharmacological treatments. 
Key Messages: Here, we sequentially review the current un-
derstanding and advances in the epidemiology, risk factors, 
and pathological mechanisms of cognitive impairment in 
CKD. Furthermore, we summarize the currently available 
therapeutic strategies for cognitive impairment in CKD.

© 2022 The Author(s).
Published by S. Karger AG, Basel

Introduction

Chronic kidney disease (CKD), also known as chronic 
kidney failure, is a gradual loss of kidney function that 
manifests in a decrease in the glomerular filtration rate or 
an increase in urinary albumin excretion. As an impor-

tant risk factor for morbidity, CKD is a major health bur-
den world-widely. According to the 2019 Global Burden 
of Disease, 697.29 million people worldwide suffered 
from CKD, which caused about 1.427 million deaths. 
Global prevalence and incidence of CKD were shown to 
be 9.37% and 0.05%, respectively, in 2019 [1, 2]. CKD-
related complications include kidney disease progres-
sion, acute kidney injury, anemia, mineral and bone dis-
orders, increased all-cause and cardiovascular mortality, 
and especially cognitive impairment [3]. Cognitive im-
pairment and deficits in one or more key brain functions, 
such as learning, memory, and sensory processing, have 
often been observed as accompanying symptoms of CKD, 
with a prevalence that depends on the stage of CKD 
among 16% and 38% [4]. At the end stage of renal disease, 
which requires hemodialysis, 85% of patients endure 
memory loss, difficulty in execution, or language deficits 
[5]. Cognitive impairment begins early in the course of 
the CKD and parallels kidney function decline [6]. A sub-
stantial number of patients with CKD suffer from cogni-
tive dysfunction. Hence, CKD is deemed as one of the 
strongest risk factors for mild cognitive impairment and 
dementia. It is especially worth noting that CKD is close-
ly related to Alzheimer’s disease (AD), stroke, and cere-
brovascular disease [7]. In fact, an 11-year follow-up 
study elucidated that albuminuria and microalbumin-
uria, as early markers of endothelial damage of the renal 
glomeruli, could help predict cognitive decline [8]. How-
ever, the intricate pathogenic relationship and exact 
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modulation mechanisms between CKD and cognitive 
impairment remain unclear and require in-depth clarifi-
cation. Understanding kidney-brain interplay is a multi-
disciplinary issue in the scientific field. These basic scien-
tific findings will provide translational values for devel-
oping new therapeutic strategies to prevent, treat, or 
reverse CKD-related cognitive impairment.

Risk Factors Leading to Cognitive Impairment in CKD

Traditional risk factors for cognitive impairment in 
CKD include aging, female gender [9], education status, 
nonwhite ethnicity, diabetes mellitus [10], hypertension, 

and cardiovascular disease, which have been extensively 
reviewed recently [7, 11–14]. Here, we will discuss the 
nontraditional risk factors in depth, including hyperho-
mocysteinemia, oxidative stress, low estimated glomeru-
lar filtration rate (eGFR), albuminuria, malnutrition, and 
inflammation (shown in Fig. 1).

Low eGFR and albuminuria are both independent risk 
factors for cognitive impairment. A study assessing the 
level of albuminuria demonstrated that urine albumin-
creatinine ratio of 30–299 and ≥300 mg/g is associated, 
respectively, with 31% and 57% higher risk of cognitive 
impairment [15]. This study included a relatively large 
patient cohort with baseline standardized albuminuria 
measurements and a prospective assessment of cognitive 

Fig. 1. Schematic representation of the potential mechanism of 
cognitive impairment in patients with CKD and treatment strate-
gies. In CKD-induced cognitive impairment, vascular hypothesis 
includes systemic hypertension, arteriosclerosis, and uremic tox-
in-related pathways. The nonvascular hypothesis contains purine 
nucleotides, oxidative stress, and FGF23-related pathways. These 
hypotheses together with other known factors such as albuminuria 
or anemia contribute to cognitive impairment. Specifically, CKD-
related vascular damage can contribute to cognitive impairment 
by inducing impaired cerebral hemodynamics, altered brain mi-
crocirculation, or leakage of hemoglobin (HbA1c) and fibrinogen 
from vessels. Accumulation of uremic toxins, including phos-
phate, IS, and PCS, is agonists of the transcription factor AhR in 
endothelial cells. Activation of AhR leads to BBB disruption and 
subsequently increases the transportation of inflammatory im-
mune cells and proteins into the brain. Purine nucleotides alter the 

activity of AChE which is associated with cognitive impairment. 
Oxidative stress leads to the cleavage of APP and Aβ production. 
Increased FGF23 directly impacts hippocampal neurons or inter-
feres with the immune system. Therapies and interventions in-
clude inflammasome-targeted RNA interference approaches such 
as NLRP3 siRNA. The antioxidant drug 4-hydroxy-2,2,6,6-tetra-
methylpiperidine-N-oxyl shows potential to improve cognitive 
dysfunction in the CKD model. Recombinant klotho proteins are 
used to treat and/or prevent CKD by reducing inflammation and 
injury. For risk factors such as anemia, rHuEPO is the standard 
therapy and also acts as a neuroprotective agent. Roxadustat (FG-
4592) is a PHD inhibitor that can stimulate endogenous EPO pro-
duction. These anti-anemia drugs exhibit beneficial effects on 
CDK-induced cognitive impairment. In the context of AD, neu-
ron-specific expressed Aβ can cause BACE-mediated kidney dam-
age. PHD, prolyl-hydroxylase domain.
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function using a validated measure. This finding supports 
the incorporation of albuminuria information into CKD 
classification methods.

Although dialysis differentially benefits CKD patients’ 
life quality and alleviates uremic symptoms, such as de-
pressive symptoms, pruritus, sleep disturbances, etc. [16], 
plenty of studies have shown that patients undergoing di-
alysis are more likely to have cognitive impairment [17]. A 
676-patient study showed that 79.4% of hemodialysis pa-
tients progress to cognitive impairment [18]. A meta-anal-
ysis indicated people treated with hemodialysis have worse 
cognition than the general population, particularly in their 
attention (95% CI: −1.18 to −0.68) [19]. However, these 
meta-analysis studies had uncertain risk of bias. First, they 
were not fully adjusted for education. Second, a wide range 
of tests were used to assess cognition which might cause 
high heterogeneity. Furthermore, other data regarding dif-
ferences between people who received hemodialysis and 
those who received peritoneal dialysis were insufficient.

Uremic toxins are accumulated due to the deteriora-
tion of the renal clearance function and cause many del-
eterious effects, such as systemic inflammation, cardiac 
failure, anemia, immune dysfunction, anorexia, neuro-
logical damage, and cognitive impairment. Uremic toxins 
produced in CKD can pass through the blood-brain bar-
rier (BBB) and cause cognitive dysfunction and neurode-
generation. Uremic toxins such as phosphate, para-cresyl 
sulfate (PCS), indoxyl sulfate (IS), and fibroblast growth 
factor 23 (FGF23) have been reported to increase the risks 
of cognitive impairment in patients with CKD [20]. A 
study recruiting 199 patients with CKD and 84 control 
subjects revealed that the patients with higher serum PCS 
and IS levels had a poorer cognitive function in the early 
stage of CKD [21]. Besides, neuronal damage induced by 
uremic toxins may be more important than disturbed he-
modynamic factors or lipid metabolism in cognitive im-
pairment pathogenesis. Notably, experimental models 
showed that the brain monoaminergic system is suscep-
tible to uremic neurotoxins [22].

Acetylcholinesterase (AChE) activity is closely associ-
ated with dementia and cognitive impairment. Purine 
nucleotides and uric acid, relevant to the increased prev-
alence and progression of CKD, have been found to alter 
the activity of AChE. Other CKD-associated metabolites, 
such as adenine, hypoxanthine, xanthine, and 2,8-dihy-
droxyadenine, also potentially play a role in inhibiting the 
activity of AChE [23].

Homocysteine, which has been verified detrimental to 
the brain, increases in the blood of CKD patients and 
therefore is related to worse cognitive and motor impair-

ment. The possible underlying mechanism is that homo-
cysteine may contribute to the pathogenesis of neuronal 
damage by overstimulation of N-methyl-D-aspartate re-
ceptors resulting in excessive Ca2+ influx and reactive ox-
ygen generation [24]. From this point, homocysteine may 
play a vital role in vascular dementia and AD [25].

Cystatin C, a protease inhibitor, is a measurement in-
dicator of kidney function and a biomarker of cognitive 
impairment. A study found that a higher serum cystatin 
C level is associated with a greater likelihood of poor cog-
nitive attention and executive function performance in 
individuals with CKD [26]. The results of this study are 
also consistent with longitudinal cohort studies of older 
adults that demonstrated an association between elevated 
cystatin C levels and incident-induced cognitive impair-
ment [27, 28].

Anemia and malnutrition are commonly observed 
among patients with CKD, which may impair oxygen de-
livery to the brain, affect brain metabolism, and increase 
the prevalence and severity of cognitive impairment. Ad-
ministration of erythropoietin (EPO) in CKD patients 
with anemia significantly improves cognitive function 
[29].

Vitamin D deficiency has been associated with multi-
tudinous physiopathologic mechanisms, including mus-
cle weakness, bone loss, cardiovascular diseases, oxidative 
stress, inflammation, immune suppression, and neuro-
cognitive impairment [30]. Vitamin D exerts neuropro-
tective and regulatory roles in the central nervous system, 
and its deficiency is general in patients with CKD. Hypo-
vitaminosis D was found to be linked with endothelial 
dysfunction in nondialysis CKD patients [31]. Therefore, 
endothelial function may be improved and the cardio-
cerebrovascular events may be reduced by vitamin D sup-
plementation in CKD patients [32].

Mechanisms of Cognitive Dysfunction in CKD

Several possible physiopathologic mechanisms are un-
derlying the cognitive dysfunction in CKD, including 
vascular/nonvascular hypothesis and risk factor-related 
pathways. Factors related to any of these pathways have 
the potential to promote the development of cognitive 
impairment (shown in Fig. 1). Further inquiry into these 
mechanisms is warranted.

Vascular Damage
Brain microhemorrhages in CKD have been con-

firmed by preclinical studies and clinical imaging of the 
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brain in patients [33]. Unquestionably, brain microbleeds 
indicate the BBB breakdown, which has been demon-
strated intensively in AD settings. Hence, CKD patients 
are at a greater risk of developing stroke and cognitive 
impairment. As end organs on parallel trajectories, the 
brain and kidney have similar anatomical and functional 
features of the vasculature system, giving them a unique 
susceptibility to vascular injury. In general, the risk of de-
veloping atherosclerosis, hypertension, atrial fibrillation, 
and diabetes are increased by CKD-related vascular risk 
factors. In particular, vascular risk factors, such as inflam-
mation and oxidative stress, insult low-resistance vascu-
lar beds and endothelial structures, trigger vascular 
pathologic changes, ultimately induce minor artery dis-
eases in the brain and kidney.

Vascular damage, impaired cerebral hemodynamics 
and altered extracellular milieu are among the most im-
portant proposed mechanisms involved in the cognitive 
dysfunction in CKD. Increased artery stiffness and mi-
crovascular damage in CKD patients are related to the 
damage of brain microcirculation [34], which is con-
firmed to be related to cognitive impairment [35]. In ad-
dition, a cross-sectional study that enrolled 151 CKD pa-
tients with cognitive impairment showed an interconnec-
tion between kidney function, central pressure pulsatility, 
large artery damage, and the damage of brain microcircu-
lation [36]. CKD patients concomitant with the cerebral 
vascular disease showed higher global cerebral blood flow 
than control subjects [37], potentially affecting brain 
function and cognitive performance [38]. In the CKD an-
imal model, widespread macrovascular and microvascu-
lar damage exists in the subcortical monoaminergic and 
cholinergic systems [13].

Hemoglobin A1c (HbA1c) and fibrinogen as vascular 
risk factors are investigated to be potential predictors of 
cognitive impairment. After blood vessel injury, HbA1c 
and fibrinogen leak out of vessels and participate in the 
pathological process of CKD. It is noteworthy that higher 
HbA1c and fibrinogen predispose CKD patients to have 
worse memory and executive function. In a prospective 
study of 119 CKD patients at stages 3–5 and 54 control 
patients of the same age without CKD, linear regression 
analysis showed HbA1c and fibrinogen can predict cog-
nitive ability among patients with CKD [39]. The strength 
point of this study was that the control group of patients 
without CKD had a similar vascular risk profile. These 
observations are therefore very relevant in the clinical set-
ting.

Uremic Toxicity
Uremic toxicity may play a vital role in the elevated 

risk of developing cognitive impairment found among 
patients with CKD. Accumulation of uremic toxins may 
cause BBB breakdown, neurotransmitter derangement, 
and drug pharmacokinetics disturbance. The BBB is im-
portant for keeping the central nervous system stable 
from the peripheral circulation. Endothelial dysfunction 
is commonly observed in CKD patients. Impaired endo-
thelial function in the kidney manifests in impaired glo-
merular filtration and proteinuria leakage. The renal tox-
ic effects of uremia, calcium-phosphate, and other meta-
bolic disturbances circularly exaggerate inflammatory or 
oxidative response, which may directly or indirectly in-
sult the brain vasculature and accelerate cognitive de-
cline [40]. One study found that elevated urea alters the 
actin cytoskeleton and tight junction proteins in cultured 
endothelial cells and consequently breaks down the BBB 
[33]. Aryl hydrocarbon receptor (AhR), a ligand-activat-
ed transcription factor widely expressed in endothelial 
cells, has been discovered to induce the expression of xe-
nobiotic-metabolizing enzymes, inflammatory cyto-
kines, and adhesion molecules. The uremic toxin IS, act-
ing as an agonist of AhR, activates the endothelial cells 
[41] and leads to BBB disruption in animal CKD model 
with cognitive impairment [42]. Hence, uremic toxins 
have emerged as potent ligands of AhR and are associ-
ated with cognitive dysfunction in patients with CKD 
[43].

Besides, urea and other metabolic waste products dif-
fuse into the gut lumen and induce changes in the micro-
biota, leading to the generation of proteolysis waste prod-
ucts, such as IS, PCS, indole-3-acetic acid, and so on. Re-
cent studies have suggested that IS and indole-3-acetic 
acid derived from the gut microbiota may participate in 
the inflammatory signaling pathway in CKD patients 
[44]. Thus, “gut-derived uremic toxins” may induce vas-
cular damage and play a crucial role in the pathogenesis 
of cognitive impairment in CKD. Accumulating evidence 
suggests that to reduce nephrotoxin production or accu-
mulation and/or to induce the production of renal-pro-
tective metabolites through manipulation of the gut mi-
crobiota represents a potential therapeutic strategy to im-
prove renal function. And experimental evidence from 
the use of prebiotics, probiotics, and symbiotics already 
showed promising results.

Peripheral/Central Inflammation
Inflammation, another detrimental factor for cogni-

tive impairment, plays a non-negligible role in CKD-as-
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sociated cognitive decline. The circulating levels of spe-
cific inflammatory cytokines and immune cells have been 
found to change significantly in CKD patients.

The cytokines most frequently associated with the 
pathogenesis of CKD are IL-1β, IL-6, TNF, transforming 
growth factor-β (TGF-β), and so on, which have been 
demonstrated to be involved in the process of cognitive 
dysfunction. IL-1β has been reported to participate in ag-
ing processes and cognitive impairment in multiple brain 
domains. Correlation between high IL-6 levels and poor 
executive function and degeneration of GABAergic inter-
neurons were also identified [45, 46]. It was shown that 
elevated levels of TNF-α derived from CX3CR1+ mono-
cytes could modulate learning and learning-dependent 
dendritic spine remodeling, consequently inducing cog-
nitive dysfunction [47]. Importantly, inhibition of TNF-α 
showed potential to improve cognitive performance [48]. 
TGF-β is a crucial regulator of cell survival and differen-
tiation, BBB integrity, memory formation, and neuronal 
plasticity [49]. In CKD, TGF-β can induce renal fibrosis 
via Smads and other signaling pathways [50]. However, it 
remains to be fully explored whether certain inflamma-
tory cytokines are the cause of the cognitive and behav-
ioral changes associated with CKD. The role of the im-
mune system in CKD-related brain dysfunction is needed 
to be further elucidated.

Changes in cytokines and other biomolecules affect 
immune cell differentiation, activation, and function. 
The immune equilibrium plays an important role in 
CKD-related cognitive decline by maintaining the body’s 
tolerance and homeostasis. The main types of immune 
cells associated with the development and progression of 
CKD are macrophages and Th2 cells [51]. Of note, anti-
inflammatory macrophages are related to the incidence 
of kidney fibrosis [52]. In a unilateral ureteral obstruc-
tion-induced kidney fibrosis model, Th2 cells were proved 
to play pivotal promoting roles [53]. Besides, Treg cells 
play a critical role in maintaining immune equilibrium by 
secreting anti-inflammatory cytokines, including IL-10, 
IL35, TGF-β, and so on. A study enrolling 71 patients 
with CKD elucidated that peripheral blood Treg and 
Th17 cell frequencies are lower in the group with cogni-
tive impairment compared to those without cognitive im-
pairment [54], indicating that peripheral blood Treg/
Th17 cells are associated with cognitive impairment in 
CKD patients. However, the underlying mechanisms 
such as how these immune cells contribute to the main-
tenance of immune equilibrium, which specific cytokine 
is involved in the downstream of immune reaction, what 
kind of pathways are regulated remain unclear.

Oxidative Stress
Oxidative stress has been demonstrated as an impor-

tant factor in aging-related neurodegenerative diseases, 
including AD. The connection between oxidative stress 
and cognitive dysfunction has been extensively investi-
gated. Along with aging, reactive oxygen species (ROS) 
production increases and antioxidant function reduces, 
directly affecting synaptic activity and neurotransmis-
sion, leading to cognitive dysfunction [55]. Mechanisti-
cally, overloaded oxidative stress leads to cause cleavage 
of APP and Aβ production which are important patho-
physiological characteristics of cognitive dysfunction. 
As an important risk factor in cognitive dysfunction, 
oxidative stress is also prevalent in CKD. As a metabolic 
organ, the kidney is rich in oxidation reactions in mito-
chondria, making it vulnerable to oxidative stress-in-
duced damage. Several groups have shown that oxida-
tive stress-associated inflammation and anemia can ac-
celerate kidney disease progression. Elevated plasma 
oxidative stress and Aβ have been observed in CKD pa-
tients, which undoubtedly contribute to pathological 
changes within the brain and accelerate cognitive dys-
function [56]. Potentially, using the plasma oxidative 
stress and Aβ levels, a diagnostic method for the identi-
fication and confirmation of cognitive decline in CKD 
patients can be established.

FGF23/Alpha Klotho Axis
CKD is well characterized by the increased FGF23 and 

the deficiency of klotho, which is the co-receptor of 
FGF23. FGF23, produced in bones, plays an important 
role in mineral homeostasis. The co-receptor membrane 
alpha klotho (α-klotho) is expressed in the kidney and 
mediates a specific FGF23 signal pathway. The extracel-
lular domain of transmembrane α-klotho can be cleaved 
by proteases and released into the circulation as soluble 
α-klotho. Recent findings suggest that FGF23 directly af-
fects hippocampal neurons and may consequently impair 
memory and learning function in CKD patients [57]. 
Moreover, it was reported that FGF23 has direct effects 
on leukocytes and macrophages, mediating various im-
mune responses [58]. In summary, an in-depth under-
standing of the molecular mechanisms of the FGF23/α-
klotho axis is significant for uncovering the cognitive de-
cline and allows us to find new therapeutic strategies in 
CKD patients.
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Impact of Cognitive Impairment on Kidney Function 
in AD

Although the molecular interaction between the kid-
ney and brain is a recent research front in the scientific 
field, in traditional Chinese medicine, the kidney was be-
lieved to play an important role in maintaining the func-
tion of the brain [59]. AD is the most common neurode-
generative disease that is characterized by cognitive dete-
rioration and memory loss. Like CKD, multiple risk 
factors, including hypertension, atherosclerosis, and dia-
betes mellitus, are also associated with AD. Shared patho-
physiology may lead to cognitive decline in the progres-
sion of both CKD and AD.

Emerging evidence suggests that the renin-angiotensin 
system (RAS) may play roles in AD and CKD. Both pe-
ripheral and central RAS function alterations contribute 
significantly to cardiovascular homeostasis [60]. Clinical 
investigations suggested the association between angio-
tensin II type 1 receptor blockade and improved cognitive 
function and demonstrated an increased angiotensin II 
type 1 receptor expression in the postmortem cortex of 
AD patients in comparison with control patients [61]. An-
tihypertensive drugs including angiotensin receptor 
blockers (ARBs) and angiotensin-converting enzyme in-
hibitors (ACEIs) decrease the risk of AD [62]. The use of 
ARBs such as losartan correlates with reduced onset and 
progression of AD. One study found that losartan could 
improve the cognitive performance in a mouse model of 
AD [63]. Besides, uremic toxin IS was proved to enhance 
leukocyte-endothelial interactions through upregulation 
of E-selectin [64], which is notable in AD development. 
CKD and AD are both characterized by the decrease of 
FGF23 co-receptor klotho. Recently, upregulation of 
klotho was shown to be a neuroprotective factor [65]. As 
discussed in Risk Factors Leading to Cognitive Impair-
ment in CKD, kidney injury can contribute to impaired 
EPO secretion. In CKD, tubular-interstitial fibrosis leads 
to the loss of EPO secretion [66], while EPO was found to 
have the function to prevent Aβ accumulation by alleviat-
ing lipid peroxidation in animal experiments [67]. There-
fore, EPO supplements may improve cognition in AD. Re-
garding the vitamin D deficiency in CKD, it was found 
that higher levels of active vitamin D were associated with 
better cognitive performance in AD patients. A 7-year fol-
low-up indicated higher vitamin D dietary intake lowers 
the risk of developing AD among older women [68].

Interestingly, in an APP23 AD transgenic model, it 
was found that the increased APP protein can promote 
BACE1 expression in the kidney which contributes the 

kidney damage [69]. This highlights a possible bidirec-
tional communication between brain and kidney in the 
context of AD. In the present review, we provided an 
overview of the factors potentially involved in kidney-
brain crosstalk. In our unpublished data generated from 
a cross-sectional AD patient cohort, we found that kidney 
injury-related metabolites such as creatinine and sarco-
sine are elevated in the plasma of AD patients. Despite the 
emerging evidence, significant advances in both clinical 
and experimental settings are needed to strengthen the 
conclusions.

Therapies and Interventions for Cognitive 
Impairment in CKD

Understanding the currently applied prevention and 
management strategies for CKD is critical for the treat-
ment of CKD-related cognitive impairment [70]. Besides, 
as discussed in Mechanisms of Cognitive Dysfunction in 
CKD, several mechanisms were proposed to connect 
CKD with cognitive impairment. Therefore, interven-
tions targeting those mechanisms also hold great prom-
ise. The following section will discuss these strategies 
which could potentially reduce the burden of dementia in 
CKD patients (shown in Fig. 1).

Anti-Anemia Drugs
Recombinant human EPO (rHuEPO), as standard 

therapy for CKD-associated anemia, has shown a neuro-
protective effect. In a study evaluating the impact of 
rHuEPO on kidney damage and anemia in rats with CKD, 
treatment with rHuEPO not only improves the anemia 
but also significantly decreases the expression of BACE1, 
presenilin 1, Aβ, and lipid peroxidation, along with im-
proved neuropsychological test scoring and sensorimo-
tor and cognitive functions [71]. Therefore, rHuEPO can 
be considered as an effective neuroprotective agent in the 
context of CKD-associated cognitive dysfunction [72].

The inhibitors of the prolyl-hydroxylase domain, clas-
sical oral drugs for anemia, work by activating the hypox-
ia-inducible factors and stimulating the production of en-
dogenous EPO. AstraZeneca recently published the data 
of roxadustat (FG-4592) from a phase III clinical trial 
which showed that the average hemoglobin levels and 
baseline changes from 28 to 52 weeks are a statistically 
significant improvement in dialysis-dependent CKD pa-
tients with anemia who received roxadustat and EPO al-
pha (epoetin alfa) combination therapy [73]. On August 
19, 2021, the European Commission has approved the 
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EvrenzoTM (roxadustat) for the treatment of anemia 
symptoms in adult CKD patients [74]. Interestingly, one 
study showed that roxadustat could play an important 
role in promoting hippocampal neurogenesis and synap-
tic plasticity in rats [75]. As such, roxadustat may be used 
to treat anemia and improve the cognitive impairment in 
CKD patients.

Inhibitors of the RAS
RAS plays an important role in the pathogenesis of 

CKD. Notably, uremic toxins, such as IS, might induce 
the production of RAS metabolites in the CNS. As a re-
sult, the overload of angiotensin II in the brain might 
cause oxidative stress leading to cognitive dysfunction 
[53]. Additionally, nephrectomy accelerates cognitive 
impairment in AD mice through angiotensin II. Several 
studies have suggested that treatment with ARBs is asso-
ciated with a lower risk of cognitive decline in dementia 
or AD [76, 77]. The amelioration of CKD-induced cogni-
tive impairment in 5XFAD mice by ARB olmesartan ap-
pears to be mediated by the suppression of BBB disrup-
tion or oxidative stress [78]. Furthermore, treatment with 
angiotensin II receptor blocker telmisartan was shown to 
prevent spatial memory impairment by decreasing brain 
oxidative DNA damage and lipid peroxidation and im-
prove cognitive impairment in the CKD mouse model 
[79], reinforcing the hypothesis that brain RAS is acti-
vated in CKD and possibly contributes to the associated 
cognitive decline [79]. Importantly, the application of 
ACEI captopril in the nephrectomy rat model suppressed 
the tyrosine nitration production, oxidative stress, and 
ROS-NO interaction in the cerebral cortex [80]. In gen-
eral, the classical treatment strategy aiming to control the 
vascular risk factors such as ACE or ARB can improve 
cognitive function.

Anti-Inflammatory Agents
Inflammation is known to be associated with CKD pro-

gression. Recent studies have found that peripheral in-
flammation can significantly contribute to the central in-
flammation in different disease settings. In our previous 
finding, we found that gut microbiota-mediated periph-
eral inflammation can induce central inflammation in AD 
transgenic mice [81]. Therefore, inhibition of CKD-relat-
ed peripheral inflammation to prevent cognitive impair-
ment attracts much attention in the field. For example, 
increased uric acid could modulate NLR pyrin domain-
containing protein 3 (NLRP3)/IL-1β-related pathways by 
ROS activation and K+ efflux and consequently cause vas-
cular endothelial cell damage, which is closely related to 

microinflammation, oxidative stress, and disorders of lip-
id metabolism in the early stages of CKD. As such, an in-
flammasome-targeted RNA interference approach treats 
kidney injury and disease. In mice with 5/6 nephrectomy, 
knockout of NLRP3 can maintain better mitochondrial 
morphology and higher mitochondrial DNA copy num-
ber, indicating amelioration of mitochondrial abnormal-
ity [82]. NLRP3 siRNA reduces the expression of NLRP3 
in subjects diagnosed with CKD and/or renal injury [83]. 
However, there are still no direct results demonstrating 
the cognition benefit from NLRP3 silence.

Anti-Diabetic Drugs
Type 2 diabetes mellitus (T2DM) is the main cause of 

CKD. In this population, the application of sodium-glu-
cose cotransporter-2 (SGLT-2) inhibitors and glucagon-
like peptide-1 receptor agonists (GLP-1 RAs) was shown 
to be correlated with the decreased risk of cardiovascular 
and renal events. GLP-1 RAs, a new class of anti-hyper-
glycemic drugs, are demonstrated to improve cardiovas-
cular and renal events in diabetic kidney disease patients 
and show cognitive-enhancing effects in animals [84].

Accumulated evidence in the past few years suggests 
that SGLT-2 inhibitors present potent neuroprotective 
properties. In clinical trials of patients with T2DM, these 
agents were shown to reduce albuminuria and protein-
uria by 30–50% and the incidence of composite hard re-
nal outcomes by 40–50% [85]. Meanwhile, SGLT2 inhib-
itors are detected in the central nervous system of afore-
said clinical subjects and possibly have neuroprotective 
properties. As expected, SGLT2 inhibition by empa-
gliflozin has been shown to reduce amyloid burden in 
cortical regions of APP/PS1xd/db mice. Empagliflozin 
has a beneficial effect on cognitive function, which may 
be connected to an increase in cerebral brain-derived 
neurotrophic factors. Other SGLT2 inhibitors such as 
canagliflozin and dapagliflozin were shown to have 
AChE-inhibiting activity [86], which can be connected to 
the neuroprotective function.

Dipeptidyl peptidase-4 (DPP-4) inhibitors are safe and 
well tolerated in T2DM patients with CKD and may re-
duce major risk factors for diabetic nephropathies, such 
as hyperglycemia and albuminuria [87]. Preclinical and 
clinical studies suggest that DPP-4 inhibitors may exert 
significant pleiotropic effects on CKD. Linagliptin, a 
DPP-4 inhibitor prescribed for T2DM patients who have 
CKD up to stage 3 and/or have eGFR (mL/min/1.73 m2) 
levels down to 45 or down to 30, shows beneficial effects 
in protecting against occurrence or progression of cogni-
tive decline and/or reducing the risk of cognitive impair-
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ment or dementia [88]. Since renal failure and T2DM are 
often comorbidities, the pharmacokinetics of T2DM 
agents may be affected, potentially increasing drug expo-
sure and risk of adverse events.

Anti-Vascular Calcification Agents
Vascular calcification, another pathological feature in 

CKD, can induce renal dysfunction through high phos-
phate in mouse models of CKD with 5/6 nephrectomy. 
HMGB-1, a nuclear DNA-binding protein involved in in-
flammation, was recently identified as a proinflammatory 
mediator of tissue injury [89]. A cross-sectional study re-
vealed that HMGB-1 is elevated significantly in CKD pa-
tients and correlates with glomerular filtration rate [90]. 
Another study suggested that HMGB1 is involved in vas-
cular calcification associated with CKD via a mechanism 
involving the β-catenin [91]. Noteworthy, HMGB1 an-
tagonists such as K883 have been tested in the preclinical 
treatment study of CKD and neurodegenerative diseases 
[92], which may serve as a promising treatment option. 
Further clinical studies, in placebo-controlled and dou-
ble-blind way, are needed to elucidate the functional role 
of HMGB1 in CKD.

Others
Klotho, as an anti-aging protein mainly expressed in 

the kidney, is significantly associated with CKD develop-
ment and progression. The deficiency of klotho results in 
white matter hyperintensities, microbleeds, microinfarc-
tions, and cerebral atrophy through chronic inflamma-
tion, endothelial dysfunction, and vascular calcifications. 
Hence, changes in klotho levels may play a role in the de-
velopment of cognitive impairment in CKD patients. Ob-
viously, recombinant klotho proteins might be a hopeful 
treatment or prevention for CKD and associated cogni-
tive impairment in the near future [93]. Importantly, giv-
en the critical role of oxidative stress in CKD-induced 
cognitive impairment, the anti-oxidative agents hold 
great promise for the treatment. One study showed that 
treatment with the antioxidant 4-hydroxy-2,2,6,6-tetra-
methylpiperidine-N-oxyl significantly improved cogni-
tive dysfunction in uremic mice [94]. A very recent study 
reported an increase of urine flow in APOE4-knock-in 
mice with bumetanide improved cognitive impairment. 
This finding in the animal model was consistent with the 
observation that patients using bumetanide had low AD 
risk [95]. Several proofs of principle strategies were pro-
posed based on these findings for the management of 
CKD-related cognitive impairment. However, their clin-
ical application will need to be assessed in the future.

Conclusion

Clinical characteristics of CKD patients include white 
matter injury, cerebral microbleeds, vascular dysfunc-
tion, and endothelial function, which are also shared by 
neurodegenerative diseases, including AD. From the ho-
listic perspective, it is critical to consider the effects of 
distant tissue, such as kidneys, on the function of the 
brain and seek to understand the complex pathophysio-
logical link between the brain and kidney in the future. In 
this review, we first discussed from the perspective of vas-
cular injury. Due to the brain and the kidneys having 
many common anatomic and vasoregulatory features, 
CKD patients have cerebral hemodynamic change, which 
is likely to be the leading cause of cognitive impairment. 
In addition to cerebrovascular causes, other potential 
mechanisms, such as endothelial toxicity of the uremic 
state, could also be involved in cognitive impairment in 
CKD patients. Besides, we also discussed mechanisms 
linking to purine nucleotides, oxidative stress, and FGF23, 
which are still in the early stage and need to be further 
characterized in the future. The current treatment op-
tions for CDK aim at common risk factors, including 
ACEIs and ARBs, SGLT-2 inhibitors, GLP-1 RAs, and 
DPP-4 inhibitors. Other interventions such as compensa-
tory EPO and the reduction of inflammation and oxida-
tive stress may help ameliorate patients' clinical symp-
toms. In conclusion, the kidney and the brain interact in 
a strong and complicated way, often leading to the abnor-
mal cognitive function for patients with CKD. Therefore, 
understanding the pathophysiologic interactions be-
tween brain function and kidney impairment is impor-
tant for developing new therapies for the management of 
cognitive impairment in CDK patients.
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