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Abstract

Gene-based association analysis is an effective gene-mapping tool. Many gene-based

methods have been proposed recently. However, their power depends on the underlying

genetic architecture, which is rarely known in complex traits, and so it is likely that a combi-

nation of such methods could serve as a universal approach. Several frameworks combin-

ing different gene-based methods have been developed. However, they all imply a fixed set

of methods, weights and functional annotations. Moreover, most of them use individual phe-

notypes and genotypes as input data. Here, we introduce sumSTAAR, a framework for

gene-based association analysis using summary statistics obtained from genome-wide

association studies (GWAS). It is an extended and modified version of STAAR framework

proposed by Li and colleagues in 2020. The sumSTAAR framework offers a wider range of

gene-based methods to combine. It allows the user to arbitrarily define a set of these meth-

ods, weighting functions and probabilities of genetic variants being causal. The methods

used in the framework were adapted to analyse genes with large number of SNPs to

decrease the running time. The framework includes the polygene pruning procedure to

guard against the influence of the strong GWAS signals outside the gene. We also present

new improved matrices of correlations between the genotypes of variants within genes.

These matrices estimated on a sample of 265,000 individuals are a state-of-the-art replace-

ment of widely used matrices based on the 1000 Genomes Project data.

Author summary

Gene-based association analysis is an effective gene mapping tool. Quite a few frameworks

have been proposed recently for gene-based association analysis using a combination of

different methods. However, all of these frameworks have at least one of the disadvan-

tages: they use a fixed set of methods, they cannot use functional annotations, or they use
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individual phenotypes and genotypes as input data. To overcome these limitations, we

propose sumSTAAR, a framework for gene-based association analysis using GWAS sum-

mary statistics. Our framework allows the user to arbitrarily define a set of the methods

and functional annotations. Moreover, we adopted the methods for the analysis of genes

with a large number of SNPs to decrease the running time. The framework includes the

polygene pruning procedure to guard against the influence of the strong GWAS signals

outside the gene. We also present new improved matrices of correlations between the

genotypes of variants within genes, which now allows to include ultra-rare variants (MAF

< 10−4) in analysis.

This is a PLOS Computational Biology Methods paper.

Introduction

Gene-based association analysis is an effective replacement of genome-wide association analy-

sis (GWAS) in identification of rare genetic variants [1, 2]. Many gene-based methods have

been proposed recently. Their power depends on the underlying genetic architecture that is

rarely known in complex traits. Therefore, a combination of such methods could serve as a

universal approach.

Among popular combined tests, SKAT-O was the first, for which the distribution of test sta-

tistics was analytically described [3]. For other combined tests, p-values were estimated empiri-

cally at the cost of dramatically increased computation time. The task to analytically combine

the p-values obtained by different methods has been solved in the aggregated Cauchy omnibus

test, ACAT [4]. This gave impetus to create a range of frameworks in order to one-by-one cal-

culate a number of gene-based tests and then combine them by ACAT [5–9]. The frameworks

differ from one another by the task, input data, methods used, and ways to include functional

biological annotations. All these frameworks have a disadvantage: they are not flexible. They

use the fixed set of methods, weights and combinations of functional annotations. Moreover,

the majority of existing frameworks use individual phenotypes and genotypes as input data.

Such data cannot be deposited in open-access databases, and so they are unavailable to a wide

range of investigators. Recently, it was demonstrated that all popular methods of gene-based

association analysis based on the linear regression models can use summary statistics instead

of individual data [10]. Previously, we presented formulas for the wide range of association

tests and implemented them in the sumFREGAT package [11].

The framework named STAAR (variant-set test for association using annotation informa-

tion) stands out among others as a comprehensive and powerful tool that effectively incorpo-

rates SNP-weighting by allele frequencies, variant categories and multiple complementary

annotations [6]. Here we propose the extended and modified version of the STAAR frame-

work, which we called sumSTAAR. The modification concerns the input data: STAAR uses

raw genotypes and phenotypes, and sumSTAAR uses GWAS summary statistics (effect sizes,

standard errors, sample sizes etc.). Extension relates to the gene-based association analysis

methods used: STAAR uses a fixed set of three methods, and sumSTAAR uses an arbitrary set

including up to six methods.

The methods comprised by the sumSTAAR framework are modified in two ways compared

with those previously described [11]. First, they involve a special algorithm for the analysis of

large genes with>500 SNPs. Second, they use more efficient computational algorithms for
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matrix operations. An additional empowering feature of the framework is the use of new LD

matrices estimated on an extended sample: 265K instead of 503 individuals from the 1000G

project. For the first time, due to these high-coverage estimates, it became possible to include

the large amount of rare variants when analyzing summary statistics with a wide range of pow-

erful gene-based methods. We also present the procedure of polygene pruning to guard against

the influence of strong association signals outside the gene on the results of gene-based associ-

ation analysis [12].

Methods

Gene-based association analysis

The sumSTAAR framework combines (a set of) the following methods: burden test (BT),

SKAT, SKAT-O, aggregated Cauchy association test (ACAT-V), the tests using functional linear

regression model (FLM) and principal component analysis (PCA). Variant-specific weights can

be applied to all of these methods. We also introduced the probabilities of genetic variants being

causal estimated using different functional annotations in BT, SKAT, SKAT-O, FLM, PCA and

ACAT-V. All these modified tests and the parameters of their distributions are presented in S1

Text. The sumSTAAR() function (Fig 1) allows the user to arbitrarily choose a set of tests that

differ in method, weighting function and probabilities of genetic variants being causal, calculate

these tests, and then combine them using the aggregated Cauchy omnibus test, ACAT.

Analysis of large genes

To decrease the running time for association analysis of genes with a large number of SNPs,

we propose the following algorithm. Using thresholding technique, we divide all SNPs within

a gene into two groups by p-values, which correspond to their weighted z-scores. Since multi-

ple linear regression models include SNP-specific weights, we form SNP groups taking into

account these weights. We used a threshold of 0.8, which was selected empirically (see below).

We apply a chosen gene-based test to the group with the smaller weighted p-values and calcu-

late the simple mean weighted p-value for another group. Then we combine p-values obtained

for the two groups by ACAT. Obviously, this algorithm is an approximation to the chosen

gene-based test, however it proves to be effective for the genes with more than 500 SNPs. We

introduced it in SKAT, SKAT-O, PCA and FLM methods.

Selecting the threshold

To choose the threshold, below which weighted p-values are considered as small when analyz-

ing large genes, we performed an empirical assessment of the approximation on the material

of summary statistics for neuroticism from UK Biobank dataset [13]. We calculated the

approximated SKAT statistics using a range of values as threshold (from 0.05 to 0.95) on 2,103

genes having from 500 to 10,000 SNPs. For each threshold value, we measured the total elapsed

time and calculated R2 between the original and approximated SKAT statistics (log10(p-val-

ues)). Since the approximated SKAT p-values deviated in both directions from original ones,

we assessed both deviances using the formula

dev ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i

ðlog
10
PAi � log

10
POiÞ

2
r

:

Here PAi and POi are the approximation and original p-values for the i-th gene, respectively;

dev for conservativeness and inflation of the approximated test statistics was calculated using

i 2 fPAi > POig and i 2 fPAi < POig, respectively.
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Real data analysis

To test and evaluate the performance of sumSTAAR, we used two real data sets from the UK

Biobank project [13, 14]. Sociodemographic, physical, lifestyle and health-related characteris-

tics of the UK Biobank cohort have been reported by [15].

UK Biobank whole exome sequencing data and phenotype of the chronic ischaemic heart

disease (IHD, ICD-10 code I25) contained 153,379 unrelated individuals (12,931 cases /

Fig 1. Workflow schematic. (A) Each set of SNPs (all, non-coding, exonic, nonsynonymous and others) is analyzed separately. (B) Input data for sumFREGAT

include GWAS summary statistics (p-values and effect sizes), correlations between genotypes calculated using the same or reference sample, the matrix of weighting

functions defined by the parameters of the beta distribution, the probabilities of SNPs being causal (e.g., estimated using different functional annotations http://favor.

genohub.org/). The list of methods can comprise an arbitrary subset of BT, SKAT, SKAT-O, PCA, FLM, and ACAT-V. All methods use summary statistics as input.

For each method, region-based association analysis is repeatedly performed using different combinations of the weighting functions (i 2 [1, I]) and probabilities of

SNPs being causal (j 2 [0, J]). ACAT is used for combining the p-values obtained by each method under different weighting functions and probabilities, and then for

combining the results obtained by various methods.

https://doi.org/10.1371/journal.pcbi.1010172.g001
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140,448 controls) with European ancestry (project #59345). We analyzed 110,538 variants cov-

ering 1,927 genes from chromosome 1 after the following filters: call rate> 0.98, MAC� 5

and MAF< 0.01. Sex, age and batch were used as covariates. These data were used for compar-

ing the results of STAAR and sumSTAAR.

GWAS summary statistics for neuroticism contain information about the association for

10,847,151 imputed SNPs (MAF > 0.001 and INFO> 0.9) from a sample of 380,506 individu-

als and are freely available at https://ctg.cncr.nl/software/summary_statistics. Neuroticism lev-

els were measured using the Eysenck Personality Questionnaire, Revised Short Form [16],

consisting of 12 dichotomous items (0, 1). The quantitative trait was defined as a sum of 12

items (for details, see Nagel et al., 2018 [17]). These data were used for testing the new algo-

rithm for analysis of large genes and for estimating the efficiency of different weighting func-

tions and functional annotations defined via eight integrative scores (aPCs) from FAVOR v.2

(http://favor.genohub.org/) [6].

LD matrices

The LD matrices of genotype correlations are required as input data for all packages using

summary statistics. Using the UK Biobank resource under application #59345, we calculated

Pearson correlation coefficients (r) between genotypes of variants within gene for 19,426 genes

using 265,000 participants of European ancestry from the UK Biobank cohort [14] and

LDstore software v1.1 [18]. Only variants with MAF>10−5 and imputation quality r2>0.3 were

used for the calculations.

Results

All three gene-based methods implemented in STAAR (BT, SKAT and ACAT-V) are available

in the sumSTAAR framework. We analytically showed the equivalence of these tests between

the frameworks (see S1 Text). We also numerically compared the results obtained in STAAR

and sumSTAAR using simulated data (S2 Text) as well as UK Biobank exome sequencing data

and phenotype of chronic ischaemic heart disease (S3 Text). STAAR implies an omnibus

weighting scheme of combining multiple differently weighted tests (see S1 Fig). Using sum-

mary statistics, we reproduced this scheme in sumSTAAR and compared the results with those

obtained by STAAR. As can be seen in S2 and S3 Figs, there is excellent agreement between

the results obtained by two packages.

Then, we tested the new algorithm developed for analysis of large genes and picked up the

threshold separating the two groups of SNPs in accordance with their weighted p-values. We

tried to find a reasonable compromise between approximation accuracy and computation

time. We observed the highest correlation between the original and approximated test statistics

for threshold values ranging from 0.6 to 0.8 (Fig 2A). There was no prominent change in total

elapsed time among these runs. However, the approximated test proved to be more conserva-

tive and inflation less frequent with increasing threshold values (Fig 2B). Therefore, to prevent

an increase in false positive rate, we selected the threshold of the weighted p-value = 0.8 to sep-

arate the SNPs on two groups.

Using the neuroticism summary statistics, we estimated the accuracy and efficiency of the

modified methods implemented in the new version compared to the version of sumFREGAT

without modifications. Fig 3 shows a good agreement between the p-values obtained by two

packages and a decrease in the running time when using the new modified version of the pack-

age. For SKAT, SKAT-O, PCA and FLM, the running time was decreased by 2.4, 10.5, 3.4 and

2.6 times, respectively. The most prominent effect was shown for the most popular SKAT-O

method.
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Within the framework, we introduce the new LD matrices for 19,426 genes estimated using

genotypes of 265K participants of the UK Biobank project. The matrices contain information

about 21,155,091 SNPs, with 17,142,006 (81%) of them having MAF < 0.01. For comparison,

the widely used matrices of SNP-SNP correlations estimated on 503 European participants of

the 1000G project include 4,544,901 SNPs, with only 707,862 (16%) of them having

MAF < 0.01. The UK Biobank matrices, therefore, provide 4.65 times higher SNP coverage

and 24 times higher coverage for rare variants. The matrices can be used in our or any other

software together with summary statistics from samples of European ancestry. If available,

other matrices calculated, for example, on Asian or African populations, can be used in our

framework to analyze the corresponding samples.

For the polygene pruning procedure, we now publish an R-script to perform it step-by-

step.

Discussion

We developed a new framework for gene-based association analysis using summary statistics.

This framework can include an arbitrary set of methods for gene-based association analysis,

weighting functions and functional annotations used for the estimation of SNP probability

being causal. Many of the methods used in the framework were adapted to the genes with large

number of SNPs. This allows us to increase the computation speed of different methods by

2.4–10.5 times.

We compared STAAR and sumSTAAR and demonstrated the strong agreement of the

results obtained by BT, SKAT, ACAT-V and their ACAT combinations. Our sumSTAAR

framework, however, provides an opportunity to expand the range of methods with the fixed-

effects models (PCA and FLM). High statistical power of these methods was previously shown

Fig 2. Determination coefficient and deviances of approximated SKAT statistic related to the threshold value. (A) Determination coefficient (R2) between–log10(P

value) of original and approximated tests shown in red. (B) Deviances indicating inflation and conservativeness of approximated test statistics compared with original

shown in red and blue, respectively.

https://doi.org/10.1371/journal.pcbi.1010172.g002
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for different simulation scenarios and real data [12, 19–22]. In addition, a method with ran-

dom-effects model, SKAT-O, can be used instead of ACAT to combine BT and SKAT within

the framework. Being more computationally intensive, SKAT-O nevertheless provides an opti-

mal kernel-based combination of the methods when using the same weighting functions.

It is known that there is no universal or optimal method of the gene-based association anal-

ysis for any gene and trait (see for example, Wang et al., 2017 [23]). The more methods are

used, the greater the chance of finding a causal gene. For example, in our previous study of

neuroticism [12] the combination of the BT, SKAT, PCA and ACAT-V identified 190 genes,

while the smaller set of BT, SKAT and ACAT-V would identify only 153 genes.

In addition to an extended set of methods, the power of the gene-based analysis can be

increased by introducing various weighting functions and functional annotations. Using the

neuroticism summary statistics for protein-coding variants, we showed that use of functional

annotations and both weighting functions allowed us to identify a new neuroticism gene,

NARF (see S4 Text). In total, using the additional PCA method increased the number of identi-

fied genes by 37, and additional weighting functions and functional annotations for protein-

coding variants yielded one more gene. So, the effectiveness of our framework in this case can

be estimated as 25% (38 / 153 � 100%).

Our framework allows researchers not only to increase the number of tests simultaneously

included in analysis, but also to form their own alternative subsets of methods, weighting func-

tions and functional annotations. Large number of tests can be time-consuming to compute,

though it insures against selecting a method or weighing function that is not appropriate for a

particular study.

To efficiently analyze the genes with large number of variants, we proposed a simple algo-

rithm that implies subdividing the variants within a gene into two groups using a predefined

p-value threshold. The running time decreases because the selected gene-based method applies

only to the group of variants with lower p-values. For sequence kernel association tests, Lumley

et al., 2018 [24] developed a fast approximation called fastSKAT. It does not directly limit the

number of variants, but restricts the number of eigenvalues of genotype covariance matrix.

Only 200 largest eigenvalues are included in the standard calculation of combined p-value; for

the rest ones, the fast approximation is used. Due to the fixed size of the first group, fastSKAT

running time for large genes grows with the square of m (number of within gene variants)

instead of the cube of m for original SKAT. Unfortunately, the fastSKAT algorithm is specific

to SKAT and cannot be applied to other methods of the sumSTAAR framework. Our algo-

rithm is universal, though less efficient than fastSKAT because we fix the threshold for the p-

values but not the size of the group. We analytically estimated the computation time to be half

as less after applying our algorithm. This estimate assumes that running time increases as the

cube of m for all methods in the sumSTAAR framework and the p-values are uniformly dis-

tributed under the null hypothesis. The expected time reduction factor was therefore calcu-

lated as 1 / 0.83� 2, where 0.8 is the p-value threshold selected in our study. However, since

we also updated some algorithms for matrix operations, the running time decreased by 2.5–3

times for all methods except SKAT-O that showed the most prominent effect of 10.5 times

speed-up (Fig 3, right panels). Using the neuroticism as an example, we compared the p-values

from the original and approximated methods for the large genes and showed a good agree-

ment (Fig 3, left panels).

Fig 3. Accuracy and running time of four gene-based methods for association analysis under approximation. Each

point represents a gene: 7,990 genes for FLM (genes that passed collinearity filter for 25 basis functions, see S1 Text for

details) and 17,975 genes for other methods. Left panels show–log10(P values), red lines are regression lines and black

lines represent one-to-one correspondence. On the right panels, lines represent the best-fitted polynomial functions.

https://doi.org/10.1371/journal.pcbi.1010172.g003
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The sumSTAAR framework suggests using the polygene pruning procedure to guard

against the influence of the strong GWAS signals outside the gene. It has been shown that a

substantial share of gene-based association signals is inflated by these GWAS signals [6, 12].

To guard against this influence, the conditional GWAS summary statistics calculated using,

for example, the GCTA-COJO package [25] can be used in sumFREGAT as input data. How-

ever, to calculate the conditional statistics, this type of analysis relies on the simple multiple

regression with all the attendant limitations. For example, conditional SNPs should be in com-

plete linkage equilibrium with each other and their number, therefore, cannot be large. The

procedure called “polygene pruning” [12] represents an alternative way to reduce the effect of

strong GWAS signals outside the gene. Polygene pruning results in exclusion of some variants

within the gene being in LD with outside GWAS-identified variants from gene-based analysis.

In essence, this procedure is analogous to the extreme weighting of within-gene SNPs based

on their LD with outer GWAS signals. Polygene pruning way can be preferable when the set of

within-gene variants is large or includes rare variants. Moreover, the classical conditional anal-

ysis is impossible to perform when genotypes of top GWAS signals are not available, while cor-

relation structure sufficient for polygene pruning can be shared more easily.

Our framework can be applied to any summary statistics including those obtained by

exome or whole-genome sequencing association analysis. We demonstrated such possibility

comparing the results of STAAR and sumSTAAR obtained on the real exome sequencing data

(see S3 Text). In practice, the application of our framework to these data is limited by the prop-

erties of existing reference LD matrices and summary statistics quality.

In principle, there are no restrictions to include variants with low MAC, even singletons

with MAC = 1, in LD matrices, as we did in simulation experiment (S2 Fig). However, the

ultra-rare variation is highly population-specific, and the robustness of their SNP-SNP correla-

tions in the context of gene-based analysis was not yet estimated. Cross-population use of LD

matrices for ultra-rare variants might, therefore, potentially lead to some uncontrolled errors.

To bypass these problems, we ask the scientific community to publish genotype correlation

matrices along with GWAS summary statistics. This would allow to perform the accurate pop-

ulation-specific gene-based analyses of the whole genome and exome sequencing data, as well

as address the problem of correlation robustness for ultra-rare variants.

Another limitation of using the framework for sequencing data is the quality of summary

statistics. Many GWAS tools are not designed to ensure unbiased Z-scores at low MAFs.

If there is uncontrolled inflation in rare variants statistics, it will inflate the statistics of the

gene-based analysis. For case-control association studies, we suggest using special tools that

apply saddlepoint approximation correction for rare variants, for example SAIGE [26] or

fastGWA-GLMM [27]. Moreover, if binary trait is analyzed, we suggest not to use variants

with MAC < 5 since there is no robust algorithm to produce unbiased Z-scores, especially

under unbalanced case-control design. For quantitative traits, more attention to departures

from normality should be paid [28].

To conclude, we present sumSTAAR, a flexible and comprehensive framework that allows

researchers to perform state-of-the-art gene-based analyses using GWAS summary statistics.

Supporting information

S1 Fig. Tests performed within the STAAR procedure. Combined tests are shown in bold.

(TIF)

S2 Fig. Comparison of the results obtained by the STAAR and sumFREGAT packages.

Negative log10(p-value) were calculated in 10 simulations. The first three panels show the

results for individual gene-based tests (Burden test, SKAT and ACAT) with two sets of
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parameters for the Beta distribution and 11 variants of annotation weighting. The last panel

presents–log10(p-values) for all combined tests. The regression lines are shown in red (overlap

the lines of one-to-one correspondence).

(TIF)

S3 Fig. Comparison of the results obtained by the STAAR and sumFREGAT packages. The

-log10 transformed p-value of each gene is shown. The first three panels show the results for

individual gene-based tests (Burden test, SKAT and ACAT) with two sets of parameters for the

Beta distribution. The last panel presents results combined across all tests. The regression lines

are shown in red (overlap the black lines of one-to-one correspondence); ‘r’ is the correlation

coefficient.

(TIF)

S1 Text. Introducing the probabilities of genetic variants being causal and analytical equiv-

alence of methods implemented in the sumFREGAT and STAAR package.

(DOCX)

S2 Text. Comparison of STAAR and sumSTAAR using simulated data.

(DOCX)

S3 Text. Comparison of STAAR and sumSTAAR using real exome sequencing data.

(DOCX)

S4 Text. SumSTAAR procedure in application to real data.

(DOCX)
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