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Platelets are no longer considered simply as cells participating in thrombosis. In atherosclerosis, platelets are regulators of multiple
processes, with the recruitment of inflammatory cells towards the lesion sites, inflammatory mediators release, and regulation
of endothelial function. The antiplatelet therapy has been used for a long time in an effort to prevent and treat cardiovascular
diseases. However, limited efficacy in some patients, drug resistance, and side effects are limitations of current antiplatelet therapy.
In this context, a large number of natural products (polyphenols, terpenoids, alkaloids, and fatty acids) have been reported with
antiplatelet activity. In this sense, the present paper describes mechanisms of antiplatelet action of natural products on platelet
P-selectin expression through cAMP levels and its role as peroxisome proliferator-activated receptors agonists.

1. Introduction

Cardiovascular diseases (CVD) result in >19 million deaths
annually and coronary heart disease accounts for themajority
of this toll. Actually a large number of victims of the disease
who are apparently healthy die suddenly without prior symp-
toms [1]. The incidence and prevalence of CVD have
increased significantly in recent years [2–4] and are regulated
by both genetic and environmental factors (dyslipidemia,
hypertension, smoking, diabetes, and obesity) [5, 6].

Platelet accumulation at sites of vascular injury is the pri-
mary event in arterial thrombosis and the activation is a crit-
ical component of atherothrombosis [7]. Thus patients with
unstable complex lesions had a fivefold higher expression of
the platelet activation epitope CD63 than patients with stable
angina, indicating an intense thrombogenic potential [8].
Platelets also interact directly with other cells of the immune
system in physiological and pathological conditions [9, 10].
Platelet-derived P-selectin seems to contribute to atheroscle-
rotic lesion development and arterial thrombogenesis by
forming large stable platelet-leukocyte aggregates [11]. In this
context, the percentage of neutrophil-platelet conjugates

increased by 22% in patients with unstable angina pectoris
[12]. Also platelets can be directly involved in the plaque
unstable by the production and release of proinflammatory
molecules, including a variety of cytokines, such as TGF-𝛽,
IL-1𝛽, and sCD40L, and chemokines, such asCXCL7,CXCL4,
CXCL4L1, CCl5, CXCL1, CXCL8, CXCL5, CXCL12, CCL2,
and CCL3 [13, 14].

The antiplatelet therapy has been used for a long time in
an effort to prevent and treat CVD [15, 16]. However, limited
efficacy in some patients, drug resistance, and side effects are
limitations of current antiplatelet therapy [17, 18]. Therefore,
there is much room for further improvement of antiplate-
let treatment and search of novel antiplatelet agents with
increased efficacy and safety profile. In this context, a large
number of natural products (polyphenols, terpenoids, alka-
loids, and fatty acids, among others) have been reported with
an inhibitory activity on platelets function [19].

Interestingly, some natural compounds consumed regu-
larly in the diet may have protective effects in primary and
secondary prevention of CVD [20, 21]. In this context, a great
deal of interest has been paid by consumers towards natural
bioactive compounds as functional ingredients in diets due
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to their various beneficial health effects [22–25]. Natural bio-
active compounds from fruit, vegetables, beverages, and grass
among others have antiplatelet effects andmay thus affect the
development of CVD [26].

In this sense, the present paper describes mechanisms of
antiplatelet action of natural products by PPARs signaling
pathway and inhibit of platelet P-selectin expression through
of cAMP.

2. Regulation of Platelet cAMP Levels
by PPARs

The PPARs consist of three nuclear receptor isoforms (𝛾, 𝛽/𝛿,
and 𝛼) [27]. PPARs are key regulators of metabolic syndrome
and play an important role in the processes that govern
chronic inflammatory diseases [28, 29]. Thus PPARs remain
attractive therapeutic targets for the development of drugs
used in the treatment of chronic inflammatory diseases such
as atherosclerosis [30]. PPAR-𝛿 antagonizes multiple proin-
flammatory pathways [31] and is pivotal to control the pro-
gram for fatty acid oxidation in the skeletal muscle [32].

PPARs modulate atherosclerosis development by acting
at both metabolic and vascular levels [33]. Thus PPARs acti-
vation is a keymechanism for improving cardiovascular func-
tion resulting from weight loss [34–36]. PPARs are expressed
in human platelets [37]. In this context, PPARs appear to play
a major role in the regulation of atherogenesis by countering
the inflammation-provoking action of platelet adhesion and
activation [38]. The antiplatelet activity of statins and fibrates
on platelet function is mediated by PPARs activation via
a novel mechanism that involves the inhibition of protein
kinase-𝛼 (PKC-𝛼) [39]. In addition, statins by increasing
both cAMP as well as cGMP pathways could inhibit platelet
activation [39]. cAMP increased by PPAR activation is due
to the repression of PKC that allows greater activity of
adenylyl cyclase (ATP to cAMP) [40, 41]. Meanwhile, cAMP-
induced inhibition of platelet P-selectin expression is through
activation of protein kinase A (PKA) [42].

3. Relationship between cAMP Levels and
Platelet P-Selectin Expression

It has been shown that cAMP and cGMP-dependent protein
kinases not only inhibit platelet pathways leading to activa-
tion and aggregation, but also those resulting in enhanced
surface expression of protein ligands involved in inflamma-
tion [43]. Also, Ca2+ in human platelets is directly downreg-
ulated by cGMP and cAMP by a mechanism involving the
inhibition of cytoskeletal reorganization via the activation of
protein tyrosine phosphatases [44].

Moreover, platelet shape change can be antagonized by
PKA (cAMP-dependent) activation but not by protein kinase
G (PKG) (cGMP-dependent), which may occur with partic-
ular efficiency by the formation of a local compartment of
cAMP through the inhibition of phosphodiesterase-3 (PDE3)
[45]. In fact, activation/phosphorylation of PDE3 via Akt
signaling pathway participates in regulating cAMP during

thrombin activation of platelets [46]. Together, these results
indicate that cAMP is persistently formed in platelets [47].

cAMP-induced inhibition of platelet P-selectin expres-
sion is, in large part, mediated through the activation of PKA
[42]. While P-selectin expression was found to be indepen-
dent of mitogen-activated protein kinase (MAPK) activation,
since it was not inhibited by specific MAPK inhibitors [43].
Inhibition of ADP-induced P-selectin expression and plate-
let-leukocyte conjugate formation was inhibited by clopido-
grel andAR-C69931MXbut not by aspirin [48, 49]. Prolonged
cyclooxygenase-2 (COX-2) inhibition attenuates C-reactive
protein and IL-6, but does not modify P-selectin [50].
ARC69931MX and clopidogrel by cAMP levels can inhibit
human platelet aggregation through the activation of a sep-
arate G protein-coupled pathway (presumably involving Gs)
and platelet P2Y12 receptor, respectively [51, 52]. Andersen et
al. showed that levels of soluble P-selectin were significantly
higher in aspirin responders and nonresponders [53]. Despite
the above, measurement of circulating P-selectin has been
suggested for remote testing of platelet function in patients
treated with clopidogrel and aspirin [54].

4. Mechanism of Antiplatelet Action of
Natural Products

In the context of atherosclerosis CVD, platelets can adhere
to endothelial cells and leukocytes and contribute to vascular
inflammation and thrombosis formation [55, 56]. In this
sense, the inhibition of the platelet function has been used for
long time in an effort to prevent and treat CVD [57].However,
limited efficacy in some patients, drug resistance, and side
effects are limitations of current antiplatelet therapy [17, 18].
Moreover, epidemiological studies have provided evidence of
a protective role of healthy diets in the prevention of CVD
[58, 59].

The consumption of a diet containing 30% green and yel-
low vegetables results in a substantial inhibition of atheroscle-
rosis progression [60]. Preliminary studies have demon-
strated the platelet antiaggregation activity of fruit (red
grapes, strawberries, kiwis, and pineapples) and vegetables
(garlic, onions, green onions, melons, and tomatoes) [61, 62].
In this context, consuming two or three kiwi fruits per day
for 28 days reduces platelet aggregation induced by collagen
and ADP [63]. Strawberries are likely to exert significant
protective effects in thromboembolic-related disorders by
inhibiting platelet aggregation [64, 65]. Organo sulfur com-
pounds in onion extracts are formed following the lysis of
the S-alk(en)yl-L-cysteine sulfoxides by alliinase.These com-
pounds inhibit the aggregation of human blood platelets and
offer the potential for positive cardiovascular health benefits
[66]. The raw form of garlic and some of its preparations are
widely recognized as antiplatelet agents that may contribute
to the prevention of CVD. Antithrombotic activities of garlic
have been demonstrated by blood fibrinolytic and coagu-
lation systems, and inhibition of platelet aggregation [67].
With respect to platelet function, allicin and thiosulfinates are
responsible for in vitro antiaggregatory activity from garlic
[68]. Furthermore, recently galactolipid and a phytosterol
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from garlic were identified as exhibiting an inhibitory action
on ADP-induced aggregation in human blood platelets [69].

In fact, a large number of natural products have been
reported with apparent inhibitory activity on human platelets
and each constituent may possess multiply targets, and they
may exert pleiotropic and synergistic effects (Table 1) [70–72].

4.1. Antiplatelet Activity of Natural Products by PPARs. Due
to high levels of toxicity associated with the first generation
of drugs, there is renewed search for newer PPAR drugs that
exhibit better efficacy but lesser toxicity [110].Moreover, there
has been a definite increase in the consumption of fruits and
vegetables, due to the possible health benefits associated with
these bioactive components [74, 111]. Thus, dietary compo-
nents that act as ligands of PPARs include dietary lipids such
as n-3 and n-6 fatty acids and their derivatives, polyphenols,
and terpenoids, among others [112–114] (Table 2).

In this sense, the present paper describes the mechanism
of antiplatelet action of natural products as PPARs agonists
and increased of intraplatelet levels of cAMP. As shown in
Figure 1, the mechanism of antiplatelet action by natural pro-
ducts PPARs agonists is mediated by the following signaling
pathways: (i) inhibition of PCK-𝛼/increased of cAMP lev-
els/stimulation of PKA (increased of cAMP levels), (ii) stimu-
lation of Akt/NOS/NO/PKG (increased of cGMP levels), and
(iii) inhibition of cyclooxygenase-1 (COX-1), thromboxane
A2 (TXA2), and Ca2+ mobilization.

Magnolol is the major bioactive constituent of Magnolia
officinalis (2–11% of the bark’s dry weight) [115, 116].Magnolol
could improve insulin sensitivity through the activation of
PPAR-𝛾 [117]. Also Magnolol presents antiplatelet activity
by PPAR-𝛽/𝛾 activation with upregulation of Akt/NOS/NO/
cGMP/PKG cascade and suppression of PKC-𝛼 and COX-1
and Ca2+ mobilization [96].

Linolenic acid impairs arterial thrombus formation, tis-
sue factor expression, and platelet activation and thereby rep-
resents an attractive nutritional intervention with direct dual
antithrombotic effects [118]. These effects could be because
both oleic and linoleic acids are PPARs agonists [119]. Mean-
while 𝛼-lipoic acid is PPAR-𝛼/𝛾 agonist and the mechanism
of action involves the inhibition of Ca2+ mobilization, TXA2,
PKC-𝛼, and COX-1 expression, and elevation of cAMP levels
[104, 105].
𝛼- and 𝛾-tocopherols have been shown to activate PPAR-𝛾

expression and 𝛾-tocopherol is a better modulator of PPAR-
𝛾 expression than 𝛼-tocopherol [106, 107]. In this context,
𝛼-tocopherol inhibits platelet aggregation through a PKC-
dependent mechanism, which may explain a decrease in the
expression of P-selectin and interactions platelet-mononu-
clear cells ex vivo [108, 109].

Curcumin, the major component of food spice turmeric
(Curcuma longa), inhibits platelet aggregation induced by
PAF and arachidonic acid with inhibitory effects on TXA2
and Ca2+ mobilization and also prevents the adhesion of
platelets to brainmicrovascular endothelial cells [84–86].The
beneficial effect of curcumin on platelet activation appears to
be mediated by the upregulation of PPAR-𝛾 [87].

TXA2

PPARs

cAMP

PKA

AKT

NOS

cGMP

Antiplatelet activity of natural products PPARs agonists

NO

PKG
Activation 
Inhibition 

COX-1 PKC𝛼

[Ca2+]i

Figure 1: Mechanism of antiplatelet action by natural products on
PPARs. cAMP = cyclic adenosine monophosphate; PKA = protein
kinase A; TXA2 = thromboxane A2; PKC = protein kinase C; PLC
= phospholipase; COX-1 = cyclooxygenase-1; PPARs = peroxisome
proliferator-activated receptors; AKT=also known as protein kinase
B; NO = nitric oxide; cGMP = cyclic guanosine monophosphate;
PKG = protein kinase G; NOS = nitric oxide synthase.

4.2. Antiplatelet Activity of Natural Products by CAMP Levels.
Herewe describe one possiblemechanismof action of natural
products on platelet P-selectin expression through cAMP.

The natural products caffedymine (clovamide-type phe-
nylpropenoic acid amide found in cocoa), N-caffeoyl tyra-
mine, N-feruloyl tyramine, 5-caffeoylquinic acid, caffeic acid,
and gallic acid were able to suppress P-selectin expression
on platelets and were found to be very potent compounds
able to inhibit COX-1 and 2 enzymes [73, 78, 81, 120–122].
Moreover, previous studies indicate that caffedymine and N-
caffeoyl tyramine inhibit P-selectin expression by increasing
cAMP through beta-2 adrenoceptors [79, 80, 123]. Gallic acid,
in a concentration-dependent manner, prevents the elevation
of intracellular calcium and attenuate phosphorylation of
PKC𝛼/p38MAPK and Akt/GSK3𝛽 on platelets stimulated by
the stimulants ADP or U46619 [70]. Based on the function of
other cell (mast cells), themode of action of gallic acid is likely
related with the elevation of the intracellular cAMP level by
the inhibition of the cAMP phosphodiesterase [124].

Adenosine is another natural product with antiplatelet
activity [74, 75]. Adenosine through G-protein linked recep-
tors to activate adenylate cyclase and increase cellular cAMP
levels, showing the inhibition of platelet P-selectin expression
[76, 77]. However, chlorogenic acid, an antiplatelet com-
pound, presented increase of cAMP and cGMP levels and
strong inhibition of COX-1 [125] andCOX-2 [126] but did not
have effect on P-selectin expression [127].

Moreover, sanguinarine, alkaloid present in the root of
Sanguinaria canadensis andPoppy fumaria species, is a potent
antiplatelet agent, which activates adenylate cyclase with
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Table 2: Natural products PPARs agonists.

PPAR-𝛼
Catalposide
Berberine
Astaxanthin
9-Oxo-octadecadienoic acid

PPAR-𝛾
Artepillin C
Kaempferol
20S-protopanaxatriol
Apigenin
Quercetin
6-Shogaol
Chrysin
(−)-catechin
Harmine
3-Acetyl oleanolic acid
9S,13R-12-oxo-phytodienoic acid
Auraptene
Oleic acid

PPAR-𝛼/𝛾
Cyanidin
Vaccenic acid

cAMP production, inhibits platelet Ca2+ mobilization and
TXA2 production as well as suppresses COX-1 enzyme activ-
ity (whereas its effect on COX-2 activity was minimal) [99].
Similar antiplatelet effect had girinimbine that presented the
inhibition of COX activity and elevation of the cAMP level
[93].

Being increased of intraplatelet levels of Ca2+ involves
phosphorylation of both pleckstrin (47 kDa) andmyosin light
chain (20 kDa) via Ca2+-dependent PKC and Ca2+/calmod-
ulin-dependent protein kinase (CaM-PK), respectively. The
phosphorylation of these proteins participates in the release
of platelet aggregation factors such as serotonin and ADP
[128, 129]. In this context, the effect of cordycepin on platelet
aggregation might be associated with the inhibition of phos-
phorylation of these proteins to suppress the release of sero-
tonin andADP out of dense body in platelets, which is associ-
ated with the inhibition of Ca2+ mobilization by cordycepin-
elevated cAMP [82, 83]. Whereas the ODQ (NO-sensitive
guanylyl cyclase inhibitor) did not alter the cordycepin-
induced upregulation of cGMP, the adenylyl cyclase inhibitor
SQ22536 completely blocked the cAMP enhancement medi-
ated by cordycepin [82]. Sulforaphane possesses potent anti-
platelet activity, which may initially activate adenylate cyc-
lase/cAMP, followed by inhibiting intracellular signals (such
as the PI3-kinase/Akt and PLC𝛾2-PKC-p47 cascades) [102,
103]. Furthermore epigallocatechin-3-gallate increases cAMP
via adenylate cyclase activation and subsequently phos-
phorylates VASP-Ser-157 through A-kinase activation to
inhibit Ca2+mobilization and TXA2 production on collagen-
induced platelet aggregation [91]. Sesamol possesses potent
antiplatelet activity, which may involve the activation of
the cAMP-eNOS/NO-cGMP pathway, resulting in the inhi-
bition of the PLC𝛾2-PKC-p38MAPK-TXA2 cascade [100].

Also, sesamol activates cAMP-PKA signaling, followed by the
inhibition of the NF-𝜅B-PLC-PKC cascade. The inhibition
of NF-𝜅B which interferes with platelet function may have
a great impact when these types of drugs are considered for
the treatment of cancer and various inflammatory diseases
[101]. The inhibition of platelet aggregation by 𝛼-lipoic acid
is mediated by PPAR𝛼/𝛾-dependent processes, which involve
interaction with PKC and COX-1, increase of cAMP forma-
tion, and inhibition of intracellular Ca2+ mobilization [104].
However, the effects of 𝛼-lipoic acid on the above platelet
responses were markedly reversed by the addition of 2󸀠5󸀠-
ddAdo, an adenylate cyclase inhibitor [105]. Meanwhile,
quercetin-mediated antiplatelet activity involves PI3K/Akt
inactivation, cAMP elevation, and VASP stimulation that, in
turn, suppresses MAPK phosphorylations [98]. Intraplatelet
cAMP production was quickly increased by quercetin stim-
ulation and probably through the adenylate cyclase signaling
pathway [130].

According to natural products as caffedymine, N-caffeoyl
tyramine, quercetin, and adenosine, which increase the intra-
platelet cAMP levels and inhibit platelet P-selectin expres-
sion. It is possible to consider that those natural products
(sanguinarine, 𝛼-Lipoic acid, sesamol, sulforaphane, epigal-
locatechin-3-gallate, and cordycepin) which increase the
intraplatelet cAMP levels and lose their antiplatelet activity
after adenylate cyclase blockaded would be able to inhibit
platelet P-selectin expression. Even only an increase in the
intraplatelet cAMP Levels may establish that dicentrine and
girinimbine could inhibit P-selectin expression. Thus, the
relationship between cAMP levels and P-selectin expression
is because cAMPvia the activation of PKA is capable of inhib-
iting platelet P-selectin expression [42, 77]. Furthermore,
natural products that inhibited platelet aggregation stimu-
lated by ADP and collagen with increased of cAMP levels
is because cAMP downregulates P2Y1R expression [131] and
GPVI-maintained in a monomeric form on resting platelets
[132].

Finally, it is possible to establish that natural products
that show antiplatelet activity by increasing levels of cAMP
are able to inhibit platelet-leukocyte interactions through
P-selectin inhibition (Figure 2). This makes it possible to
consider that natural products in addition to platelet function
inhibitors are compounds capable of preventing athero-
thrombosis/atheroinflammation.

5. Conclusions

According to this paper it is possible to establish that the
antiplatelet activity by PPARs agonist and increased cAMP
levels are not defined by one specific group of bioactive com-
pounds. Also the data presented in this paper demonstrate
that natural products with antiplatelet activity through of
increase cAMP levels are able to inhibit the platelet-leukocyte
interactions in atheroinflammation.
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