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3,4-Diaminopyridine (3,4-DAP) increases transmitter release
from neuromuscular junctions (NMJs), and low doses of
3,4-DAP (estimated to reach �1 μM in serum) are the Food and
Drug Administration (FDA)-approved treatment for neuro-
muscular weakness caused by Lambert–Eaton myasthenic syn-
drome. Canonically, 3,4-DAP is thought to block voltage-gated
potassium (Kv) channels, resulting in prolongation of the pre-
synaptic action potential (AP). However, recent reports have
shown that low millimolar concentrations of 3,4-DAP have an
off-target agonist effect on the Cav1 subtype (“L-type”) of
voltage-gated calcium (Cav) channels and have speculated that
this agonist effect might contribute to 3,4-DAP effects on
transmitter release at the NMJ. To address 3,4-DAP’s mecha-
nism(s) of action, we first used the patch-clamp electrophysi-
ology to characterize the concentration-dependent block of 3,4-
DAP on the predominant presynaptic Kv channel subtypes
found at the mammalian NMJ (Kv3.3 and Kv3.4). We identified
a previously unreported high-affinity (1–10 μM) partial antag-
onist effect of 3,4-DAP in addition to the well-known low-af-
finity (0.1–1 mM) antagonist activity. We also showed that 1.5-
μM DAP had no effects on Cav1.2 or Cav2.1 current. Next, we
used voltage imaging to show that 1.5- or 100-μM 3,4-DAP
broadened the AP waveform in a dose-dependent manner, in-
dependent of Cav1 calcium channels. Finally, we demonstrated
that 1.5- or 100-μM 3,4-DAP augmented transmitter release in a
dose-dependent manner and this effect was also independent of
Cav1 channels. From these results, we conclude that low
micromolar concentrations of 3,4-DAP act solely on Kv chan-
nels to mediate AP broadening and enhance transmitter release
at the NMJ.

Lambert–Eaton myasthenic syndrome (LEMS) is a neuro-
muscular disease caused by an autoantibody-mediated attack
on the presynaptic Cav2.1 type (also called “P/Q type”)
voltage-gated calcium (Cav) channels and other presynaptic
proteins at neuromuscular junctions (NMJs) (1–6). The
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resulting antibody-mediated loss of proteins associated with
transmitter release sites results in a reduction of acetylcholine
release from the NMJ and leads to a failure of some post-
synaptic muscle fibers to initiate an action potential (AP),
leading to a weaker muscle contraction. Clinical and animal
model studies suggest that neuromuscular transmission, and
subsequently muscle strength, can be improved by the use of
3,4-diaminopyridine (3,4-DAP), which is a small molecule that
acts as an antagonist at voltage-gated potassium (Kv) channels.
3,4-DAP was recently approved by the FDA to treat LEMS
(7–10) and has been shown to be effective at increasing
neuromuscular strength in patients with LEMS (11–14).
However, 3,4-DAP has dose-dependent side effects that
restrict the amount that patients take to relatively small doses,
which prevents full symptomatic relief in many patients with
LEMS (15, 16). Patients are typically prescribed 10- to 20-mg
oral doses of 3,4-DAP to be taken several times during the
day and report peak clinical effects for 3 to 8 h after each dose
(17). 3,4-DAP has been reported to have a serum half-life of 1
to 3 h, and pharmacokinetic studies cite peak serum concen-
trations of �40 to 110 ng/ml after a 20-mg oral dose (18–22).
Similar doses of 3,4-DAP have also been used off-label for a
variety of other neuromuscular weakness conditions, including
congenital myasthenic syndrome (23–28), muscle-specific re-
ceptor tyrosine kinase myasthenia gravis (29), downbeat
nystagmus (30), and multiple sclerosis (31–34).

The mechanism of action of 3,4-DAP at neuromuscular
synapses is canonically thought to be a block of Kv3 (also
called “A-type”) channels. Kv3.3 and Kv3.4 channels are the
subtypes selectively localized at mammalian neuromuscular
motor nerve terminals (35) and are thought to be predomi-
nantly responsible for speeding the repolarization of the pre-
synaptic AP. By blocking Kv3 channels, 3,4-DAP is
hypothesized to broaden the presynaptic AP duration, thus
indirectly increasing calcium ion flux by increasing the number
of presynaptic Cav (Cav2) channels that open during an AP.
Because calcium-triggered acetylcholine release is nonlinearly
dependent on the calcium concentration in nerve terminals, a
relatively small increase in calcium ion entry can generate a
much larger increase in neurotransmitter release (36).
J. Biol. Chem. (2021) 296 100302 1
Biochemistry and Molecular Biology. This is an open access article under the CC

https://doi.org/10.1016/j.jbc.2021.100302
https://orcid.org/0000-0002-2005-9726
mailto:meriney@pitt.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbc.2021.100302&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Mechanisms of 3,4-DAP action at the NMJ
Recent investigations have challenged the conventional
mechanism of action of aminopyridines. First, prior
concentration-response studies of aminopyridine action on Kv
channels have often been restricted to the use of
4-aminopyridine and yielded an IC50 between 30 μM and
2.5 mM depending on the types of potassium channels
expressed (37–46), with a high sensitivity to 4-aminopyridine
reported for Kv3 channels (80-μM IC50; (47)). Because
4-aminopyridine crosses the blood–brain barrier better than
3,4-DAP, the latter has been preferred for the treatment of
peripheral neuromuscular diseases (48, 49). Therapeutic con-
centrations of 3,4-DAP are predicted to be in the low micro-
molar range, and 3,4-DAP has been reported to have
significant effects on squid giant axon potassium channels at
these concentrations (50). Second, a direct agonistic action of
3,4-DAP on Cav1 type (also called “L-type”) channels was
reported (41, 51). However, the clinical relevance of the re-
ported effects of 3,4-DAP on Cav channels was debated
because the 3,4-DAP concentrations evaluated in these studies
were significantly above blood serum levels found in LEMS
treatment conditions (52, 53). Furthermore, because Cav1
channels usually lack the synaptic protein interaction sites
present in Cav2 channels (54–56), Cav1 channels are thought
to reside outside of synaptic vesicle release sites in the NMJ
and therefore are not thought to directly control acetylcholine
release (as Cav2 channels do) at healthy synapses. However, it
is possible that Cav1 channels may have a minor role at
neuromuscular synapses that is revealed under pharmacolog-
ical conditions (57–61), and Cav1 channels may have a
compensatory contribution to the control of transmitter
release in diseased conditions such as LEMS (61, 62).

Therefore, to investigate the physiological mechanism ac-
counting for the clinical response to 3,4-DAP, we tested the
effects of a therapeutic concentration of 3,4-DAP (1.5 μM) on
(a) peak currents of Kv3 channels expressed in HEK293T cells,
(b) the presynaptic AP waveform at frog and mouse motor
nerve terminals, and (c) transmitter release from weakened
frog and mouse NMJs. To explore the role of Cav1 channels in
3,4-DAP–mediated effects at NMJs, we conducted our trans-
mitter release and AP experiments in the presence or absence
of a Cav1 antagonist (nitrendipine) and compared the results.
In addition, we examined the effects of a supratherapeutic
concentration of 3,4-DAP (100 μM) to allow direct compari-
sons with prior studies that used this higher concentration
(41, 51, 53). For the purpose of this report, we define a
supratherapeutic concentration as one that is about 100-fold
higher (100 μM) than the measured concentration in the
serum of patients with LEMS after taking the typical pre-
scribed dose of 3,4-DAP (18–22).

Our results demonstrate that the therapeutic concentration
of 1.5-μM 3,4-DAP has a small but significant effect on both
Kv3.3 and Kv3.4 channels, and we show that this concentration
broadens the presynaptic AP waveform to increase the magni-
tude of neuromuscular transmission independent of a Cav1
contribution. The effect of the supratherapeutic concentration
of 100-μM 3,4-DAP was more pronounced, but broadening of
the AP and the increase in the magnitude of transmitter
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released remained independent of effects on Cav1 channels.
These results support the hypothesis that the clinical effects of
3,4-DAP in the treatment of LEMS are caused by a partial block
of Kv channels, independent of any effects of Cav1 channels.

Results

3,4-DAP effects on Kv3 potassium channels

When considering which subtypes of Kv channels might be
blocked by 3,4-DAP within mammalian motor nerve terminals,
we were guided by prior work at the mouse NMJ which
demonstrated that Kv3.3 and Kv3.4 were the subtypes detected
by immunohistochemistry (35). To determine the
concentration-dependent effects of 3,4-DAP on these channel
types, we expressed Kv3.3 and Kv3.4 channels in HEK293T cells
and used whole-cell patch-clamp electrophysiology to measure
the change in current after 3,4-DAP application. Using a 100- or
500-ms step depolarization protocol (−100 mV to +40 mV), we
activated Kv3.3 or Kv3.4 current and then measured the peak
current before and after application of 3,4-DAP (at concentra-
tions ranging between 0.15 and 5000 μM). We found a
concentration-dependent block of both Kv3.3 and Kv3.4 cur-
rents that was similar for each channel subtype. Importantly, the
therapeutic concentration of 3,4-DAP (1.5 μM) significantly
reduced Kv3.3 and Kv3.4 currents by about 10% (Fig. 1). We
observed that the concentration-response relationship appeared
to be best fit by a biphasic Hill equation (Fig. 1; Prism, Graph-
Pad). For Kv3.3 andKv3.4, the high affinity fit yielded IC50 values
of 2.5 and 10.3 μM and Hill coefficients of 0.7 and 0.6, respec-
tively. Because the maximum inhibition for this high-affinity
activity was approximately 20 to 25%, 3,4-DAP binding to high
affinity sites on Kv3.3 and Kv3.4 exhibited partial antagonist
activity. The low-affinity fits of the Kv3.3 and Kv3.4 data yielded
IC50 values of 151 and 231μMandHill coefficients of 3.0 and 1.4,
respectively. The maximum inhibition for this low-affinity ac-
tivity was near 100%.

Because we were interested in a therapeutic concentration of
3,4-DAP with respect to its effect on calcium-triggered trans-
mitter release at the NMJ, we confirmed that 1.5-μM 3,4-DAP
had no effect on Cav2.1 or Cav1.2 current. When comparing
the peak and integral of calcium current before and after
application of 1.5 μM 3,4-DAP, we found no significant effects
on either Cav2.1 (drug/control = 1.04 ± 0.08 peak; 1.01 ± 0.09
integral; n = 3; mean ± SD) or Cav1.2 (drug/control = 0.95 ±
0.21 peak; 0.94 ± 0.08 integral; n = 3; mean ± SD) currents.

3,4-DAP effects on the presynaptic AP waveform at the NMJ

The mechanism of action underlying the effects of 3,4-DAP
at the NMJ is canonically thought to be due to a partial block
of presynaptic Kv channels leading to a broadening of the
presynaptic AP. To date, no studies have directly measured
3,4-DAP–mediated effects on the presynaptic AP waveform at
the NMJ. Thus, we used a voltage-sensitive fluorescent dye
(Berkeley red-based sensor of transmembrane potential
[BeRST] 1; (63)) to directly measure the impact of 3,4-DAP on
the duration of the presynaptic AP waveform at frog and
mouse NMJs. The BeRST 1 dye is fast enough to resolve the
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Figure 1. Concentration-dependent effects of 3,4-DAP on Kv3.3 and Kv3.4 potassium currents expressed in HEK293T cells. A, plot of the inhibition of
current through Kv3.3 (open squares, solid fit line) and Kv3.4 (open circles, dashed fit line) channels after exposure to varying concentrations of 3,4-DAP; n = 3
to 6. The red arrow indicates the data at 1.5-μM 3,4-DAP concentration for which sample currents are shown in panels B and C; SD bars are smaller than the
symbol sizes. B, sample Kv3.3 currents activated by a voltage step from −100 mV to +40 mV and shown before (black trace) and after (red trace) exposure to
1.5-μM 3,4-DAP. C, sample Kv3.4 currents activated by a voltage step from −100 mV to +40 mV and shown before (black trace) and after (red trace) exposure
to 1.5-μM 3,4-DAP. 3,4-DAP, 3,4-diaminopyridine; Kv, voltage-gated potassium.

Mechanisms of 3,4-DAP action at the NMJ
AP and has been shown to not affect the electrical properties
or AP waveforms of neurons (63). We performed a paired
experiment where the control AP waveform was recorded
from a single nerve terminal, which was then was exposed to
3,4-DAP for 30 min before the AP waveform was recorded
again at the same nerve terminal. To determine the duration of
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Figure 2. Therapeutic concentrations of 3,4-DAP broaden the presynaptic A
BeRST 1 dye–stained image of a mammalian presynaptic motor nerve terminal.
C, normalized splines of presynaptic AP waveforms recorded from a single ner
the normalized average of all pre-drug (black) and post 1.5-μM 3,4-DAP (red)
terminals (n = 11). E, FWHMs of recorded AP waveforms before (circles) or after
treated mouse NMJs. 1.5-μM 3,4-DAP significantly broadens the AP waveform i
main effect of 1.5-μM 3,4-DAP (F (1,9) = 22.40, **p = 0.0011), but no main effect
3,4-DAP and nitrendipine (F (1,9) = 1.583, p = 0.2399); vehicle, n = 5; nitrendipin
AP duration (FWHM) before and after application of 1.5-μM 3,4-DAP with a sup
DAP, 3,4-diaminopyridine; AP, action potential; BeRST, Berkeley red-based sens
calcium; FWHM, full width at half maximum; NMJ, neuromuscular junction.
the presynaptic AP waveform, we measured the full width at
half maximum (FWHM) of the recorded AP waveforms. This
technique was performed in separate neuromuscular
preparations in either vehicle or nitrendipine conditions to
determine if blocking Cav1 channels affected the 3,4-DAP–
mediated effects on the AP waveform.
E

F G

P waveform independent of Cav1 channels at the mammalian NMJ. A, a
B, an Alexa Fluor 488 BTX–stained image of the same terminal as in panel A.
ve terminal before (black) and after (red) the addition of 1.5-μM 3,4-DAP. D,
presynaptic AP waveform splines recorded from mammalian motor nerve
(triangles) 1.5-μM 3,4-DAP application to vehicle (peach) or nitrendipine (red)
ndependent of nitrendipine (two-way mixed ANOVA: there was a significant
of nitrendipine (F (1,9) = 0.2139, p = 0.6547), or interaction between 1.5-μM
e, n = 6). F-G, plots of individual paired recorded values (gray dotted lines) of
erimposed average (vehicle, solid peach line; nitrendipine, solid red line). 3,4-
or of transmembrane potential; BTX, alpha-bungarotoxin; Cav, voltage-gated
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Mechanisms of 3,4-DAP action at the NMJ
To ensure that AP duration was not altered by prolonged
experimental time in the imaging setup, we performed the
imaging procedure on control experiments without 3,4-DAP
over the same time course as a typical 3,4-DAP experiment.
We found no significant changes in AP duration during these
control experiments, demonstrating that our imaging pro-
cedure itself was not impacting the AP waveform (data not
shown).

We first measured the impact of a therapeutic concentration
of 1.5-μM 3,4-DAP on the duration of the presynaptic AP
waveform at mouse motor nerve terminals (Fig. 2). We found
that 1.5-μM 3,4-DAP broadened the presynaptic AP in vehicle-
treated mouse NMJs, increasing the FWHM of the AP wave-
form from 262.2 ± 40.7 μs to 332.2 ± 49.6 μs. The presence of
nitrendipine did not significantly alter the impact of 1.5-μM
3,4-DAP, with the FWHM of the AP waveform in the
nitrendipine-treated mouse NMJs increasing from 266.1 ± 50.0
μs to 306.7 ± 30.5 μs after the application of 1.5-μM 3,4-DAP
(Fig. 2E).

We next investigated the impact of 1.5-μM DAP on the AP
waveform at frog motor nerve terminals to determine if the
effects of 3,4-DAP on the AP waveform are conserved across
species (Fig. 3). We found that 1.5-μM 3,4-DAP broadened the
presynaptic AP in vehicle-treated frog NMJs, increasing the
FWHM of the AP waveform from 272.5 ± 16.9 μs to 519.5 ±
120.5 μs. Again, we found no significant impact of the presence
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Figure 3. Therapeutic concentrations of 3,4-DAP broaden the presynaptic
1 dye–stained image of a frog presynaptic motor nerve terminal. B, an Alexa
presynaptic AP waveform splines recorded from a single nerve terminal befo
average of all pre-drug (black) and post–1.5-μM 3,4-DAP (red) presynaptic AP
FWHMs of recorded AP waveforms before (circles) or after (triangles) 1.5-μM 3,
1.5 μM 3,4-DAP broadens the AP waveform independent of nitrendipine (two-
(1,10) = 77.68, ***p < 0.0001), but no main effect of nitrendipine (F (1,10) = 0.2
nitrendipine (F (1,10) = 0.7278, p = 0.4136); vehicle, n = 6; nitrendipine, n =
duration (FWHM) before and after application of 1.5-μM 3,4-DAP with a supe
alpha-bungarotoxin; Cav, voltage-gated calcium; 3,4-DAP, 3,4-diaminopyridine
potential; FWHM, full width at half maximum; NMJ, neuromuscular junction.
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of nitrendipine on the effect of 1.5-μM 3,4-DAP, with the
FWHM of the AP waveform in the nitrendipine-treated frog
NMJs increasing from 277.9 ± 22.9 μs to 481.3 ± 58.3 μs after
the application of 1.5-μM 3,4-DAP (Fig. 3E).

Finally, we tested the impact of a supratherapeutic con-
centration (100 μM) of 3,4-DAP on the duration of the pre-
synaptic AP waveform at the frog NMJ (Fig. 4). In vehicle-
treated frog NMJs, 100-μM 3,4-DAP broadened the duration
of the AP waveforms from an FWHM of 280.4 ± 32.6 μs to
1729.7 ± 197.0 μs. Even at this higher concentration of 3,4-
DAP, we did not see any significant impact of nitrendipine
on the 3,4-DAP–mediated broadening of the presynaptic AP
waveform. The FWHM of the AP waveform in the
nitrendipine-treated frog NMJs increased from 270.9 ± 51.1 μs
to 1925.4 ± 210.3 μs after the application of 100-μM 3,4-DAP
(Fig. 4C).

These data demonstrate that 3,4-DAP increases the dura-
tion of the presynaptic AP waveform at mammalian and frog
NMJs in a dose-dependent manner, and that Cav1 calcium
channels have no interaction with this effect. Because small
changes in the duration of the AP waveform can greatly in-
crease calcium flux and transmitter release at the NMJ (36, 64),
these data further support the hypothesis that broadening of
the presynaptic AP via the blocking of Kv3 channels is the
primary mechanism by which 3,4-DAP increases transmitter
release in vivo.
0
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AP waveform independent of Cav 1 channels at the frog NMJ. A, a BeRST
Fluor 488 BTX–stained image of the same terminal as in A. C, normalized
re (black) and after (red) the addition of 1.5-μM 3,4-DAP. D, the normalized
waveform splines recorded from all frog motor nerve terminals (n = 12). E,
4-DAP application to vehicle (pink) or nitrendipine (blue) treated frog NMJs.
way mixed ANOVA: there was a significant main effect of 1.5-μM 3,4-DAP (F
967, p = 0.5979), and no significant interaction between 1.5-μM 3,4-DAP and
6). F-G, plots of individual paired recorded values (gray dotted lines) of AP
rimposed average (vehicle, solid pink line; nitrendipine, solid blue line). BTX,
; AP, action potential; BeRST, Berkeley red-based sensor of transmembrane
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Figure 4. A supratherapeutic concentration of 100-μM 3,4-DAP significantly broadens the frog presynaptic AP waveform independent of Cav1
channels. A, normalized presynaptic AP waveform splines recorded from a nerve terminal before (black) and after (red) the addition of 100-μM 3,4-DAP. B,
the normalized average of all predrug (black) and post–100-μM 3,4-DAP (red) presynaptic AP waveform splines recorded from all frog motor nerve terminals
(n = 10). C, FWHMs of recorded AP waveforms before (circles) or after (triangles) 100-μM 3,4-DAP application to vehicle (pink) or nitrendipine (blue) treated
frog NMJs. 100-μM 3,4-DAP broadens the AP waveform independent of nitrendipine (two-way mixed ANOVA: significant main effect of 100-μM 3,4-DAP (F
(1,8) = 524.7, ***p < 0.0001), but no main effect of nitrendipine (F (1,8) = 2.035, p = 0.1916), and no interaction between 3,4-DAP and nitrendipine (F (1,8) =
2.292, p = 0.1685); vehicle, n = 6; nitrendipine, n = 4). D and E, plots of individual paired recorded values (gray dotted lines) of AP duration (FWHM) before
and after application of 1.5-μM 3,4-DAP with a superimposed average (vehicle, solid pink line; nitrendipine, solid blue line). 3,4-DAP, 3,4-diaminopyridine; AP,
action potential; Cav, voltage-gated calcium; FWHM, full width at half maximum.

Mechanisms of 3,4-DAP action at the NMJ
3,4-DAP increases neuromuscular transmission in a dose-
dependent manner independent of Cav1 calcium channels

To characterize the dose-dependent effects of 3,4-DAP on
weakened transmitter release at the NMJ, we used paired
intracellular microelectrode recordings in ex vivo neuromus-
cular preparations to measure endplate potentials (EPPs) in
response to nerve-evoked APs, both before and after exposure
to either therapeutic (1.5 μM) or supratherapeutic (100 μM)
concentrations of 3,4-DAP. In addition, we measured spon-
taneous miniature EPPs (mEPPs) from the same population of
muscle fibers to determine quantal content (QC). We per-
formed both EPP and mEPP recordings in the presence or
absence of the Cav1 blocker nitrendipine to test the hypothesis
that Cav1 calcium channels are important for 3,4-DAP effects.

We reduced the magnitude of transmitter release by per-
forming all recordings in the presence of low concentrations of
the calcium channel antagonist ω-agatoxin IVA (for Cav 2.1
channels at mouse NMJs) or ω-conotoxin GVIA (for Cav 2.2
channels at frog NMJs). Reducing transmitter release magni-
tude after exposure to submaximal concentrations of these
toxins mimics the effect of neuromuscular diseases that
weaken NMJs and importantly minimizes complications dur-
ing data analysis because of nonlinear summation, ensuring
that correction for nonlinear summation is accurate (65). In
the absence of these selective Cav2 calcium channel blockers,
control EPPs average 10 to 40 mV in amplitude above resting
membrane potential (e.g., from −70 mV resting membrane
potential to a peak of −60 to −30 mV) at mouse and frog NMJs
(6, 66). After exposure to 3,4-DAP (especially the 100-μM
concentration), the EPP size can approach the acetylcholine
receptor channel reversal potential (−10 mV), making 3,4-
DAP–induced changes in transmitter release difficult to
interpret and analyze. For these reasons, all experiments were
performed using submaximal concentrations of a calcium
channel blocker to reduce QC, allowing a more accurate
assessment of 3,4-DAP effects on weakened neuromuscular
transmission.

We first evaluated the effects of 1.5-μM 3,4-DAP at the
mouse NMJ (Fig. 5) because mouse NMJs are phylogenetically
similar in structure and calcium channel subtype expression to
human NMJs. We measured the QC (the number of vesicles
released in response to an AP and calculated as the corrected
and normalized mean EPP amplitude divided by corrected and
normalized mean mEPP amplitude) in vehicle or nitrendipine
conditions because it has been previously hypothesized that
3,4-DAP might increase neurotransmission via a direct effect
on Cav1 channels to increase calcium flux (41, 51).

We first evaluated the effects of 1.5-μM 3,4-DAP in vehicle-
treated mouse NMJs (Fig. 5). After exposure to ω-agatoxin
IVA, the baseline QC averaged approximately 14 (14.2 ± 7.0;
Fig. 5, C and D), whereas the mean mEPP amplitude was 0.4 ±
0.2 mV, and nerve stimulation produced a mean baseline EPP
of 5.2 ± 1.8 mV (Fig. 5, G and H). Bath application of a ther-
apeutic concentration of 3,4-DAP (1.5 μM) to vehicle-treated
J. Biol. Chem. (2021) 296 100302 5
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Figure 5. 1.5-μM 3,4-DAP dose dependently increases neuromuscular transmission independent of Cav1 channels in mouse neuromuscular
junctions. A and B, sample traces of electrophysiological recordings of EPPs (A) and mEPPs (B) before and after 1.5-μM 3,4-DAP application. C, quantified
quantal content before (circles) or after (triangles) 1.5-μM 3,4-DAP application to vehicle (peach) or nitrendipine (red) treated mouse NMJs. Two-way mixed
ANOVA was used (there was a significant main effect of 1.5-μM 3,4-DAP (F (1, 81) = 347.5, ***p < 0.0001); no significant main effect of nitrendipine (F
(1,81) = 1.136, p = 0.2897) or interaction between 3,4-DAP and nitrendipine (F (1,81) = 0.0002, p = 0.9887); vehicle, n = 35; nitrendipine n = 48). D and E, plots
of individual paired values (gray dotted lines) with a superimposed average (solid peach line, vehicle; solid red line, nitrendipine). F, there was a significant
interaction between the effects of 1.5-μM 3,4-DAP and nitrendipine on mEPP frequency (two-way mixed ANOVA; no main effect of nitrendipine; F (1,81) =
0.4209, p = 0.5183) or 3,4-DAP; F (1,81) = 1.634, p = 0.2048), but a significant interaction between 3,4-DAP and nitrendipine (F (1,81) = 10.02, p = 0.0022)).
Post hoc simple main effect analysis showed a significantly increased mEPP frequency in the vehicle (peach, **p = 0.0090) but not the nitrendipine (red, p =
0.3004) condition. G, the 1.5-μM dose of 3,4-DAP did not significantly alter mEPP amplitude in vehicle (peach) or nitrendipine (red) conditions; two-way
mixed ANOVA (no significant main effect of nitrendipine; F (1,81) = 0.08568, p = 0.7705, or 3,4-DAP; F (1,81) = 0.2994, p = 0.5857, or significant interac-
tion between 3,4-DAP and nitrendipine; F (1,81) = 2.45, p = 0.1214). H and I, the 1.5-μM dose of 3,4-DAP increased EPP amplitude, shown as individual pairs
(gray dotted lines) with a superimposed average (solid peach line, vehicle, H; solid red line, nitrendipine, I); Wilcoxon signed-rank test, ***p < 0.0001. 3,4-DAP,
3,4-diaminopyridine; Cav, voltage-gated calcium; EPP, endplate potential; mEPP, miniature EPPs; NMJ, neuromuscular junction.

Mechanisms of 3,4-DAP action at the NMJ
NMJs increased EPP amplitudes by approximately 3.2-fold
(16.3 ± 5.2 mV; Fig. 5H), without altering mEPP amplitudes
(0.4 ± 0.2 mV; Fig. 5G) and increased QC to approximately 44
quanta per trial (44.1 ± 15.3; a 3.1-fold increase; Fig. 5, C and
D). These results are similar to 3,4-DAP effects reported
previously in LEMS model mice (6, 67) and in pharmacological
conditions with low probability of release (68, 69).
6 J. Biol. Chem. (2021) 296 100302
After ω-agatoxin IVA block in the presence of nitrendipine,
the mean baseline EPP amplitude averaged 4.8 ± 2.0 mV, the
mean mEPP amplitude averaged 0.4 ± 0.1 mV (Fig. 5, G and I),
and the resulting QC was 11.7 ± 5.0; Fig. 5, C and E). After
application of 1.5-μM 3,4-DAP, the mean EPP amplitude
increased about 3.7-fold (18.5 ± 10.8 mV), without altering
mEPP amplitude (0.4 ± 0.2 mV; Fig. 5, G and I), and QC
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increased 3.6-fold (QC = 41.6 ± 18.9; Fig. 5, C and E). The
presence of nitrendipine did not significantly alter the effects
of 1.5-μM 3,4-DAP on QC (Fig. 5C), indicating that antago-
nism of Cav1 channels did not alter the effects of a therapeutic
concentration (1.5 μM) of 3,4-DAP at mouse NMJs. However,
we did observe a significant increase in mEPP frequency in the
vehicle condition, but not the nitrendipine condition (vehicle:
baseline = 129.3 ± 44.9, post-3,4-DAP = 153.3 ± 49.3;
A

D

F G

AH

B C

E

Figure 6. 100-μM 3,4-DAP dose dependently increases neuromuscular t
junctions. A and B, sample traces of electrophysiological recordings of EPPs (A
quantal content before (circles) or after (triangles) 100-μM 3,4-DAP application
ANOVA was used (there was a significant main effect of 100-μM 3,4-DAP (F (1, 5
0.01559, p = 0.9011) or interaction between 3,4-DAP and nitrendipine (F (1,58)
individual paired values (gray dotted lines) with a superimposed average (solid p
did not alter mEPP frequency in the vehicle (peach) or nitrendipine (red) conditi
p = 0.4209, or 3,4-DAP; F (1,58) = 2.523, p = 0.1176, or significant interaction be
significant interaction between the effects of 100-μM 3,4-DAP and nitrendipi
nitrendipine; F (1,58) = 10.91, p = 0.0016) and 3,4-DAP; F (1,58) = 19.03, p <
F (1,58) = 7.380, p = 0.0087)). Post hoc simple main effect analysis showed a sign
not vehicle condition (peach, p = 0.4497). The 100-μM dose of 3,4-DAP incr
superimposed average (solid peach line, vehicle, H; solid red line, nitrendipine, I);
voltage-gated calcium; EPP, endplate potential; mEPP, miniature EPPs; NMJ, n
nitrendipine: baseline = 153.3 ± 38.1; post-3,4-DAP = 143 ±
70.9; values are number of events per 30 s; Fig. 5F).

Next, we evaluated the effects of a supratherapeutic con-
centration of 3,4-DAP (100 μM) in vehicle or nitrendipine-
treated, 3,4-DAP–naïve mouse NMJ preparations (Fig. 6). In
NMJs treated with the vehicle, the mean mEPP amplitude was
0.4 ± 0.1 mV, and motor nerve stimulation produced a mean
baseline EPP amplitude of 5.8 ± 1.9 mV after exposure to ω-
ransmission independent of Cav1 channels in mouse neuromuscular
) and mEPPs (B) before and after 100-μM 3,4-DAP application. C, quantified
to vehicle (peach) or nitrendipine (red) treated mouse NMJs. Two-way mixed
8) = 548, ***p < 0.0001); no significant main effect of nitrendipine (F (1,58) =
= 0.2182, p = 0.6421); vehicle, n = 33; nitrendipine, n = 27). D and E, plots of
each line, vehicle; solid red line, nitrendipine). F, the 100-μM dose of 3,4-DAP
on; two-way mixed ANOVA (no main effect of nitrendipine; F (1,58) = 0.1773,
tween 3,4-DAP and nitrendipine; F (1,58) = 2.051, p = 0.1575). G, there was a
ne on mEPP amplitude (two-way mixed ANOVA: significant main effect of
0.0001) and a significant interaction between 3,4-DAP and nitrendipine;

ificantly altered mEPP amplitude in the nitrendipine (red, ***p < 0.0001) but
eased EPP amplitude, shown as individual pairs (gray dotted lines) with a
Wilcoxon signed-rank test, ***p < 0.0001. 3,4-DAP, 3,4-diaminopyridine; Cav,
euromuscular junction.
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agatoxin IVA (Fig. 6, G and H). Quantal release under these
conditions was approximately 16 (15.5 ± 6.9; Fig. 6, C and D).
After exposure to 100-μM 3,4-DAP, the mean EPP amplitude
was significantly increased by approximately 8.8-fold (50.8 ±
12.3 mV), without a significant change in the mean mEPP
amplitude (0.4 ± 0.2 mV; Fig. 6, G and H). This resulted in an
increase in QC from 15.5 quanta per trial to approximately 126
quanta per trial (126.3 ± 35.2), which is an 8.1-fold increase in
quantal release (Fig. 6, C and D).

We next assessed whether nitrendipine could alter the ef-
fects of a supratherapeutic concentration of 3,4-DAP
(100 μM). After ω-agatoxin IVA treatment in the presence of
nitrendipine, EPP amplitude averaged 5.7 ± 2.0 mV and mEPP
amplitude averaged 0.5 ± 0.2 mV (Fig. 6, G and I) and this
resulted in a QC of 12.5 ± 6.8 (Fig. 6, C and E). Bath appli-
cation of 100-μM 3,4-DAP increased EPP amplitude by about
12.3-fold (70.5 ± 17.8 mV), and mEPP amplitude averaged
0.6 ± 0.2 mV (Fig. 6, G and I). QC significantly increased to
127.8 ± 48.6 after application of 100-μM 3,4-DAP, or a 10.2-
fold increase (Fig. 6, C and E). We did not observe a signifi-
cant effect of nitrendipine on QC (Fig. 6C) or mEPP frequency
(vehicle: baseline = 193.2 ± 54.8, post-3,4-DAP = 195.6 ±
112.4; nitrendipine: baseline = 179.9 ± 69.4; post-3,4-DAP =
226.7 ± 148.1; values are the number of events per 30 s;
Fig. 6F). However, we did observe a significant effect of 3,4-
DAP on mEPP amplitude in the nitrendipine condition
(Fig. 6G).

We also tested the effect of 3,4-DAP at frog NMJs (a
traditional model of neuromuscular function) to evaluate
whether 3,4-DAP mechanisms of action are phylogenetically
conserved and determine if nitrendipine alters 3,4-DAP effects.
We first assessed the effects of 1.5-μM 3,4-DAP on vehicle-
treated frog NMJs (Fig. 7). After exposure to ω-conotoxin
GVIA, motor nerve stimulation evoked a mean baseline EPP
amplitude of 3.7 ± 2.7 mV, and spontaneous release resulted in
a mean mEPP amplitude of 0.8 ± 0.3 mV in vehicle-treated
NMJs (Fig. 7, G and H), producing a QC of about 5 (QC =
4.8 ± 3.1; Fig. 7, C and D). After application of 1.5-μM 3,4-
DAP, the mean EPP amplitude increased approximately 2-
fold (to 7.6 ± 5.9 mV), without significantly altering mEPP
amplitude (0.9 ± 0.4 mV; Fig. 7, G and H). Therefore, after
exposure to 1.5-μM 3,4-DAP, QC increased to 8.8 ± 6.1 (a 1.8-
fold increase; Fig. 7, C and D).

We next assessed 1.5-μM 3,4-DAP on frog NMJs in the
presence of nitrendipine. After exposure to ω-conotoxin
GVIA, the average baseline EPP amplitude was 1.3 ± 0.7 mV,
the average mean mEPP amplitude was 0.5 ± 0.3 mV (Fig. 7, G
and I), and QC was about 3 (QC = 3.2 ± 2.2; Fig. 7, C and E).
After bath application of 1.5-μM 3,4-DAP, the mean EPP
amplitude increased by about 2.3-fold to 3.0 ± 2.1 mV, with an
average mEPP amplitude of 0.7 ± 0.3 mV (Fig. 7, G and I),
which resulted in a QC of 6.0 ± 0.8 (a 1.9-fold increase;
Figure C, E). We did not observe a significant effect of
nitrendipine on QC (Fig. 7C), although we did observe a sig-
nificant difference in mEPP amplitudes in vehicle-treated
versus nitrendipine-treated NMJs (Fig. 7, F and G). Neither
3,4-DAP nor nitrendipine altered mEPP frequency (vehicle:
8 J. Biol. Chem. (2021) 296 100302
baseline = 61 ± 24.2, post-3,4-DAP = 57.4 ± 31.9; nitrendipine:
baseline = 115.6 ± 125.3; post-3,4-DAP = 76.9 ± 69.3; values
are the number of events per 30 s).

Next, we assessed the effects of 100-μM 3,4-DAP on frog
NMJs in the presence of vehicle (Fig. 8). Before 3,4-DAP
exposure, motor nerve stimulation produced an average EPP
amplitude of 2.4 ± 1.2 mV, and spontaneous release resulted in
an average mean mEPP amplitude of 0.7 ± 0.3 mV (Fig. 8, G
and H), resulting in a QC of about 4 (QC = 3.8 ± 2.3; Fig. 8, C
and D). After 100-μM 3,4-DAP treatment, the EPP amplitude
increased to an average of 100.2 ± 36.5 mV (Fig. 8 H), and the
mEPP amplitude was 0.9 ± 0.3 mV (Fig. 8 G). This resulted in a
significant increase in QC to 142.6 ± 97.9 (a 37.5-fold increase;
Fig. 8, C and D).

We subsequently assessed whether nitrendipine could
modulate 100-μM 3,4-DAP effects on neurotransmission at
frog NMJs. For these experiments, the average baseline EPP
amplitude in the presence of nitrendipine was 2.3 ± 1.5 mV,
with an average mEPP amplitude of 0.8 ± 0.2 mV (Fig. 8, G and
I), resulting in a QC of about 3 (QC = 2.9 ± 1.8; Fig. 8, C and
E). After bath application of 100-μM 3,4-DAP in the presence
of nitrendipine, EPP amplitude increased to 59.6 ± 32.1 mV,
the average mEPP amplitude was 0.9 ± 0.2 mV (Fig. 8G),
resulting in a QC of about 68 (QC = 67.8 ± 38.3, a 23.4-fold
increase; Fig. 8, C and E). We did not observe an effect of
nitrendipine on 3,4-DAP–induced changes in QC. Therefore,
there was no significant difference between the effect of 100-
μM 3,4-DAP in the absence or presence of nitrendipine
(Fig. 8C). However, we did find that 100-μM 3,4-DAP
increased mEPP frequency regardless of vehicle or nitrendi-
pine condition (vehicle: baseline = 46 ± 37.0, post-3,4-DAP =
73.9 ± 65.0; nitrendipine: baseline = 46.8 ± 23.8; post-3,4-
DAP = 79.3 ± 45.4; values are the number of events per
30 s; Fig. 8, F and G). Therefore, we found that 100-μM 3,4-
DAP increased mEPP frequency and amplitude regardless of
vehicle or nitrendipine condition.

These data, taken together with the effect of low micromolar
concentrations of 3,4-DAP on Kv3 channels (Fig. 1) and AP
waveforms (Fig. 2), lead us to conclude that low micromolar
concentrations of 3,4-DAP enhance the magnitude of AP-
evoked transmitter release at mammalian NMJs by partial
antagonist activity on Kv3 channels in the motor nerve ter-
minal, which broaden the presynaptic AP without directly
affecting Cav1 channels. Furthermore, Cav1 channels do not
significantly contribute to the effects on AP waveforms or QC
at the NMJ of a higher concentration (100 μM) of 3,4-DAP.
Discussion

3,4-DAP is the FDA-approved first-line treatment for pa-
tients with Lambert–Eaton Myasthenic Syndrome (LEMS;
(7–10)). Although 3,4-DAP is canonically thought to mediate
its effects by partially blocking presynaptic Kv channels, a
previous report that millimolar concentrations of 3,4-DAP
could have off-target effects on Cav1 channels led to the
question of whether 3,4-DAP mechanisms of action at thera-
peutic concentrations (estimated to be in the low micromolar
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Figure 7. 1.5-μM 3,4-DAP dose dependently increases neuromuscular transmission independent of Cav1 channels in frog neuromuscular junc-
tions. A and B, sample traces of electrophysiological recordings of EPPs (A) and mEPPs (B) before and after 1.5-μM 3,4-DAP application. C, quantified quantal
content before (circles) or after (triangles) 1.5-μM 3,4-DAP application to vehicle (pink) or nitrendipine (blue) treated frog NMJs. Two-way mixed ANOVA was
used (there was a significant main effect of 1.5-μM 3,4-DAP (F (1, 35) = 28.62, ***p < 0.0001); no significant main effect of nitrendipine (F (1,35) = 3.517, p =
0.0691) or a significant interaction between 3,4-DAP and nitrendipine (F (1,35) = 0.785, p = 0.3817); vehicle, n = 18; nitrendipine n = 19). D and E, plots of
individual paired values (gray dotted lines) with a superimposed average (solid pink line, vehicle; solid blue line, nitrendipine). F, the 1.5-μM dose of 3,4-DAP
did not alter mEPP frequency in the vehicle (pink) or nitrendipine (blue) condition; two-way mixed ANOVA (no main effect of nitrendipine; F (1,35) = 2.856,
p = 0.0999) or 3,4-DAP; F (1,35) = 3.418, p = 0.0729 or a significant interaction between 3,4-DAP and nitrendipine; F (1,35) = 2.352, p = 0.1341). G, mEPP
amplitude was significantly different between the vehicle (pink) and nitrendipine (blue) conditions but was not affected by 3,4-DAP; two-way mixed ANOVA
(significant main effect of nitrendipine (F (1,35) = 7.019, p = 0.0121), and there was no significant main effect of 3,4-DAP (F (1,35) = 2.604, p = 0.1156) or
significant interaction between 3,4-DAP and nitrendipine (F (1,35) = 0.6628, p = 0.4211)). H and I, the 1.5-μM dose of 3,4-DAP increased EPP amplitude,
shown as individual pairs (gray dotted lines) with a superimposed average (solid pink line, vehicle, H; paired t test, ** p = 0.0012; solid blue line, nitrendipine, I;
Wilcoxon signed-rank test, ***p < 0.0001). 3,4-DAP, 3,4-diaminopyridine; Cav, voltage-gated calcium; EPP, endplate potential; mEPP, miniature EPPs; NMJ,
neuromuscular junction.

Mechanisms of 3,4-DAP action at the NMJ
range) involve Cav1 channels. For this reason, we sought to
characterize the effects of 3,4-DAP on Kv3 potassium current,
the presynaptic AP waveform, and transmitter release to
determine if effects on AP waveforms and transmitter release
were altered after using nitrendipine to block Cav1 (L-type)
calcium channels. We found that the effects of 3,4-DAP on
AP-evoked transmitter release at low micromolar concentra-
tions could be explained by a partial block of Kv3 channels that
results in the broadening of the presynaptic AP independent of
any contribution from Cav1 calcium channels.

We did observe some small but significant effects of 3,4-
DAP on mEPP frequency and amplitude, which may be due
J. Biol. Chem. (2021) 296 100302 9
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Figure 8. 100-μM 3,4-DAP dose dependently increases neuromuscular transmission independent of Cav1 channels in frog neuromuscular junc-
tions. A and B, sample traces of electrophysiological recordings of EPPs (A) and mEPPs (B) before and after 100-μM 3,4-DAP application. C, quantified
quantal content before (circles) or after (triangles) 100-μM 3,4-DAP application to vehicle (pink) or nitrendipine (blue) treated frog NMJs. Two-way mixed
ANOVA was used (there was a significant main effect of 100-μM 3,4-DAP (F (1, 19) = 31.66, ***p < 0.0001; no significant main effect of nitrendipine (F
(1,19) = 4.226, p = 0.0538) nor a significant interaction between 3,4-DAP x nitrendipine (F (1,19) = 4.162, p = 0.0555): vehicle, n = 13; nitrendipine n = 8). D
and E, plots of individual paired values (gray dotted lines) with a superimposed average (solid pink line, vehicle; solid blue line, nitrendipine). F, the 100-μM
dose of 3,4-DAP increased mEPP frequency in both the vehicle (pink) and nitrendipine (blue) conditions; two-way mixed ANOVA (significant main effect of
3,4-DAP; F (1,19) = 9.541, p = 0.006; no main effect of nitrendipine; F (1,19) = 0.0264, p = 0.8727) or a significant interaction between 3,4-DAP and
nitrendipine; F (1,19) = 0.0568, p = 0.8143). G, the 100-μM dose of 3,4-DAP significantly altered mEPP amplitude in both the vehicle (pink) and nitrendipine
(blue) conditions; two-way mixed ANOVA (significant main effect of 3,4-DAP; F (1,19) = 11.88, p = 0.0027, but not nitrendipine; F (1,19) = 0.3468, p = 0.5628,
and no significant interaction between 3,4-DAP and nitrendipine; F (1,19) = 1.436, p = 0.2454). H and I, the 100-μM dose of 3,4-DAP increased EPP amplitude,
shown as individual pairs (gray dotted lines) with a superimposed average (solid pink line, vehicle, H; solid blue line, nitrendipine, I); paired t test, **p = 0.0012,
***p < 0.0001. 3,4-DAP, 3,4-diaminopyridine; Cav, voltage-gated calcium; EPP, endplate potential; mEPP, miniature EPPs; NMJ, neuromuscular junction.

Mechanisms of 3,4-DAP action at the NMJ
to as yet undetermined presynaptic and/or postsynaptic ef-
fects. It is possible that high doses of 3,4-DAP are not selective
for presynaptic Kv3 channels and affect postsynaptic Kv
channels to indirectly modulate acetylcholine receptor sensi-
tivity. In addition, the large amount of calcium influx into
motor nerve terminals induced by 100-μM 3,4-DAP may alter
normal homeostatic mechanisms of calcium buffering and
handling, resulting in increased spontaneous vesicle release.
10 J. Biol. Chem. (2021) 296 100302
Although it is also unclear how nitrendipine might alter the
effects of 3,4-DAP on mEPPs in mouse and frog NMJs, it is
evident that the change in the magnitude of neurotransmission
(QC) induced by 3,4-DAP is unaffected by Cav1 channels.

Previously, 4-aminopyridine has been reported to have IC50

values for blockingKv3 channels of 30μMto 2.5mM(depending
in the Kv subtype; (37–46)), and although 3,4-DAP effects on the
squid giant axon potassium channel (SqKv1A; (70)) have been
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reported in the low micromolar range (50), we are not aware of
any prior study characterizing the concentration-dependent ef-
fects of 3,4-DAP on the Kv3 subtype of potassium channels.
Although we found that 3,4-DAP could strongly inhibit Kv3
channels in the high micromolar to millimolar range with IC50

values of 150 to 250 μM (which we defined as low affinity
binding), we remarkably discovered distinct high-affinity effects
of 3,4-DAP on Kv3 channels. We have shown that 3,4-DAP has
similar effects onKv3.3 andKv3.4 and acts as a partial antagonist,
binding in the low micromolar range (IC50 = 2.5–10 μM). In
particular, Kv3.3 and Kv3.4 are both blocked by about 10% after
exposure to the therapeutically relevant concentration of 1.5-μM
3,4-DAP. Thus, we predict that even a 10% decrease in Kv3.3 or
Kv3.4 current would have a significant effect on the AP duration
in motor nerve terminals.

Kv3 currents have been shown to mediate the dominant
outward current during brief AP depolarizations within many
nerve terminals (71–74) and have also been shown to have rapid
activation and inactivation characteristics that enable nerve
terminals to fire APs with short duration and at high frequency
(75–77). These data are consistent with the AP waveforms that
were recently optically recorded from frog presynaptic nerve
terminals (64). Here, we report concentration-dependent
broadening of the presynaptic AP at the frog and mouse NMJ
after exposure to 3,4-DAP. Even relatively small changes in
presynaptic AP duration (15–20%) have been predicted to have
significant effects on calcium ion entry and transmitter release
(64). Thus, the roughly 20% broadening reported here at the
mouse NMJ would be predicted to underlie the approximate 3-
fold increase in transmitter release we observed (64). Interest-
ingly, we found that 1.5-μM3,4-DAPbroadened the presynaptic
AP waveform in the frog NMJ to a greater extent than at the
mouse NMJ. A potential species difference in presynaptic ion
channel subtype expression and/or density may underlie these
results and requires further investigation.

At neuromuscular synapses, the very brief presynaptic AP
waveform only activates a small percentage of the Cav2 channels
positioned within transmitter release sites (78, 79). This is
thought to ensure that each of the hundreds of transmitter
release sites within a single NMJ releases transmitter with low
probability, conserving resources for repeated activation during
normal activity (80). A brief AP activating only a small subset of
available presynaptic Cav2 channels leads to neuromuscular
weakness after many of these calcium channels are attacked and
removed by autoantibodies in the disease LEMS. Mechanisti-
cally, 3,4-DAP is an effective symptomatic treatment for LEMS
because the partial block of presynaptic Kv3 channels broadens
the presynaptic AP, which increases the percentage of presyn-
aptic Cav channels that open, and thus increases calcium entry
and calcium-triggered transmitter release, leading to an
improvement in neuromuscular strength in patients with LEMS.

Experimental procedures

Ethics statement

The experimental procedures in this study were conducted in
compliance with the USNational Institutes of Health laboratory
animal care guidelines and approved by the Institutional Animal
Care and Use Committee of the University of Pittsburgh. All
efforts were made to minimize the suffering of animals.

Whole-cell perforated patch-clamp electrophysiology

Recordings were performed as described previously (81) us-
ing HEK293T cells transfected with Kv3.3 (Kv 3.3 α subunit (Dr
Leonard Kaczmarek) and GFP at a DNA ratio of 1:1), Kv3.4 (Kv
3.4 α subunit (Dr Manuel Covarrubias) and GFP at a DNA ratio
of 1:1), Cav2.1 (Cav 2.1 α1 subunits, Addgene #26573; Cav β3,
Addgene #26574; Cav α2δ1, Addgene #26575, and GFP at a
DNA ratio of 1:1:1:1), or Cav1.2 (Cav 1.2 α1 subunits, Addgene
#26572; Cav β3, Addgene #26574; Cav α2δ1, Addgene #26575,
and GFP at a DNA ratio of 1:1:1:1). All recordings were per-
formed at room temperature (RT) (20–22 �C).

For recording potassium currents, the pipette solution
contained 70-mM CH3KO3S, 60-mM KCl, 10-mM Hepes, and
1-mM MgCl2 at pH 7.4, and the bath saline contained 130-
mM NaCl, 10-mM Hepes, 10-mM glucose, 3-mM CaCl2,
and 1-mM MgCl2 at pH 7.4. For recording calcium currents,
the pipette solution contained 70-mM CH3O3SCs, 60-mM
CsCl, 10-mM Hepes, and 1-mM MgCl2 at pH 7.4, and the
bath saline contained 130-mM choline chloride, 10-mM
Hepes, 10-mM TEA-Cl, 5-mM BaCl2, and 1-mM MgCl2 at
pH 7.4. Patch pipettes were fabricated from borosilicate glass
and pulled to a resistance of �1 to 4 MΩ. Before each
experiment, 3-mg amphotericin-B was dissolved in 50-μM
dimethyl sulfoxide. Each hour, 10 μl of this amphotericin-B
stock was mixed with 500 μl of the pipette solution and vor-
texed. Pipettes were filled in a two-step process. The tip of the
pipette was dipped into a droplet of filtered pipette solution for
1 s, and then the remainder of the pipette was back-filled with
the amphotericin-B/pipette solution mixture using a syringe
and a 34 G quartz needle (MicroFil MF34G, World Precision
Instruments). This filled pipette was then used to make a GΩ
seal with a fluorescent cell and 5 to 10 min was provided for
amphotericin-B–mediated perforated patch access. Access
resistances ranged from 5 to 15 MΩ and were compensated by
85%. Voltage clamp of cells under study was controlled by an
Axopatch 200B amplifier driven by Clampex 10 software
(Molecular Devices). Data were filtered at 5 kHz, digitized at
10 or 50 kHz, and analyzed using Clampfit 10 software (Mo-
lecular Devices). Capacitive transients and passive membrane
responses to the voltage steps were subtracted, and the liquid
junction potential was corrected before each recording. Cur-
rent through calcium or potassium channels was activated by
depolarizing steps from a holding potential of −100 mV to +20
or +40 mV. In all cases, currents were activated both before
and after exposure to 3,4-DAP (dissolved in extracellular sa-
line) in each cell, and current amplitudes were compared. For
analysis before plotting, each current amplitude was normal-
ized to its peak current amplitude before 3,4-DAP application
to derive the normalized block at each concentration. The
ratio described above was subtracted from 1 and the resulting
value then was multiplied by 100 to obtain the percent
inhibition.
J. Biol. Chem. (2021) 296 100302 11
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Tissue preparation

Adultmale and female frogs (Ranapipiens) were anaesthetized
via immersion in 0.6% tricaine methane sulphonate, decapitated,
and double pithed. The cutaneous pectoris neuromuscular
preparationwas dissected andbathed innormal frogRinger saline
(in mM: 116 NaCl, 10-mM N,N-bis(2-hydroxyethyl)-2-amino-
ethanesulfonic acid (BES) buffer, 2-mM KCl, 5-mM glucose,
1-mM MgCl2, 1.8-mM CaCl2, pH 7.3). Adult male and female
Swiss Webster mice (3–6 months of age; Charles River Labora-
tories) were sacrificed using CO2 inhalation, followed by thora-
cotomy. The epitrochleoanconeous neuromuscular preparation
was bilaterally dissected andbathed in normalmammalianRinger
saline (inmM: 150NaCl, 10-mMBES buffer, 5-mMKCl, 11-mM
glucose, 1-mMMgCl2, 2-mM CaCl2, pH 7.4).

Intracellular microelectrode electrophysiology

The muscle nerve was stimulated using a suction electrode,
and muscle contraction was blocked after 1-h incubation in a
bath containing 50 μM of the irreversible muscle myosin
inhibitor 3-(N-butylethanimidoyl)-4-hydroxy-2H-chromen-2-
one (82). After 3-(N-butylethanimidoyl)-4-hydroxy-2H-chro-
men-2-one washout using normal saline, microelectrode
recordings were made in the presence of 1-μM nitrendipine
(Sigma) or the vehicle (0.01% dimethyl sulfoxide) plus a se-
lective muscle voltage-gated sodium channel blocker (1-μM
μ-conotoxin PIIIA for the frog NMJ or 5-μM μ-conotoxin
GIIIB for the mouse NMJ; Alomone Labs Ltd). In addition, to
reduce the magnitude of transmitter released, 250- to 900-nM
ω-conotoxin GVIA (to block N-type channels at the frog NMJ)
or 50- to 100-nM ω-agatoxin IVA (to block P/Q-type channels
at the mouse) was included in the recording bath. The range of
concentrations listed was used iteratively with each prepara-
tion to reduce control EPPs to below 10 mV. Intracellular
recordings of muscle cell membrane potentials were obtained
using borosilicate glass microelectrodes pulled to a resistance
of �40 to 60 MΩ and filled with 3-M potassium chloride. For
each muscle fiber recording made adjacent to visualized NMJs,
spontaneous miniature synaptic events (mEPPs) were collected
for 1 to 2 min, followed by 10 to 30 EPPs elicited by low-
frequency (0.2 Hz) nerve stimulation. Subsequently, neuro-
muscular preparations were incubated in freshly made 1.5-μM
or 100-μM 3,4-DAP for 30 to 60 min. After 3,4-DAP incu-
bation, paired recordings were made from the same NMJs that
had been studied in control saline (resulting in paired data
sets). Data were collected using an Axoclamp 900A and digi-
tized at 10 kHz for analysis using pClamp 10 software
(Molecular Devices). Spontaneous and evoked EPPs were
normalized to −70 mV and corrected for nonlinear summation
(65). We measured the magnitude of transmitter release by
determining the QC using the direct method of dividing the
peak of the averaged and normalized EPP trace by the peak of
the averaged and normalized mEPP trace.

Voltage imaging

Voltage imaging was performed as described previously
(64). To load nerve terminals with the dye for the voltage-
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imaging procedure, a mixture of 5 ml of normal frog Ringer
saline (for frog preparations) or normal mammalian Ringer
saline (for mouse preparations) with a BeRST 1 voltage-
sensitive dye (63) concentration of 0.5 μM and 10 μg/ml of
Alexa Fluor 488–conjugated alpha-bungarotoxin (BTX; to
counterstain postsynaptic receptors at the NMJ and block
muscle contractions) was freshly made before each experi-
ment. Then, the neuromuscular preparation was bathed in this
dye mixture for 90 min, rinsed, and mounted on the stage of an
Olympus BX61 microscope with a 60x water immersion
objective. The nerve was then drawn into a suction electrode
for suprathreshold stimulation. If the BTX conjugated to Alexa
Fluor 488 did not completely block muscle contractions, 10-
μM curare was added to the imaging saline to completely
block any remaining nerve-evoked muscle contractions.

The postsynaptic BTX stain was used to identify nerve
terminals and bring them into focus for voltage imaging. After
locating a well-stained nerve terminal, an imaging region of
interest (ROI) that contained a large portion of the nerve
terminal branch (usually an ROI of approximately 80 × 30 μm
for frog or 60 × 40 μm for mouse) was selected. All voltage
imaging recordings were performed at RT (20–22 �C).

After a nerve terminal was selected for imaging, the pre-
synaptic axon was stimulated at 0.2 Hz. During each stimu-
lation, there was a brief 100-μs image collection window where
the preparation was illuminated by a 640-nm laser (89 North
laser diode illuminator) and the BeRST 1 dye fluorescence of
the nerve terminal was recorded by an EMCCD camera (Pro-
EM 512, Princeton Instruments). A custom routine on a
Teensy 3.5 USB development board (PJRC) created a delay
between the stimulation of the nerve and the triggering of the
camera and laser. This delay in the 100-μs collection window
was increased by 20 μs after each stimulation. After 100
sequential delays of 20 μs, a full time-course of 2 ms in which
the entire AP waveform could be sampled was obtained (for
100-μM 3,4-DAP recordings, 300 moving bins for a total time
course of 6 ms were used). For each frog nerve terminal
recording, this process was repeated 5 to 15 times. For mouse
nerve terminal recordings, this process was repeated 10 to 50
times (the BeRST 1 dye signal at the mouse terminals was
weaker than at the frog terminals and thus required more
recordings to obtain a high-quality averaged AP waveform).

Custom-written scripts in ImageJ and MATLAB (Math-
works) were used to analyze images. An “align slices in stack”
ImageJ plugin (https://sites.google.com/site/qingzongtseng/
template-matching-ij-plugin; see (83, 84)) was used to correct
the image stack for x-y drift. Then, an unbiased ROI selection (a
subsection of the full imaging ROI) containing the nerve ter-
minal was created by applying an Otsu local imaging threshold
(85) to the average fluorescence z-projection of the BeRST 1
image stack. The average fluorescence inside this ROI was used
as the nerve signal (for frog recordings, 20 μm near the end of
the nerve terminal and last node of Ranvier were excluded to
restrict recordings to the middle electrical region of the termi-
nal; see (64)). The average fluorescence from the region outside
of the Otsu-selected ROI was used as the background signal.
Both the nerve and background signals were then low-pass
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filtered offline (fpass= 4 kHz). The following analysis was then
performed separately for both the filtered and unfiltered signals:
the background signal was divided from the nerve signal to
generate a corrected fluorescence signal. We then fit a cubic B-
spline through the unstimulated points in the fluorescence time
course (the first and last 15 points of the 100 total points in each
time series), and divided this cubic spline from each point in the
fluorescence signal. This resulted in a ΔF/F fluorescence signal
that did not fluctuate as a result of drift of the nerve muscle
preparation or dye bleaching.

Two AP waveforms were then created by separately aver-
aging the APs from the filtered and unfiltered ΔF/F fluores-
cence signal. The R2 value between the filtered and unfiltered
AP waveforms was then calculated. Because these are not
linear models, the R2 is not an exact measure of fit between the
filtered and unfiltered AP waveforms but rather is a metric of
fit that is heavily weighted by the strength (in terms of the
amplitude of the ΔF/F fluorescence signal) of the recorded
signal. This weight is important because normalizing slight
bumps on an almost flat signal could appear as an AP. Thus,
the R2 value provides a heuristic metric to estimate the quality
of our recorded AP waveforms and is not used for any sta-
tistical purposes.

Image artifacts in the background (e.g., a BeRST 1 dye
stained free-floating piece of connective tissue) occasionally
resulted in the background not properly dividing the nerve
signal, resulting in a noisier signal (and worse R2 value). If the
R2 was less than 0.95 for frog recordings (or 0.90 for the 300
bin recordings for the 100-μM 3,4-DAP recordings), or 0.85
for the mouse recordings, the fluorescence of an approximately
15 × 30-μm section of the background near the nerve terminal
was used as the background fluorescence rather than the
complete background region. If this smaller background sub-
section also resulted in an R2 value lower than the values listed
above, the recording was not included in the data analysis. If
the recording was of high enough quality to produce a suffi-
cient R2 value, the average filtered AP was normalized to the
first 15 points (the baseline of the trace) and fit with cubic
spline interpolation at an oversampled time resolution of 2 μs.
Finally, the FWHM of the normalized spline of the AP wave-
form was calculated.

Statistical analysis

Data were statistically analyzed using Prism v.7 or v.8
(Graphpad). Electrophysiology data were determined to be out-
liers if the data exceeded 1.5 times the interquartile range. The
distribution of the data was assessed for normality using the
Shapiro–Wilk test. Statistical comparisons were performed us-
ing a two-way repeated-measures mixed ANOVA with a
between-subject factor of bath (nitrendipine or control vehicle
bath) and a within-subject factor of 3,4-DAP (baseline or after
3,4-DAP bath application), or with a paired t test or Wilcoxon
matched-pairs signed-rank test. If there was a significant inter-
action found, post hoc simple effect tests were performed. Re-
sults were considered statistically significant when the p-value
was<0.05. The results represent the mean ± standard deviation
of at least three independent experiments.
Data availability
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