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Objective: To develop a deep learning model to predict lymph node (LN) status in clinical stage IA lung adeno- 

carcinoma patients. 

Methods: This diagnostic study included 1,009 patients with pathologically confirmed clinical stage T1N0M0 

lung adenocarcinoma from two independent datasets (699 from Cancer Hospital of Chinese Academy of Medical 

Sciences and 310 from PLA General Hospital) between January 2005 and December 2019. The Cancer Hospital 

dataset was randomly split into a training cohort (559 patients) and a validation cohort (140 patients) to train 

and tune a deep learning model based on a deep residual network (ResNet). The PLA Hospital dataset was used 

as a testing cohort to evaluate the generalization ability of the model. Thoracic radiologists manually segmented 

tumors and interpreted high-resolution computed tomography (HRCT) features for the model. The predictive 

performance was assessed by area under the curves (AUCs), accuracy, precision, recall, and F1 score. Subgroup 

analysis was performed to evaluate the potential bias of the study population. 

Results: A total of 1,009 patients were included in this study; 409 (40.5%) were male and 600 (59.5%) were 

female. The median age was 57.0 years (inter-quartile range, IQR: 50.0–64.0). The deep learning model achieved 

AUCs of 0.906 (95% CI: 0.873–0.938) and 0.893 (95% CI: 0.857–0.930) for predicting pN0 disease in the testing 

cohort and a non-pure ground glass nodule (non-pGGN) testing cohort, respectively. No significant difference 

was detected between the testing cohort and the non-pGGN testing cohort ( P = 0.622). The precisions of this 

model for predicting pN0 disease were 0.979 (95% CI: 0.963–0.995) and 0.983 (95% CI: 0.967–0.998) in the 

testing cohort and the non-pGGN testing cohort, respectively. The deep learning model achieved AUCs of 0.848 

(95% CI: 0.798–0.898) and 0.831 (95% CI: 0.776–0.887) for predicting pN2 disease in the testing cohort and 

the non-pGGN testing cohort, respectively. No significant difference was detected between the testing cohort 

and the non-pGGN testing cohort ( P = 0.657). The recalls of this model for predicting pN2 disease were 0.903 

(95% CI: 0.870–0.936) and 0.931 (95% CI: 0.901–0.961) in the testing cohort and the non-pGGN testing cohort, 

respectively. 

Conclusions: The superior performance of the deep learning model will help to target the extension of lymph 

node dissection and reduce the ineffective lymph node dissection in early-stage lung adenocarcinoma patients. 
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. Introduction 

Lung cancer is the leading cause of cancer incidence and mortality

orldwide, and non-small cell lung cancer (NSCLC) accounts for 80% of

he lung cancer cases. 1 Adenocarcinoma is the most common subtype of

SCLC. Increasing peripheral small lung adenocarcinomas are detected

ue to the advent of high-resolution computed tomography (HRCT) and

hest low-dose computed tomography (CT) screening. 2 , 3 It was reported

hat about 20% of lung adenocarcinoma patients had lymph node (LN)

etastasis after systematic LN dissection, even though they were con-

rmed as clinical N0 before surgical resection. 4 Therefore, systematic

N dissection is still the preferred treatment for these patients to avoid

umor residuals and prolong survival. However, Rami-porta et al. stud-

ed the pathological staging of 77,156 cases of lung cancer diagnosed

rom 1999 to 2010 recruited by the International Association for the

tudy of Lung Cancer (IASLC), and found that about 25% of lung adeno-

arcinoma were in stage IA at the time of diagnosis. 5 This result means

hat about 1/4 of patients with lung adenocarcinoma have undergone

neffective LN dissection, which may lead to unnecessary tissue dam-

ge, operational risk, and longer postoperative recovery time. 6 , 7 There-

ore, accurate prediction of lymph node metastasis is crucial for sur-

eons in determining the necessity of lymph node dissection and select-

ng the specific node stations for the procedure. This approach helps

void unnecessary interventions while ensuring adequate treatment for

ases with higher risk of metastasis. 

Researchers have been trying to find a method or some risk factors

o accurately evaluate the status of LN in clinical N0 patients. Arti-

les focusing on morphological features, positron emission tomography

PET) metabolic index, and texture characteristics of primary tumor or

erum markers such as carcinoembryonic antigen have been published

n recent years. 4 , 8 , 9 However, the ability of these features to preoper-

tively evaluate lymph nodes status is not ideal, with the area under

he curve (AUC) being less than 0.8, which limits their promotion and

pplication in clinical practice. Radiomics, which can convert medical

adiographic images into high-dimensional, mineable, and quantitative

ata, shows its strong ability in oncology, including the diagnosis of

N metastasis. 10-15 The reported AUC of radiomics signatures for pre-

icting LN metastasis in lung cancer patients can achieve more than

.80. 10 , 16 , 17 However, radiomics models are very sensitive to image

canning parameters, and different centers often get different results,

hich limits the clinical application of the models. 18 Moreover, pre-

efined features based on medical images sometimes experience prob-

ems. For example, inter-group or intra-group differences in manual

egmentation of lesions or high false positives in feature selection can

imit the robustness and generalization of traditional machine learning

odels. 

End-to-end deep learning algorithms, however, can automatically

earn the potential connections between images and labels without

xtracting pre-defined image features. 19-22 Moreover, neural network

odels have significantly advanced beyond traditional machine learn-

ng methods in terms of both model construction and application.

ne notable example of this advancement is the deep residual net-

orks, commonly known as ResNet, which is particularly notable for

ts flexible structure and exceptional capabilities in image classifica-

ion tasks. This flexibility and efficiency have made it a popular choice

n the field of deep learning, especially for tasks that involve com-

lex image processing and recognition. 23 Furthermore, evidence sug-

ests that integrating information from diverse modalities, including

mages and clinical features, enhances the diagnostic precision of artifi-

ial intelligence models. 24-26 In this study, we designed a deep learn-

ng model based on ResNet and combined CT and clinical informa-

ion to predict LN status before surgery for stage Ⅰ A lung adenocar-

inoma patients to help target the extension of LN dissection and re-

uce the ineffective LN dissection in early-stage lung adenocarcinoma

atients. 
234
. Methods 

.1. Case selection and evaluation of clinical characteristics 

A total of 1,009 pathologically confirmed clinical stage T1N0M0 lung

denocarcinoma patients between January 2005 and December 2019

rom two independent datasets were enrolled in this study. Data anal-

sis was performed between January 2022 and March 2023. These pa-

ients included 699 cases from the Cancer Hospital of Chinese Academy

f Medical Sciences (Cancer Hospital) and 310 cases from PLA General

ospital (PLA Hospital). The inclusive criteria were: (a) pathologically

roven lung adenocarcinoma patients; (b) systematic LN dissection per-

ormed; and (c) contrast-enhanced thin-section CT performed less than

wo weeks before surgical resection. The exclusive criteria were: (a) mul-

iple lesions or evidence of metastasis; (b) tumor diameter of more than

 cm; (c) short diameter of the LN in hila or mediastina larger than 1 cm

n HRCT image; (d) preoperative therapy (radiotherapy, chemother-

py, or chemoradiotherapy); and (e) malignancy history in recent five

ears. 

Clinicopathological characteristics were recorded for all eligible pa-

ients. All pathological sections were interpreted according to the mul-

idisciplinary adenocarcinoma criteria. 27 Resected specimens of pa-

ients in 2005–2012 were reviewed by an experienced lung pathologist

S.W., with 8 years of experience in lung pathology) according to the

ame criteria. Atypical adenomatous hyperplasia (AAH) and adenocar-

inoma in situ (AIS) were integrated to precursors of adenocarcinoma

PGL) according to the 5th World Health Organization (WHO) classifi-

ation of lung tumors. 28 We performed tumor staging according to the

th Edition of the American Joint Committee on Cancer TNM Staging

anual. 29 

Two independent thoracic radiologists (L.Z. & M.L., with more than

5 years of experience) reviewed the preoperative CT images on GE

W 4.6 workstation blinded to pathological results. When there was a

iscrepancy in the interpretation of morphological features, a final con-

ensus was reached by group discussions. 14 features of emphysema,

ronchiectasis, invasive lobe, location, nodule consistency, diameter,

hape, boundary, enhancement, pleural retraction, deep lobulation, cal-

ification, necrosis, and regional air spaces were interpreted. The defi-

itions of these features were listed in Supplementary Table 1 in Sup-

lementary materials. 

.2. Development of deep learning model 

The Cancer Hospital dataset was divided into a training cohort and

 validation cohort at a ratio of 8:2 to train and tune the deep learning

odel (559 patients for the training cohort and 140 patients for the

alidation cohort. CT slices from any individual patient were exclusively

ssigned to one cohort), and patients from the PLA Hospital were used as

 testing cohort to verify the generalization ability of the deep learning

odel. The model training was performed on the training cohort, the

yper-parameter optimization and epoch selection were performed on

he validation cohort, and the testing cohort was only used to evaluate

he model performance. 

To obtain enough data to fully fit the deep learning model, we re-

laced the 3D CT volume with 2D CT slices and processed each CT

lice independently. An experienced radiologist with 15 years of prac-

ice, Dr. Z.L., meticulously delineated the tumor region on each CT

lice for all 1,009 patients, using ITK-SNAP software (version 3.6.0;

ww.itksnap.org ). Subsequently, to focus the deep learning model’s

ttention on the tumor area and its adjacent peritumoral microenvi-

onment, we expanded the region of interest (ROI) of the primary tu-

or to include the surrounding lung parenchyma, enlarging it three-

old. This led to the generation of axis-aligned bounding boxes from

he manual segmentations on each slice. For converting these bounding

oxes into square images, we adapted the shorter sides of the rectan-

http://www.itksnap.org
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Fig. 1. The architecture of the deep-learning model. CT, computed tomography; HRCT, high-resolution computed tomography. 
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ular bounding boxes, extending them equally on both sides to match

he lengths of the longer sides. These uniformly resized square images

hen served as the inputs for the deep learning model. To maintain

uality, we excluded any bounding boxes smaller than 64 ×64 pixels,

nsuring that all input images were of adequate size and resolution

or effective processing. Finally, 13,073 slices of primary tumor CT im-

ges were generated from 1,009 patients to train, validate, and test the

eep learning model. Of these 13,073 slices of primary tumor CT im-

ges, 9,569 (73.2%) were pN0 disease, 2,004 (15.3%) were pN1 disease

nd 1,500 (11.5%) were pN2 disease. 7,811 slices were assigned to the

raining cohort (5,623 [72.0%] were pN0 disease, 1,217 [15.6%] were

N1 disease, and 971 [12.4%] were pN2 disease), 2,013 slices were as-

igned to the validation cohort (1,480 [73.5%] were pN0 disease, 395

19.6%] were pN1 disease, and 138 [6.9%] were pN2 disease), and

,249 slices were assigned to the testing cohort (2,466 [75.9%] were

N0 disease, 392 [12.1%] were pN1 disease, and 391 [12.0%] were pN2

isease). 

We also incorporated 17 clinic-radiological characteristics into the

odel so that the model could learn information from different modal-

ties. Of these 17 features, three were clinical features including sex,

ge, and smoking history, two were lung background features in-

luding emphysema and bronchiectasis, two were tumor sites includ-

ng invasive lobe and location, and ten were CT features including

odule consistency, diameter, shape, boundary, enhancement, pleu-

al retraction, deep lobulation, calcification, necrosis, and regional air

paces. 

Then, we designed an end-to-end deep learning model based on

esNet-34. The model combined the two modalities by concatenating

he last feature map of the ResNet architecture with clinic-radiological

eatures. Given that the number of feature maps significantly out-

umbered the clinic-radiological features, we enhanced the 17 clinic-

adiological characteristics to a 128-dimensional set through replica-

ion, thus preventing information loss. Specifically, we expanded the

nitial set of 17 clinical features by replicating each feature seven

imes, and augmented this set with 9 randomly selected values, cul-

inating in a 128-dimensional clinical feature set. Subsequently, these

28-dimensional clinic-radiological features were concatenated with the

12-dimensional feature map, which was automatically extracted by

esNet34. Finally, the two types of features were normalized by layer

ormalization and then fed to a fully connected layer. The model archi-

ecture is shown in Fig. 1 . 
c  

235
During the model training, cropping, and flipping were used to aug-

ent the input image. Given the difference in the number of CT slices

etween patients with LN metastasis and those without, we adopted

eighted random sampling to balance the number of CT slices in each

raining iteration. To ensure the robustness of our model’s training pro-

ess, we strategically addressed the potential correlation among slices

rom the same patient by avoiding the inclusion of neighboring slices in

he same training batch. We used cross-entropy loss as the loss function

nd Adam as the optimization algorithm. The model was trained for 100

pochs, and the learning rate decreased from 1e-3 to 1e-5 by stepwise

ecay at every 5 epochs. 

.3. Assessment of deep learning model 

After the deep learning model prediction of each CT slice was com-

leted, we integrated the prediction results of slices from the same

atient to calculate a patient-level prediction result. A voting-based

ethod was used to map the prediction results at the slice level to the

atient level. The formula is as follows: 

𝑖 = 𝑓

( 

𝑛𝑖 ∑
𝑗=1 

𝑠𝑔𝑛
(
𝑠𝑖,𝑗 − 0 . 5 

)
+ 1 

2 𝑛𝑖 

) 

, 

𝑖 =
∑

𝑗 𝑠𝑖,𝑗 

𝑐𝑎𝑟𝑑
(


) 𝑗 ∈  , 

here 

( 𝑥) = 𝑠𝑔𝑛( 𝑥 − 0 . 5 ) + 1 
2 

, 

 =
{
𝑗 | 𝑓(𝑠𝑖,𝑗 ) = 𝑃𝑖 

}
𝑛𝑖 : The total number of slices for the 𝑖 - 𝑡ℎ patient. 

𝑃𝑖 : The predictive value of the 𝑖 - 𝑡ℎ patient. 0 represents negative and

 represents positive. 

𝑝𝑖 : The risk probability of LN metastasis for the 𝑖 - 𝑡ℎ patient. 

𝑠𝑖,𝑗 : The probability that the 𝑗- 𝑡ℎ slice of the 𝑖 - 𝑡ℎ patient has positive

redictions. 

Then, receiver operating characteristic (ROC) curve analysis was per-

ormed to evaluate the performance of the deep learning model, and

UCs were calculated to quantify the performance. The accuracy, pre-

ision, recall, and F1 score results were also calculated. Delong test was
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Table 1 

Clinicopathological characteristics of clinical T1N0M0 patients. 

Training cohort 

( n = 559) 

Validation cohort 

( n = 140) 

Testing cohort 

( n = 310) 

Data source Cancer Hospital Cancer Hospital LPA Hospital 

Age, median (IQR), years 58.0 (50.0–64.0) 58.0 (49.0–64.0) 56.0 (51.0–63.0) 

Sex, n (%) 

Female 350 (62.6) 84 (60.0) 166 (53.5) 

Male 209 (37.4) 56 (40.0) 144 (46.5) 

Smoking history, n (%) 

Smoker 137 (24.5) 38 (27.1) 94 (30.3) 

Non-smoker 422 (75.5) 102 (72.9) 216 (69.7) 

Surgical procedure, n (%) 

Wedge resection 50 (8.9) 4 (2.9) 9 (2.9) 

Segmentectomy 35 (6.3) 7 (5.0) 16 (5.2) 

Lobectomy 474 (84.8) 129 (92.1) 285 (91.9) 

Tumor location, n (%) 

Left 199 (35.6) 63 (45.0) 108 (34.8) 

Right 360 (64.4) 77 (55.0) 202 (65.2) 

Pathological N stage, n (%) 

N0 440 (78.7) 112 (80.0) 244 (78.7) 

N1 68 (12.2) 20 (14.3) 35 (11.3) 

N2 51 (9.1) 8 (5.7) 31 (10.0) 

Pathological stage, n (%) 

0 /Tis 61 (10.9) 10 (7.1) 4 (1.30) 

A 310 (55.5) 82 (58.6) 210 (67.7) 

B 69 (12.3) 20 (14.3) 30 (9.7) 

B 68 (12.2) 20 (14.3) 35 (11.3) 

A 51 (9.1) 8 (5.7) 31 (10.0) 

Histological subtype, n (%) 

Precursors of adenocarcinoma 62 (11.1) 10 (7.1) 4 (1.3) 

MIA 51 (9.1) 13 (9.3) 28 (9.0) 

IAC 446 (79.8) 117 (83.6) 278 (89.7) 

Abbreviations: IAC, invasive adenocarcinoma; IQR, inter-quartile range; MIA, minimally invasive adenocarci- 

noma; N, node; Tis, tumor in situ. 
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Fig. 2. The contributions of clinic-radiological features to the deep learning 

model. CT, computed tomography. 
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sed to compare the model performance in the testing cohort between

ll patients and non-pGGN patients. 

.4. Statistical analysis 

In this study, the model construction was implemented using Pytorch

version 1.7.1, http://www.pytorch.org/ ) in Python (version 3.8.5,

ttps://www.python.org/ ). The performance evaluation was conducted

n R (version 3.5.1, https://www.r-project.org/ ). The levels of statisti-

al significance of the reports were all two-sided, and P values < 0.05

ere considered to indicate significance. The detailed packages used in

ython and R were described in Supplementary Table 2 . 

. Results 

.1. Clinicopathological characteristics of patients 

Of the 1,009 clinical stage T1N0M0 adenocarcinoma patients, 409

40.5%) were male and 600 (59.5%) were female. The median age

as 57.0 years (inter-quartile range, IQR: 50.0–64.0), 740 (73.3%)

ere non-smokers, and 269 (26.7%) were smokers. 63 (6.3%) under-

ent wedge resection, 58 (5.7%) underwent segmentectomy, and 888

88.0%) underwent lobectomy. The primary tumors of 370 (36.7%) pa-

ients were located in the left lung and those of 639 (63.3%) patients

ere in the right lung. 

Lymph node status were negative in 796 (78.9%) of the total clinical

tage T1N0M0 adenocarcinoma patients, and positive in 213 (21.1%) of

hem, among whom 123 patients were with N1 disease, and 90 patients

ere with N2 disease. The pathological stages were stage 0 (Tis) in 75

7.4%), stage IA in 602 (59.7%), stage IB in 119 (11.8%), stage IIB in 123

12.2%), and stage IIIA in 90 (8.9%) patients. Histological subtypes were

recursors of adenocarcinoma in 76 (7.5%), minimally invasive adeno-

arcinoma (MIA) in 92 (9.1%), and invasive adenocarcinoma (IAC) in

41 (83.4%) patients. The clinicopathological characteristics of patients
236
n the training cohort, the validation cohort, and the testing cohort are

hown in Table 1 . 

.2. Contributions of clinic-radiological features to the deep learning model 

The contributions of clinic-radiological features to the deep learn-

ng model were shown in Fig. 2 . Nodule consistency contributes the

ost, followed by enhancement, necrosis, location, diameter, emphy-

ema, invasive lobe, boundary, deep lobulation, sex, smoking history,

ronchiectasis, pleural retraction, regional air space, calcification, age,

nd shape. The clinic-radiological features in the training cohort, the

alidation cohort, and the testing cohort were shown in Supplementary

able 3. 

http://www.pytorch.org/
https://www.python.org/
https://www.r-project.org/
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Table 2 

The performance of the deep learning model in predicting pathological N0 and N2 diseases. 

AUC (95% CI) Accuracy (95% CI) F1 Score (95% CI) Precision (95% CI) Recall (95% CI) 

All patients 

N0 disease 

Training 0.963 (0.949–0.978) 0.903 (0.879–0.928) 0.935 (0.914–0.955) 1.000 (1.000–1.000) 0.877 (0.850–0.904) 

Validation 0.932 (0.893–0.971) 0.857 (0.799–0.915) 0.906 (0.857–0.954) 0.960 (0.928–0.993) 0.857 (0.799–0.915) 

Testing 0.906 (0.873–0.938) 0.800 (0.755–0.845) 0.857 (0.818–0.896) 0.979 (0.963–0.995) 0.762 (0.715–0.810) 

N2 disease 

Training 0.918 (0.894–0.942) 0.778 (0.744–0.813) 0.451 (0.410–0.493) 0.291 (0.254–0.329) 1.000 (1.000–1.000) 

Validation 0.905 (0.815–0.996) 0.757 (0.686–0.828) 0.292 (0.216–0.367) 0.175 (0.112–0.238) 0.875 (0.820–0.930) 

Testing 0.848 (0.798–0.898) 0.690 (0.639–0.74) 0.368 (0.315–0.422) 0.231 (0.184–0.278) 0.903 (0.870–0.936) 

Non-pGGN patients 

N0 disease 

Training 0.952 (0.933–0.970) 0.881 (0.851–0.911) 0.912 (0.886–0.938) 1.000 (1.000–1.000) 0.839 (0.805–0.873) 

Validation 0.915 (0.866–0.963) 0.829 (0.761–0.897) 0.880 (0.821–0.939) 0.948 (0.908–0.988) 0.820 (0.751–0.890) 

Testing 0.893 (0.857–0.930) 0.805 (0.759–0.851) 0.861 (0.820–0.901) 0.983 (0.967–0.998) 0.766 (0.716–0.815) 

N2 disease 

Training 0.897 (0.866–0.927) 0.727 (0.686–0.768) 0.451 (0.406–0.497) 0.291 (0.250–0.333) 1.000 (1.000–1.000) 

Validation 0.885 (0.776–0.994) 0.709 (0.627–0.792) 0.292 (0.209–0.374) 0.175 (0.106–0.244) 0.875 (0.815–0.935) 

Testing 0.831 (0.776–0.887) 0.699 (0.645–0.752) 0.388 (0.332–0.445) 0.245 (0.195–0.296) 0.931 (0.901–0.961) 

Abbreviations: AUC, area under curve; CI, confidence interval; pGGN, pure ground glass nodule. 
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To further assess the impact of integrating clinic-radiological fea-

ures, we developed a baseline neural network model devoid of clinic-

adiological feature fusion. This model was based on the same backbone

ResNet34) and subjected to the same dataset conditions for a compar-

tive analysis. The findings distinctly demonstrate that our proposed

usion deep learning model significantly surpasses traditional single-

odality deep learning models across a variety of tasks and subgroups.

etailed results can be found in Supplementary Table 4. 

.3. Performance of deep learning model on predicting lymph node status 

f all patients 

The accuracy at the slice level on the training cohort, the

alidation cohort, and the testing cohort was 0.904, 0.826, and

.793, respectively. The sensitivity and specificity were relatively

alanced in the three cohorts (sensitivity: 0.952, 0.869, 0.890 for

he training, validation, and testing cohorts, respectively; specificity:

.846, 0.811, 0.762 for the training, validation, and testing cohorts,

espectively). 

At the patient level, the deep learning model reached an AUC of

.906 (95% CI: 0.873–0.938) in the testing cohort for predicting patho-

ogical N0 disease. The model achieved a high F1 score of 0.857 (95%

I: 0.818–0.896). The accuracy, precision, and recall of the model for

redicting pathological N0 disease was 0.800 (95% CI: 0.755–0.845),

.979 (95% CI: 0.963–0.995), and 0.762 (95% CI: 0.715–0.810), re-

pectively. For predicting N2 disease, the AUC in the testing cohort was

.848 (95% CI: 0.798–0.898), with an F1 score of 0.368 (95% CI: 0.315–

.422). The accuracy, precision, and recall of the model for predicting

athological N2 disease was 0.690 (95% CI: 0.639–0.740), 0.231 (95%

I: 0.184–0.278), and 0.903 (95% CI: 0.870–0.936), respectively. The

erformances of the model in the training and validation cohorts were

emonstrated in Table 2 . 

.4. Performance of deep learning model on predicting lymph node status 

f non-pure ground glass nodule (non-pGGN) patients 

Since there were very few LN metastases in pGGN patients, we also

erformed ROC curve analysis for the non-pGGN patients in the three

ohorts. There were 853 non-pGGN patients in total, consisting of 402

atients (47.1%) in the training cohort, 169 patients (19.8%) in the vali-

ation cohort, and 282 patients (33.1%) in the testing cohort. The patho-

ogical N stages for these 402 non-pGGN patients in the training cohort

ere N0 in 303 (75.4%), N1 in 54 (13.4%), and N2 in 45 (11.2%) pa-

ients. The pathological N stages for these 169 non-pGGN patients in the
237
alidation cohort were N0 in 121 (71.6%), N1 in 34 (20.1%), and N2 in

4 (8.3%) patients. The pathological N stages for these 282 non-pGGN

atients in the testing cohort were N0 in 222 (78.7%), N1 in 31 (11.0%),

nd N2 in 29 (10.3%) patients. 

The deep learning model reached an AUC of 0.893 (95% CI: 0.857–

.930) in the non-pGGN testing cohort for predicting pathological N0

isease, which was lower than that in the whole testing cohort, but no

ignificant difference was detected ( P = 0.622). The deep learning model

eached an AUC of 0.831 (95% CI: 0.776–0.887) in the non-pGGN test-

ng cohort for predicting pathological N2 disease, which was lower than

hat in the whole testing cohort, but no significant difference was de-

ected ( P = 0.657). The precision of the model for predicting pN0 dis-

ase in the non-pGGN testing cohort was 0.983 (95% CI: 0.967–0.998).

he recall of the model for predicting pN2 disease in the non-pGGN

esting cohort was 0.931 (95% CI: 0.901–0.961). The results of ROC

nalysis were shown in Fig. 3 . The detailed performance was shown in

able 2 . 

. Discussion 

Reliable predictive methods for LN status are crucial to optimize sur-

ical schemes in early-stage lung adenocarcinoma patients. Our find-

ngs suggested that the deep learning model based on the primary tu-

or image data and clinic-radiological data had a superior performance

n pathological LN status prediction in clinical T1N0M0 lung adeno-

arcinoma patients. The AUCs of the model for predicting pathologi-

al N0 disease reached 0.906 (95% CI: 0.873–0.938) in the testing co-

ort and 0.893 (95% CI: 0.857–0.930) in non-pGGN patients of the

esting cohort, with precision of 0.979 and 0.983, respectively, while

he AUC of the model for predicting N2 disease was 0.848 (95% CI:

.798–0.898) in the testing cohort and 0.831 (95% CI: 0.776–0.887)

n the non-pGGN patients of the testing cohort, with a recall of 0.903

nd 0.931, respectively. No significant difference in the performance of

he model was detected between the whole testing cohort and the non-

GGN testing cohort ( P = 0.622 for pN0 disease and P = 0.657 for pN2

isease). 

The most used non-invasive preoperatively LN evaluation methods

or lung cancer patients are chest CT and positron emission tomogra-

hy (PET)-CT at present. When taking axial short diameter less than

 cm on CT image and SUVmax less than 2.5 on PET-CT as diagnos-

ic criteria, the precision is about 0.800 for predicting pN0 disease. 30-32 

n this study, the precision of the deep learning model for predicting

N0 disease was massively improved (0.979 and 0.983 in the testing
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Fig. 3. ROC analysis to evaluate the model for N0 disease and N2 disease in all patients and non-pGGN patients. The P -values represent the differences in the AUC 

between the testing cohort composed of all patients and non-pGGN patients in the model. AUC, area under the curve; CI, confidence interval; N, node; pGGN, pure 

ground glass nodule; ROC, receiver operating characteristic. 
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ohort and the non-pGGN testing cohort, respectively). Studies found

hat both progression free survival (PFS) and overall survival (OS) of

tereotactic ablative radiotherapy (SABR) were non-inferior to video-

ssisted thoracoscopic surgical lobectomy with mediastinal LN dissec-

ion (VATS-MLND) for operable stage IA NSCLC, which challenged the

oncept of preferred surgery for stage I NSCLC. 33 , 34 The results from

COG0802 and JCOG0804 clinical trials suggested that segmentectomy

hould be the standard surgical procedure for peripheral, small size

 ≤ 2 cm), clinical stage IA NSCLC. Both SABR and segmentectomy are

imed to preserve more lung parenchymal for extensive treatment for

elapse or second primary lung cancer, to improve OS. 35 , 36 However,

ccurate pathological N0 prediction, deciding the delineation of radio-

herapy targets and the extension of the LN dissection, is the bottleneck

f the application of SABR and segmentectomy in clinical stage IA lung

denocarcinoma patients. This deep learning model with high precision

or predicting pathological N0 disease in stage IA lung adenocarcinoma

atients may promote their application in early-stage lung adenocarci-

oma. Meanwhile, the high precision deep learning model may also help

horacic surgeons to reduce ineffective LN dissection. 

By contrast with previous radiomic-based or deep learning-based

tudies, we stratified patients based on nodule consistency and pre-

icted pathological N0 disease and pathological N2 disease simulta-

eously. Previous studies had demonstrated that patients with a domi-

ant ground glass opacity component on CT almost had no LN metas-

asis, 17 , 37 which was consistent with our findings. In this study, 100%

156/156) of patients with pGGN were pathological N0 disease. The pa-

ient population may overestimate the performance of the deep learn-

ng model. So, we stratified the patients based on nodule consistency,

nd found that the deep learning model showed a satisfactory predic-

ive ability in non-pGGN patients. No significant differences were de-

ected between the deep learning model in the whole patient group

nd non-pGGN patients with both pN0 and pN2 diseases. Since patients

ith pathological N2 disease among clinical stage IA lung adenocar-

inoma patients have a poor prognosis and different therapeutic op-

ions of treatment, we tried to predict N0 and N2 disease simultane-

usly in the same model. 38 , 39 We achieved a high AUC of 0.848 (95%

I: 0.798–0.898, with a recall of 0.903) in the testing cohort and 0.831

95% CI: 0.776–0.887, with recall of 0.931) in the non-pGGN testing

ohort. 
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This deep learning model showed better performance in predicting

N status than other common tumor-based methods. 10 , 40 For exam-

le, Cong and colleagues 10 proposed a model that combined radiomics,

aximum diameter and spiculation to predict lymph node metasta-

is, whereas Liu and colleagues 40 proposed a model that combined ra-

iomics and pleural retraction to predict lymph node metastasis. The

UCs of these two methods are 0.86 and 0.758, respectively, which are

ower than our study (AUC of 0.906 in predicting pN0 disease). Unlike

ther studies, this deep learning model combined the primary tumor fea-

ures, lung background features, and clinical features. We also included

he peritumoral microenvironment by expanding ROI of the primary tu-

or to the surrounding lung parenchyma by three times. A previous

tudy proved that the peritumoral volume features could improve the

rediction performance. 17 The lung background was evaluated by a tho-

acic radiologist and dichotomous data were inputted to keep the deep

earning focusing on the tumor and peritumoral area. Considering the

ependence of the deep learning model on the amount of data, we re-

laced the 3D CT volume with 2D CT slices and processed each CT slice

ndependently to fully fit the deep learning model. This may be the rea-

on why the model could achieve a superior performance for predicting

athological N0 and N2 diseases. Studies also had confirmed that clinic-

adiological features could improve the ability of radiomic or artificial

ntelligence models to predict LN status in lung cancer patients, 41 which

as consistent with our study. 

This study has some limitations. Firstly, since systematic LN dissec-

ion is still preferred in clinical practice, we did not conduct prospec-

ive validation. Secondly, this study did not include the features of LNs.

 combination of LN-based data and the current deep learning model

ight achieve better performance and requires further study. Thirdly,

hile ResNet-34 was chosen for its enhancements in this study, it is

cknowledged that other models also harbor the potential for excel-

ent performance. Future research should consider employing a broader

ange of models to explore this potential further. Fourthly, although our

odel shows excellent performance of diagnosis on pathological N0 dis-

ase and N2 disease in this study, the wide application of this model in

linical practice requires further studies with larger samples and more

enters to determine the diagnostic cut-off value. Finally, while we have

etermined the individual weights of clinic-radiological features in final

iagnoses, interpreting each deep learning feature is challenging due
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o the inherent opacity of these models. This highlights the necessity

or continued research into making deep learning models more inter-

retable, which is crucial for improving the clarity and understanding

f our developed models. 

. Conclusions 

In conclusion, the deep learning model provides a non-invasive

ethod to predict LN status in clinical T1N0M0 lung adenocarcinoma

atients. The superior performance of the model based on the primary

umor will help to target the extension of LN dissection and reduce in-

ffective LN dissection in early-stage lung adenocarcinoma patients. 
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