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ABSTRACT: 

Recording the spiking activity from subcellular compartments of neurons such as axons 
and dendrites during behavior with 2-photon calcium imaging is increasingly common yet 
remains challenging due to low signal-to-noise, inaccurate region-of-interest (ROI) 
identification, movement artifacts, and difficulty in grouping ROIs from the same neuron. 
To address these issues, we present a computationally efficient pre-processing pipeline 
for subcellular signal detection, movement artifact identification, and ROI grouping. For 
subcellular signal detection, we capture the frequency profile of calcium transient 
dynamics by applying Fast Fourier Transform (FFT) on smoothed time-series calcium 
traces collected from axon ROIs. We then apply band-pass filtering methods (e.g. 0.05 to 
0.12 Hz) to select ROIs that contain frequencies that match the power band of transients. 
To remove motion artifacts from z-plane movement, we apply Principal Component 
Analysis on all calcium traces and use a Bottom-Up Segmentation change-point detection 
model on the first principal component. After removing movement artifacts, we further 
identify calcium transients from noise by analyzing their prominence and duration. Finally, 
ROIs with high activity correlation are grouped using hierarchical or k-means clustering. 
Using axon ROIs in the CA1 region, we confirm that both clustering methods effectively 
determine the optimal number of clusters in pairwise correlation matrices, yielding similar 
groupings to “ground truth” data. Our approach provides a guideline for standardizing the 
extraction of physiological signals from subcellular compartments during behavior with 2-
photon calcium imaging. 
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INTRODUCTION 

Two-photon calcium imaging enables the recording of activity in subcellular 
neuronal structures such as dendrites, spines, and axons during behavior. Recent studies 
have demonstrated the feasibility of using this approach to investigate how specific sets 
of inputs transmit information to particular regions and how this information is integrated 
at postsynaptic sites[1-15]. This methodology requires meticulous analysis of calcium 
signals from these small structures, which are highly susceptible to movement artifacts 
and signal noise. Additionally, the intricate morphology of axonal and dendritic structures 
complicates the identification of segments belonging to the same neuron within the 
imaging plane. Addressing these challenges is essential for accurately interpreting the 
data collected in these experiments, which are increasingly being adopted by many 
laboratories. Standardizing the extraction of subcellular calcium signals through a widely 
accessible processing pipeline would facilitate direct comparisons across different 
studies. 

Suite2P is the most popular software used for the initial identification of regions of 
interest (ROI) within a field of view (FOV)[16]. Suite2P can also be used for the initial 
identification of ROIs from a FOV containing subcellular structures such as axons. 
However, axon and dendritic ROIs are relatively small and are therefore subject to more 
noise than somas from movement artifacts and fewer pixels to extract signals from. 
Additional steps are therefore required following initial ROI identification by Suite2P to 
ensure ROIs contain real physiological signals that can then be analyzed. Various 
methods have been employed for the selection of active axon ROIs, such as manual 
labeling by visual inspection[1] or using convolutional neural network classifiers[12]. 
Manual labeling by looking through time-series movies for fluorescent axon or dendritic 
signals, while straightforward, is impractical for FOVs with many ROIs and is prone to 
user bias. Neural network classifiers, though effective, require extensive ground truth data 
for training, which is labor-intensive and computationally demanding, as well as being 
limited to one particular dataset, thus not generalizable. 

Dual-color imaging offers another approach to identifying active subcellular ROIs 
by using a static fluorophore alongside an activity-dependent one[3, 9]. For instance, 
imaging calcium dynamics with GCaMP in a green channel and using mCherry in a red 
channel can help distinguish real calcium signals from noise. However, differences in 
fluorophore behavior and excitation/emission spectra means that subtracting the static 
channel from the active channel may not remove all noise and can introduce new signal 
artifacts. Employing dual lasers to optimize excitation could help with this but further 
complicates the process and the addition of second laser beam increases the probability 
of photo-damage to the tissue being imaged [17]. This is not to say a static channel is not 
useful, as it can help with motion correction of time-series FOVs in the X and Y axis and 
can help identify periods when the FOV may shift in the Z-axis, but simultaneous 2-
channel imaging needs careful implementation and consideration. 

Once subcellular ROIs are selected, identifying and correcting z-plane movement 
artifacts is critical. Slight brain movements during behavior can cause significant changes 
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in the imaged structures, leading to false-positive calcium signals and this issue is 
amplified when imaging subcellular structures which are much smaller than somas[18]. 
Methods such as measuring pixel correlations within an ROI over time have been used 
to detect these artifacts, but they are computationally intensive and heavily dependent on 
the initial ROI selection[13, 14]. 

Recording from small structures like thin axons also presents a low signal-to-noise 
ratio challenge due to the limited number of pixels available for averaging physiological 
signals amidst inherent noise in the two-photon system[19]. Identifying which subcellular 
ROIs belong to the same neuron can improve the signal-to-noise ratio by providing more 
pixels for averaging. Further, because single axons and dendritic branches can come in 
and out of the FOV, the same neural structure can be represented by disconnected ROIs 
that are far apart in the FOV. If ROIs belonging to the same neuron are not grouped, they 
will be overrepresented in the data and can confound results. However, resolving which 
ROIs are part of the same structure remains a significant issue. Grouping ROIs that 
belong to the same neuron involves methods like hierarchical clustering and pairwise 
correlation thresholding. However, the lack of ground truth data to validate these 
groupings leaves their accuracy uncertain. 

We present a preprocessing pipeline for identifying subcellular ROIs with real 
physiological signals, removing motion artifacts, and grouping ROIs belonging to the 
same neuron. We apply Fast Fourier Transform (FFT) on smoothed calcium traces to 
identify the frequency band of transients, followed by band-pass filtering to select ROIs 
matching the power band of transients. Principal Component Analysis (PCA) and Bottom-
Up Segmentation change point detection are then used to remove motion artifacts. 
Transient peak detection based on prominence and duration identifies real calcium 
transients. Finally, we employ hierarchical or k-means clustering to group correlated 
ROIs, and validate this approach with “ground truth” axon clusters. Our method provides 
a guideline for analyzing axonal and dendritic activity using two-photon calcium imaging, 
aiding in the standardization of physiological signal extraction from subcellular structures 
during behavior. 

 

METHODS 

Experimental model and subject details 

All experimental and surgical procedures were in accordance with the University 
of Chicago Animal Care and Use Committee guidelines. We used 10–20 week old 
C57BL/6-Tg(Grik4-cre)G32-4Stl/J mice (23–33 g). Mice were individually housed in a 
reverse 12 hour light/dark cycle and behavioral experiments were conducted during the 
animal’s dark cycle. 
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Injection protocol 

Mice were anesthetized and I.P. injected with 0.5ml of saline and 0.5ml of 
meloxicam. A small craniotomy was made over the right hippocampus CA3 region 
(2.0mm lateral, 1.7mm caudal respectively of Bregma). An axon-targeted genetically-
encoded calcium indicator, AAV9-axon-GCaMP6s-P2A-mRuby3 (pAAV-hSynapsin1-
axon-GCaMP6s-P2A-mRuby3 was a gift from Lin Tian Addgene viral prep # 112005-
AAV9; http://n2t.net/addgene:112005; RRID:Addgene_112005) was injected (~50 nL at 
a depth of 1.9 mm below the surface of the dura) using a beveled glass micropipette. 
Right after the viral injection, the site was covered with dental cement (Metabond, Parkell 
Corporation) and a metal head plate (Atlas Tool and Die Works). After ~4-8 weeks, water 
scheduling (0.8-1ml per day) began. One week after the start of water scheduling, mice 
went through a hippocampal cannula implantation surgery over the right CA1 region 
(1.7mm lateral, -2.3mm caudal of Bregma). During the surgery, a head plate and head 
ring were attached to the cannula window for head-fixation and to house the microscope 
objective and block out ambient light. Post-surgery, mice had ad lib water, until a week 
later when they returned to water scheduling. Expression of axon-GCaMP6s in CA3 
axons reached a steady state ~6-12 weeks after the virus was injected, as monitored 
through 2P imaging.  

Two-photon imaging 

Imaging was done using a laser scanning two-photon microscope (Neurolabware). 
Using a 8 kHz resonant scanner, images were collected at a frame rate of 15.49 Hz with 
unidirectional scanning through a 16×/0.8 NA/3 mm WD water immersion objective 
(MRP07220, Nikon). axon-GCaMP6s was excited at 920 nm with a femtosecond-pulsed 
laser (Insight DS+ Dual, Spectra-Physics) and emitted fluorescence was collected using 
two GaAsP PMTs (H11706, Hamamatsu). The average power of the laser measured after 
the objective ranged between 60–100 mW, and was kept constant across days of 
imaging. Time-series images were collected through Scanbox (Neurolabware) and a 
PicoScope Oscilloscope was used to synchronize frame acquisition timing with behavior.  

Image processing and ROI identification 

Time-series images were preprocessed using Suite2p[16]. Movement artifacts in 
the X and Y-axis were corrected using rigid and non-rigid transformations based on the 
red mRuby channel. Regions of interest (ROIs) were also defined in the green channel 
using Suite2p. All identified ROIs were fed into SUBPREP for subsequent ROI selection. 
Raw fluorescence traces from ROIs were first smoothed using a Savitzky-Golay filter. 
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RESULTS 

Frequency-based approach for transient identification and subcellular ROI selection 

In selecting subcellular ROIs that contain real calcium transients, we developed a 
frequency-based ROI selection pipeline. The key idea underlying our selection procedure 
was that the rise-to-peak and decay phase of real transients have unique frequency 
domains. In particular, the rise of the transient occurs within a faster frequency band than 

Fig. 1 Imaging CA3 axons in CA1 
Left: Schematic representation of CA3 axonal imaging in CA1 Stratum Oriens. Right: Example CA1 field 
of view containing CA3 axons. Image is the max projection from 5000 frames. 

Fig. 2: Example time-series fluorescent traces from CA3 axons in CA1 before and after smoothing 
A. Example raw fluorescent time-series trace from an ROI identified by Suite2P.  
B. The same trace after smoothing using the Savitzky-Golay filter. 
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the decay of the transient. Therefore, we designed a filter that captures both the rise and 
the decay of transients. To determine the key frequencies for the rise and the decay, we 
calculated the frequency bands using example ROIs with clear visible transients and high 
signal to noise ratio (SNR) and compared to the frequency bands from all ROIs. Because 
the vast majority of ROIs from Suite2P (85-95%, depending on the dataset) contain only 
noise, example ROIs with clear transients returned higher power in the frequency bands 
that reflect the rise and decay of transients compared to the mean of all ROIs. The 
frequency band with elevated power from example ROIs with clear transients became our 
frequency band of interest. If the filtered signal from an ROI returned high power in our 
frequency band of interest, the ROI would be selected as “likely to contain transients”. By 
contrast, if the filtered signal did not contain sufficient power (see below) in our frequency 
of interest, the ROI would be marked as “not likely to contain transients”. Note that the 
specific frequency band containing real transients will depend on which calcium indicator 
is being imaged (e.g. GCaMP6s versus GCamP8f) and which subcellular structures are 
being imaged (e.g. axons versus dendrites). The key frequency band will therefore need 
to be determined for each user dependent on the specifics of the dataset. 

To quantify the power within the key frequency band among all subcellular ROIs, 
we applied a band-pass filter using the key frequency range on smoothed time-series 
calcium traces using the filtfilt function in the python script package. We utilized a third-
order Butterworth filter, a type of infinite impulse response filter known for its maximally 
flat frequency response within the passband. By selecting this design of our filter, we 
ensured effective attenuation of frequencies outside the passband while minimizing 
phase distortion within the passband. First, a low-pass filter with a cutoff frequency of 
0.13 Hz (or the higher bound of key frequency bands from example ROIs) was applied to 
the green channel signal to remove any high-frequency noise. Then, a high-pass filter 
with a cutoff frequency of 0.03 Hz (or the lower bound of key frequency bands from 
example ROIs) was applied to remove any low-frequency noise (e.g. Z-plane drift can be 
a source of low frequency noise). In particular, the filtfilt function employed a zero-phase 
digital filtering technique, which applied the filter forward and then backward to eliminate 
phase distortion, resulting in a zero-phase delay. Our procedure ensured that the filtered 
signal retains its temporal integrity. By using filtfilt, the signal was effectively band-pass 
filtered, removing both high-frequency noise and low-frequency drift, while preserving the 
original signal's phase and shape. 

Once the signal had been band-pass filtered using the filtfilt function, the power 
within the frequency band of interest (e.g. 0.03 Hz to 0.13 Hz) could be calculated. Then, 
we calculated the normalized power of the signal such that the power of interest was 
divided by the total power of the signal. An advantage of using normalized power was 
that the range was bounded with an upper limit of 1 and a lower limit of 0. Therefore, 
normalized power enabled comparisons across different traces and different animals, 
while absolute power was unbounded and depends on the length of the signal. If the 
power within this frequency band exceeded a predefined threshold (e.g. 0.3 of the 
normalized power), the ROI was defined as containing transients and the ROI selected. 
Using a higher threshold (e.g. 0.5) returns fewer ROIs but with higher SNR. This approach 
allowed for the identification and isolation of signals that contain significant activity within 
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the specified frequency range, facilitating the extraction of ROIs with transient-like 
patterns within their traces.  

Fig. 3 shows two example ROIs from our dataset. The green ROI in Fig. 3A had 
a relatively low power in the frequency band of interest shown in Fig. 3B (0.182), 
suggesting this ROI is unlikely to contain transients. Contrarily, the black axon in Fig. 3A, 
which shows clear and obvious transients, had a higher power in the frequency range of 
interest (Fig. 3B, black; 0.454). Applying this approach to all ROIs from an example 
mouse, the distribution of the normalized power is shown in Fig. 3C. The ROIs selected 
as “likely to contain transient” were the ones with power above 0.3 (red dotted line) on the 
right side of the histogram that were kept for the next steps of the analysis, and the ROIs 
marked as “not likely to have transient” were shown on the left of the dotted line that were 
not used in the remainder of the analysis pipeline.  
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Time series anomaly detection for motion artifact identification 

The previous step focuses on identifying transient-like patterns in our ROIs. 
However, the remaining ROIs might still contain traces that suffer from motion artifacts. 
X- and Y-axis movement are easily dealt with by motion correction algorithms like 
Suite2P. However, Z-axis movements may remain and are difficult to detect and remove. 
Typically, when a FOV moves along the Z-axis, many, if not all, ROIs are affected 
simultaneously. The effect of movement could be different in each ROI within the FOV 
(e.g. an ROI could drift in or out of the Z-plane). However, all affected ROIs would show 
synchronous abrupt changes (either an increase or decrease in signal) in fluorescence 
during a Z-axis shift. Thus, Z-axis shifts could be detected across the population of ROIs 
within a FOV by a sudden increase in coactivity strength and variance between ROIs. 
The goal here is to identify and remove periods of Z-axis shifts. 

To achieve this, the first step is to z-score transform all ROI time-series traces to 
make them comparable. Real calcium transients should be stereotyped (as described 
above) and their occurrence should vary in time between ROIs, but z-axis shifts should 
cause synchronous signals that vary in terms of their shape (e.g. upwards or downwards). 
The distinct dynamics of real transients versus z-axis-induced signals, and the prediction 
that z-axis shifts will contribute to the largest variance in the moments shifting occurs 
compared to the rest of the time, should allow us to detect shifts using Principal 
Component Analysis (PCA) (Fig. 4A). We used the first principal component, which 
captures the largest variances in the data. 

After applying PCA on z-scored ROI traces, we used a Bottom-up algorithm to 
segment and identify the time periods where a likely shift occurred[20]. Specifically, 
Bottom-up works by separating the time series data into a large number of very small 
segments of equal length and merging similar segments iteratively to bigger segments 
until met by a stopping criterion[21]. It is especially suitable for signals that contain 
complex and non-linear patterns with outliers and potentially multiple level shift changes, 
calculated by the algorithm. Using this method, we could detect shifts in the level of the 
baseline signal while filtering out noise and outliers. Each level shift change detected by 
the algorithm in the signal reflects a potential z movement shift artifact in the FOV (Fig. 
4A).  

Fig. 3 Frequency band-based axon ROI selection. 
A. Examples of selected (black) and discarded (green) ROIs in time domain after smoothing.  
B. Same ROIs in frequency domain. The x-axis displays the frequency of the FFT transformation, and 
the y-axis displays the normalized power. Note, the black ROI has a higher power in the frequency 
band of interest (shaded in blue) and lower power in the noise frequency (shaded in gray) while the 
discarded ROI is the opposite. 
C. The distribution of normalized band power within the frequency band of interest (0.03-0.13 Hz) for all 
example ROIs from a single FOV. The ROIs with lower power in the frequency band interest (below 0.3; 
dashed line) were discarded, and the ROIs with higher power in the band of interest (above 0.3) were 
selected.  
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The bottom-up segmentation algorithm requires the number of change points it will 
detect to be input by the user. Using a larger number will lead to more periods detected 
by the algorithm and potentially more false positives and verse versa when using a 
smaller number. Fig.4A shows an example first PC which we visually inspected for 
potential Z-shifts. We used n=4 as the input for the bottom-up segmentation algorithm, 
which accordingly identified 2 periods of potential Z-shift. The user input at this stage 
requires consideration of neural dynamics of the imaged population. For instance, 
synchronous activity among large populations of ROIs can cause a level shift change in 
the first PC space. For regions of brain that have highly correlated activity, a static red 
fluorophore is needed to distinguish between movement artifact and synchronous activity. 
Our dataset was recorded from hippocampal CA3 axons during a spatial navigation task. 
While it is possible for groups of axons to be co-active, especially near to the rewards in 
the hippocampus[1, 2], the synchronous activity is unlikely to sustain for a long time 
(beyond a second or two). Thus, any prolonged level shift change in the PC space is 
highly likely to be driven by z-axis shift. Using a large number of n as input to the algorithm 
and then validating the results by measuring the duration of level-shift change reduces 
the possibility of having false positives. 

In addition, a static red fluorophore could help to distinguish between population 
co-activity and z-axis shifts. The same z-score standardization and PCA can be applied 
to the red channel. Fig. 4D shows the PCA from the red channel from the same ROIs 
used in Fig. 4A. The red channel shows the same periods of elevated activity in the PC 
space identified in the green channel, confirming they are most likely caused by z-axis 
shifts. We can further validate the shifts using individual ROI activities (described below).  

After finding periods of potential movement artifacts using PCA and Bottom-up 
algorithm, to visually confirm the validity of results, we underwent another manual visual 
inspection of the time-series traces from individual ROIs with labeled potential movement 
artifacts (Fig. 4B and C). The two example ROIs illustrate that the movement artifact 
identified using the PCA method could be caused by z shifts from individual ROIs to be 
in the negative (Fig. 4B) or positive (Fig. 4C) direction, but the activities were 
synchronized during the labeled period, thus fitting our model of z-axis-induced signals. 
Multiple ROIs showing synchronized level shift in activity during the labeled period 
confirmed our findings of z-axis shift timing from PCA and Bottom-up algorithm. The 
frames during z-axis shifts can then be discarded across all ROIs within the FOV. 
Alternatively, if the FOV has shifted to a new Z-plane for a long time, our algorithm also 
allows for splitting the dataset into new sets of ROIs defined at the two planes to minimize 
data loss.  
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Fig. 4 Identification of movement artifacts in time-series traces  
A. First principal component on z-scored ROI activities. All selected ROI activities were first standardized 
to z-score and then dimension reduced to the first component of PCA. Bottom-Up algorithm was used to 
segment and detect anomalies (identified anomaly period shaded in red). 
B & C. Identified periods for potential movement artifacts were super-imposed on individual ROI activities 
for visual inspection. Two example selected ROI standardized activities are plotted and red shaded 
indicate potential periods of movement artifacts. All activities during the red shaded time period can then 
be ignored or removed from further data analysis. Note that the two example cells had activities in different 
directions but synchronous in time. 
D. Identified time periods for movement artifacts on red channel as further verification. 
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Baseline correction and peak detection 

To remove slow drifts in fluorescence caused by bleaching and scale the F signal 
to baseline, slow time scale changes in the fluorescence traces were removed by 
examining the distribution of fluorescence in a ~20 second interval around each sample 
time point and subtracting the 8% percentile value. The resulting baseline corrected ΔF/F 
time-series traces were used to identify significant calcium transients. The initial steps in 
our pre-processing pipeline already detected ROIs with likely transients and removed 
motion artifacts. The following step was to further identify real transients from potential 
noise. To do this, peaks in the trace with a minimum amplitude of 0.12 ΔF/F, duration of 
0.5 s, and prominence of 0.1 ΔF/F were identified. These regions we selected as “real” 
calcium transients and were included in the subsequent analysis. 

 

Clustering of the selected ROIs 

Due to the density, coverage, and highly branched nature of axons and dendrites 
that can move in and out of the 2-photon imaging plane, multiple independent ROIs within 
a FOV could belong to the same cell. As a result, ROIs belonging to the same cell should 
have highly similar patterns of activity. Previously, one of the biggest challenges for axon 
clustering is a lack of ground truth labels to evaluate the performance of the clustering 
method. Failure to group axons or dendrites that branch from the same cell leads to 
overrepresentation of a single cell’s activity. Conversely, incorrect grouping of 
independent ROIs leads to loss of data and brings in artificially generated noise. In this 
section, we aim to compare two different clustering algorithms to combine axons and their 
corresponding performances when compared to ground truth labels. 

Fig. 5 Baseline correction and peak detection 
All ROI activities were scaled to baseline to create ΔF/F traces. Baseline corrected ΔF/F traces across 
time were generated using sliding window of ~20 seconds and the 8% percentile value within the sliding 
window was subtracted from each timepoint. Across the baseline corrected ΔF/F traces, peaks were 
calculated using minimum height, distance, and prominence values. Of all potential peaks, only 
detected peaks (black) were kept and all other activities (green) were forced to 0.  
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Assuming that a high zero-phase cross-correlation between two ROIs reflects co-
activation, we first performed a maximum correlation analysis across all ROIs over the 
entire time series (correlation matrix shape #ROIs x #ROIs). If the maximum correlation 
between a certain ROI with all the remaining ROIs exceeded a specific threshold (r = 0.8, 
see below for details), the ROI was likely to be part of a larger cluster of ROIs that 
belonged to the same axon. By contrast, if the maximum correlation between an ROI with 
all other ROIs was low, then the ROI was not likely to part of the same axon.  

For the rest of the ROIs that could originate from the same axon, we calculated the 
pairwise correlation between ROIs and compared two different clustering methods, 
namely k-means and hierarchical clustering. To test whether the clustering methods were 
doing a good job, we compared their ROI clustering results to “ground truth data”, i.e. ROI 
groupings that were highly likely from the same axon. To obtain ground truth data in our 
experimental setup, animals ran through two different virtual reality environments while 
imaging hippocampal CA3 axons in the CA1. A feature of hippocampal cellular activity is 
their spatial firing and their ability to remap their spatial firing fields upon exposure to a 
novel environment, meaning that while it is possible for distinct place cells to have similar 
spatial firing within one environment, it is highly unlikely for them to also fire in a similar 
pattern in more than one environment[22]. Thus, if the pairwise correlation between ROIs 
was consistently above 0.7 across two distinct environments, we considered those pairs 
to belong in the same axon group. This served as our “ground truth data” in which our 
clustering methods could be compared. 

We evaluated the similarity between the ground truth data and our assigned 
clusters using two different metrics: the Adjusted Mutual Information (AMI) score and the 
Silhouette score. While the AMI score measured the similarity between the true cluster 
labels (i.e., > 0.7 correlations between two ROIs in both of our virtual environments) and 
the labels assigned by the clustering algorithm (e.g., k-means or hierarchical clustering), 
adjusting for chance, the Silhouette score evaluated the quality of the clusters themselves 
without the need for ground truth labels. The AMI score ranged from 0 to 1, where a score 
of 1 indicated perfect agreement between true and predicted cluster labels. The 
Silhouette score ranged from -1 to 1, with higher values indicating better clustering 
results. This metric assessed the separation of clusters based solely on the clustering 
output produced by clustering algorithms. Specifically, a high Silhouette score indicates 
clear separation between cluster groups, that objects within a cluster were close to each 
other and far away from objects in other clusters. A high performance in either metric 
suggests that the clustering results were reliable, and the number of clusters that 
maximize these metrics represents the best-fit grouping assignments for the remaining 
ROIs. Because not every axon dataset will have ground truth labels to calculate AMI, we 
compared the consistency between AMI and Silhouette scores to test if Silhouette score 
is sufficient to lead to a similar clustering result without the need for ground truth data. 
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To estimate the number of clusters, K number of clusters was examined from 2 to 
50% the of the selected ROIs. For both example mice, Silhouette scores and AMI scores 
converged (contained a maximum number that represent best performance) and reached 

Fig. 6 Comparison of clustering methods used for grouping ROIs.  
A. Clustering performance metrics with hierarchical clustering and K-means clustering. The left panel 
shows that hierarchical clustering converged to a similar optimal number of clusters (peak pointed by the 
arrows) for both performance metrics, Silhouette scores and AMI. The right panel showed that K-means 
clustering converged to a similar optimal number of clusters for both performance metrics, Silhouette 
scores and AMI.  
B. Example grouping from hierarchical clustering transposed to original FOV. Left: each color represents 
an individual ROI in the group. Right: all ROIs in the same group highlighted in yellow 
C. Same grouping from “ground truth” data.  
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optimal K for clustering (see Fig. 6A, left panel). In addition, both performance metrics 
(AMI and Silhouette) returned a similar number K, which suggests that hierarchical 
clustering was efficient with or without true labels of clusters. 

In addition to hierarchical clustering, the k-means algorithm can also be used to 
identify clusters of high correlations between pairs of ROIs. Like hierarchical clustering, 
k-means uses the full correlation matrix between all pairs of ROIs as input (citation 
needed here). Our main goal was to identify the optimal number of clusters, k, that best 
explains the covariance structure of the ROIs. We applied the k-means algorithm with a 
predefined number of clusters, ranging from 2 to half the number of ROIs (n). The 
algorithm partitions the samples into k clusters based on similarity, iteratively assigning 
each sample to the nearest cluster centroid and updating centroids to minimize the within-
cluster sum of squares. This process continues until convergence, resulting in clusters 
where correlations between ROIs are maximized within each cluster and minimized 
between clusters. Notably, the optimal number of clusters identified by k-means closely 
matched the results from hierarchical clustering. Therefore, we conclude that both 
methods reliably estimate optimal clustering. 

Summary of the SUBPREP 

A sample paradigm of our SUBPREP pipeline is displayed in Fig. 7, with all the 
significant steps and an example ROI on the right side of the flowchart. The first step, pre-
processing, was applied to all ROIs and the goal was to smooth the data across time. 
After pre-processing, the ROIs with higher power in the key frequency band for transients 
were selected with band-pass filtering methods (0.03 to 0.13 Hz). Then, to identify 
movement artifacts, we standardized and used PCA to reduce the dimensions in the 
population activity. We used a Bottom-up algorithm to identify anomalies in signal of the 
reduced PC space. We confirmed the results by imposing the labeled movement artifact 
periods onto individual ROIs and visually inspected their activity. Confirmed periods of 
movement artifact were removed from all ROIs in the FOV. The remaining ROI signals, 
highly likely to contain transients from stable FOVs, were identified by thresholding signal 
prominence which allowed detection of transient peaks. Lastly, to identify the potential 
clustering of the ROIs belonging to the same axon, we performed two methods, 
hierarchical clustering and k-means clustering. Both methods were effective in identifying 
the optimal number of clusters in the pairwise ROI correlation matrices and resulted in 
similar grouping compared to the ground truth labels.  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2024. ; https://doi.org/10.1101/2024.10.04.616737doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.04.616737
http://creativecommons.org/licenses/by-nc/4.0/


Fig. 7 SUBPREP pipeline summary. 
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DISCUSSION 

In this study, we developed and validated a computationally efficient preprocessing 
pipeline for subcellular signal detection, movement artifact identification, and ROI 
grouping in two-photon calcium imaging data. Our approach addresses several key 
challenges associated with analyzing subcellular structures, such as low signal-to-noise 
ratio (SNR), movement artifacts, and difficulty in grouping subcellular ROIs from the same 
neuron. Through the application of frequency-based filtering, Principal Component 
Analysis (PCA) and level change detection for motion artifact identification, and clustering 
algorithms for ROI grouping, our pipeline provides a robust framework for extracting 
physiological signals from subcellular structures during behavior.  

Suite2P and SIMA, designed for detecting somatic activity, provide robust 
frameworks for initial subcellular data processing[16, 23], but additional steps are required 
as subcellular datasets are inherently noisy and sensitive to Z-plane movements because 
of their small size relative to somas. Our processing pipeline offers a systematic approach 
to sub-select ROIs from the initial pool identified by Suite2P by leveraging the unique 
frequency domains of calcium transient dynamics. By employing Fast Fourier Transform 
(FFT) and band-pass filtering, we were able to isolate ROIs likely to contain true calcium 
transients, allowing accurate signal detection in noisy subcellular datasets. Other 
methods have been used for this step, such as manual ROI selection and convolutional 
neural network (CNN)-based approaches, but these are either labor-intensive and prone 
to bias, or require extensive ground truth data for training[1, 2, 12]. A second, “static”, 
fluorescence channel has often been used to subtract noise from an “active” channel, 
usually from GCaMP signals, but this can introduce artifacts as noise is not perfectly 
mirrored across channels. For instance PMTs are a source of noise and separate PMTs 
are used for 2 channel imaging[19], and the fluorophores themselves are distinct sources 
of noise. Our approach offers an unbiased and computationally cheap method for 
subcellular ROI identification that does not require dual-color imaging, thereby simplifying 
experimental design and reducing potential artifacts from channel subtraction.  

Accurately identifying periods of Z-plane shifts is always important but is amplified 
when imaging subcellular ROIs versus somas because axons and dendrites are relatively 
small and have elaborate structures that can be found in and out of the imaging plane in 
complex branching patterns. A small movement in Z can result in a distinct set of 
subcellular ROIs being imaged. After identifying ROIs with potential transients, our 
pipeline effectively identifies Z-plane movement artifacts by utilizing PCA and a Bottom-
Up Segmentation algorithm to detect artifacts based on the first principal component. This 
allows for the analysis of data collected from a stable imaging plane by excluding time 
points collected from different planes. Additionally, if a prolonged Z-shift to a new imaging 
plane occurs, the new Z-plane can be identified and used for data analysis of a distinct 
set of subcellular ROIs during this period. This limits data loss from technically challenging 
subcellular imaging experiments.  

Despite the strengths of our approach, several limitations remain. For instance, 
our method's reliance on frequency-based filtering requires careful consideration of the 
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smoothing filters applied prior to FFT, as these can impact the key frequency band of real 
transients and thus the selection of ROIs. Additionally, while our PCA-based motion 
artifact identification effectively detects Z-plane shifts, it still requires user input to define 
the number of change points, which introduces potential bias. Automating this process or 
developing more sophisticated algorithms to reduce user dependency could further 
improve the robustness of the pipeline. 

Future work should integrate our SUBPREP toolbox into existing preprocessing 
calcium imaging software, specifically Suite2P. This would provide multiple benefits for 
the user. One benefit would be that the user interface and real-time visual displays in 
Suite2P could be utilized for SUBPREP to show the user which ROIs in the FOV contain 
real transients or which segments of the time-series movies have potential motion 
artifacts. It would also streamline analysis allowing one software package that can be 
used for cellular and subcellular preprocessing. Other future work should focus on 
expanding the validation of our approach across different brain regions and experimental 
conditions will be crucial for generalizing its applicability. 

SUBPREP offers a standardized approach for analyzing axonal and dendritic 
activity by simplifying the process of ROI selection, artifact removal, and ROI grouping, 
providing a practical and effective solution to several key challenges in the field of sub-
cellular imaging. We hope our publicly available processing pipeline, SUBPREP, is used 
by the field to help standardize the extraction of physiological signals from subcellular 
structures, enabling more accurate and reproducible studies of subcellular activity across 
labs. This would lead to more robust insights into the mechanisms of information 
transmission and integration in the brain, ultimately advancing our understanding of 
neural circuitry and its role in behavior. 
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