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SUMMARY

Despite substantial self-renewal capability in vivo, epithelial stem and progenitor cells located in 

various tissues expand for a few passages in vitro in feeder-free condition before they succumb to 

growth arrest. Here, we describe the EpiX method, which utilizes small molecules that inhibit 

PAK1-ROCK-Myosin II and TGF-β signaling to achieve over one trillion-fold expansion of 

human epithelial stem and progenitor cells from skin, airway, mammary, and prostate glands in the 

absence of feeder cells. Transcriptomic and epigenomic studies show that this condition helps 

epithelial cells to overcome stresses for continuous proliferation. EpiX-expanded basal epithelial 

cells differentiate into mature epithelial cells consistent with their tissue origins. Whole-genome 

sequencing reveals that the cells retain remarkable genome integrity after extensive in vitro 
expansion without acquiring tumorigenicity. EpiX technology provides a solution to exploit the 

potential of tissue-resident epithelial stem and progenitor cells for regenerative medicine.
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In Brief

Zhang et al. screen a small-molecule collection and find that pharmacologic inhibition of TGF-β 
and PAK1-ROCK-Myosin II, in low calcium conditions, supports extended expansion of epithelial 

stem cells in 2D format. This approach enhances the potential of tissue-resident epithelial stem 

cells for cell therapy.

INTRODUCTION

Tissue-resident stem cells ensure homeostasis and tissue repair throughout the lifetime of an 

individual. In various epithelia, the stem and progenitor cells residing in the basal layer are 

marked by KRT5 and TP63 and have infinite self-renewal capability in vivo (Blanpain and 

Fuchs, 2014; Donati and Watt, 2015; Hogan et al., 2014; Rock et al., 2010). However, it has 

been difficult to extensively expand epithelial cells in vitro in feeder-free condition due to 

the CDKN2A-dependent stasis (Shay and Wright, 2007). Immortalization using telomerase 

reverse transcriptase (TERT) or viral genes (SV40T or HPV16 E6/E7) significantly alters 

epithelial cells behavior, limiting their utility for studying normal biology or as drug-

screening models (Miller and Spence, 2017). Lack of suitable long-term expansion methods 

has hampered epithelial stem cell biology study in vitro and greatly stalled advances in 

regenerative medicine exploiting their potential. Pluripotent stem cells (PSCs), including 

induced PSCs, have been the subject of intense research in the hope that they offer 

physiology-relevant models and solutions for regenerative medicine. However, they face 

challenges including donor variability, acquired oncogenic mutations, and inefficient 

differentiation toward mature cell types (Avior et al., 2016; Merkle et al., 2017).

Encouraging progress has been made in developing methods that allow continuous in vitro 
propagation of epithelial cells. Liu et al. proposed that feeder cells and Rho-kinase (ROCK) 

inhibitor Y-27632 “conditionally reprogrammed” (CR) epithelial cells to proliferate 

continuously (Butler et al., 2016; Chapman et al., 2010; Liu et al., 2012; Suprynowicz et al., 
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2012). The Stingl group used a similar approach to expand mammary repopulating units, an 

indication of the expansion of mammary epithelial progenitors (Prater et al., 2014). The CR 

method has garnered interest due to its successful use in expanding patient-derived epithelial 

cells to identify effective therapy (Crystal et al., 2014; Yuan et al., 2012). Wang et al. (2015) 

used feeder cells and several small molecules regulating TGF-β, WNT, and NOTCH 

pathways to expand “ground-state intestinal stem cells.” However, the use of feeder cells 

complicates the interpretation of signaling events that govern cell proliferation and creates 

challenges in meeting regulatory expectation for manufacturing cell therapy products 

(Lipsitz et al., 2016).

The Clevers group has led the way in developing feeder-free 3D organoids for intestinal 

stem cells (Sato et al., 2009, 2011), which has later expanded to epithelial cells from liver, 

pancreas, and stomach (Boj et al., 2015; Huch et al., 2013, 2015). Stem cells, progenitors, 

and differentiated epithelial cells are present in the organoid, making it a good in vitro model 

for epithelial cell biology. Katsuda et al. (2017) reported the use of small molecules, 

including Y-27632, A83-01, and CHIR99021, which converted rodent hepatocytes into 

proliferative bipotent cells; however, it did not work for human hepatocytes.

To develop medium formulations that address aforementioned issues, including safety, 

reproducibility, and scale-up compatibility, we set off to identify small molecules that 

support long-term epithelial cell expansion without feeder cells. We found that the 

combination of TGF-β signaling inhibition, PAK1-ROCK-Myosin II inhibition, and low 

extracellular [Ca2+] were key components that transformed traditional culture medium to 

enable long-term propagation of epithelial cells from various tissues. High single-cell 

cloning efficiency and the ability to differentiate into tissue-specific mature epithelial cell 

types suggested that stem and progenitor cells were preserved during expansion. 

Remarkably, the cells retained genome integrity with no tumorigenic mutations after 

extensive expansion as assessed by multiple approaches including whole-genome 

sequencing. Gradual changes in DNA methylation landscape were the by-product of long-

term culture and had little impact on overall gene expression profile.

RESULTS

TGF-β Signaling Inhibition and ROCK Inhibition Synergistically Support Long-Term 
Epithelial Cell Expansion in the Absence of Feeder Cells

As epithelial cells quickly cease proliferation when the feeder cells or Y-27632 are omitted 

from the CR method (Liu et al., 2012), we designed a proliferation assay to 

pharmacologically screen a focused collection of small molecules modulating diverse 

biological pathways governing stem cell self-renewal and differentiation (Table S1) to 

develop feeder-free condition that supports continuous cell proliferation. Human prostate 

epithelial cells (PrECs), bronchial epithelial cells (HBECs), and foreskin keratinocytes 

(HFKs) were transduced by lentiviruses expressing nuclear-localized red fluorescent protein 

(nRFP) to facilitate automatic cell count. The lentivirus transduction did not alter cell 

proliferation. Late-passage cells were cultured for 7 days in the absence of feeder cells and 

Y-27632 to screen small molecules. We found that small molecules that inhibit TGF-β 
signaling (A83-01, RepSOX, GW788388, SB431542) or ROCK (SR3677, Y-27632, 
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Thiazovivin, GSK429286) supported continuous cell proliferation at micromolar 

concentrations in the F medium (Figure 1A). Small molecules that affect the WNT pathway 

by inhibiting GSK3 (BIO, CHIR99021, BIO-acetoxime, endo-IWR1), or inhibit Abl kinase 

(AP24534), or increase intracellular cAMP level (forskolin), or target the NOTCH pathway 

(DAPT), also supported continuous cell proliferation to certain degrees (Figures 1A and S1). 

Importantly, we found that TGF-β signaling inhibitor (0.5–2 μM A83-01) and ROCK 

inhibitor (5–10 μM Y-27632) synergistically promoted epithelial cell proliferation (Figures 

1B and S1). PrECs grew for >28 population doublings (PDs) in the F medium plus A83-01 

and Y-27632 (F+Y+A) (Figure S1), much longer than in the control PrGM. Still, the cells 

stopped proliferation after several passages in F+Y+A medium, which was significantly 

shorter than in the CR condition (Figures 1C and S1) and suggested that additional 

optimization could further improve their expansion.

Low Calcium Concentration Enhances the Growth-Promotion Effect of TGF-β Signaling 
Inhibition and PAK1-ROCK-Myosin II Inhibition

F medium contains ~1.4 mM CaCl2, which is known to promote epithelial cell 

differentiation (Hennings et al., 1980; Martin et al., 1991), so we conjectured that low 

[CaCl2] might further promote cell growth. We used keratinocyte-SFM (KSFM) that 

contains 90 μM CaCl2 to pan the small molecules and observed similar synergy between 

TGF-β and ROCK inhibitors (Figures 1D, 1E, and S2). HBECs and PrECs achieved 

>1,000,000-fold expansion in KSFM plus A83-01 and Y-27632 (K+A+Y) versus control 

(Figure S2). This confirmed that neither TGF-β nor ROCK inhibition alone supports 

extended epithelial cell proliferation (Chapman et al., 2014; Natarajan et al., 2006). In 

KSFM, TGF-β inhibition had the biggest impact on cell growth, while in the F medium 

ROCK inhibition was the primary hit (Figures 1D and 1E). Interestingly, elevating the 

[Ca2+] in KSFM reduced the growth-promoting effect of A83-01 but boosted the effect of 

Y-27632 (Figure S3). Additionally, we found that IPA-3 (inhibitor for PAK1) or blebbistatin 

(inhibitor for Myosin II) synergistically promoted cell proliferation with A83-01 (Figures 

1D and S2). HBECs, keratinocytes (neonatal and adult), and PrECs expanded for 

>1,000,000-fold in KSFM plus A83–01 and IPA-3 or blebbistatin over KSFM control 

(Figure S2). These findings suggested that, in the absence of feeder cells, inhibiting PAK1-

ROCK-Myosin II axis promoted epithelial cell proliferation in low-calcium medium when 

the TGF-β signaling was also suppressed.

We sieved the small molecules with the K+A+Y medium and found some agents that further 

promoted cell proliferation, including IBMX, 8-bromo-cAMP, prostaglandin E2, and DPPIV 

inhibitor (Figure S2). Notably, the synergy between A83-01 and Y-27632 was independent 

of KSFM, as they also supported long-term epithelial cell expansion in BEGM (Lonza), 

Bronchia-Life (Lifeline), or LHC-9 (GIBCO) (data not shown). We used KSFM plus 1 μM 

A83-01, 5 μM Y-27632, and 3 μM isoproterenol and dubbed it epithelial expansion medium 

(EpiX). Panning the small molecules using the EpiX medium did not reveal any significant 

hits.

We have established epithelial cell cultures from neonatal foreskin, adult skin, nasal, 

bronchial, prostate, mammary, and other tissues using the EpiX medium and propagated 
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them for 40–90 PDs (Figures 1I-1L and S4), far beyond the 15–25 PDs obtained in 

conventional media. We routinely generated >50 million epithelial cells from nasal brushing 

samples in 3–4 weeks (Figure S4). EpiX medium supported multi-round single-cell cloning 

with high efficiency, suggesting that epithelial stem and progenitor cells were preserved 

during the clonal expansion. This allowed us to knock the GFP gene into the AAVS1 locus 

in HFKs using CRISPR/Cas9 for clonal expansion (Figure S5).

Transcriptome Dynamics of Epithelial Cells Expanded in the EpiX Medium

We examined HFKs and HBECs cultured in the EpiX medium by qRT-PCR and found the 

cells maintained steady expression of basal cell markers (ITGA6, ITGB4, KRT14, KRT5, 

TP63; Table S2). Immunofluorescence staining demonstrated that all cells strongly 

expressed TP63 (Figure 1H). PSC markers (LIN28A, NANOG, OCT4) and other stem cell 

markers (CD34, AXIN2, LGR5, PROM1) were not activated, indicating that EpiX did not 

reprogram the cell identity (Table S2). Markers of differentiated cells (IVL, LOR, 

MUC5AC, SFTPB, SGCB1A1, FOXJ1) were absent in the proliferating cells. Interestingly, 

qRT-PCR assay detected weak expression of TERT in PrECs and HBECs cultured in EpiX 

similar to that in the CR method (Figure S6). Genes involved in stress responses and 

senescence (AKT1, ATM, CDKN2A, GADD45A, GLB1, PLAU, SERPINE1) expressed at 

much lower levels in cells cultured in the EpiX than in KSFM (Figure S6), suggesting that 

the EpiX medium alleviated various stresses.

To assess the global impact of EpiX medium on gene expression, we compared a total of 14 

HFK transcriptomes under various conditions by RNA sequencing (RNA-seq) (Figure 2A; 

Table S3), which recapitulated the sustained expression of basal cell markers and absence of 

PSCs and terminal differentiation markers (Figure S6; Table S2). Globally, two 

transcriptomic shift trends were illustrated by principal-component analysis (PCA) (Figure 

2B), with a major shift associated with media change and a minor shift associated with long-

term culture. We identified 1,277 differentially expressed genes in HFKs expanded in EpiX 

versus in KSFM, comprising 315 upregulated and 962 downregulated genes (Figure 2C; 

Table S3). Downregulated genes were enriched in cell-cell interaction, interferon signaling, 

extracellular matrix organization, and cytokine signaling (Figure 2F). As expected, we 

observed significant downregulation of genes involved in senescence (PLAU, SERPINE1, 

VIM) and the TGF-β pathway (FN1, SKIL, ITGB6) (Figures 2C, 2D, and S6). Importantly, 

the downregulated genes were de-repressed when HFKs were withdrawn from the EpiX 

medium (Figure 2E), suggesting that repression of these genes in EpiX was not a permanent 

but reversible process.

Epithelial Cells Expanded with EpiX Medium Retain Remarkable Genome Stability

Epithelial cells generally encounter stasis around passage 5–6 in conventional media (Shay 

and Wright, 2005, 2007), while a few cells may acquire spontaneous suppression of 

CDKN2A to evade stasis and eventually result in chromosome abnormality and oncogenic 

mutations (Romanov et al., 2001). We examined HFKs, HBECs, and PrECs cultured for 

over 40 PDs in the EpiX medium and found they all retained normal diploids (Figure 3A). 

Whole-genome sequencing (WGS) of HBECs from a cystic fibrosis patient (CF) and HFKs 

only found 5,083 de novo single-nucleotide variations (SNVs) in the CF sample after 43 
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PDs, and 4,800 de novo SNVs in the HFK sample after 42 PDs (Figure 3D; Table S4). 

Average SNV rate was 1.97 × 10−8/bp/generation in the CF and 1.90 × 10−8/bp/generation in 

the HFKs, close to the 1.5 × 10−8/bp/generation rate observed in germline cells (Rahbari et 

al., 2016). Less than 0.4% (39/9,844) of those SNVs were common between the CF and 

HFK samples and they all located in non-coding areas and none had known detrimental 

effects (Figure 3D; Table S4). Over 99.2% of the 9,844 SNVs located outside coding 

regions, and the remaining (25 in CF and 24 in HFK) led to heterozygous missense variants 

(Table S4). We did not detect any mutation in oncogenes (e.g., MYC, RAS) or tumor 

suppressor genes (e.g., TP53, RB), suggesting that the EpiX medium neither induced nor 

favored oncogenic mutations. Whole genome-sequencing revealed 60 small insertions and 

deletions (InDel) in the CF sample and 26 InDel in the HFK sample, all located in introns or 

intergenic regions (Table S4). Twenty-four copy number variations (CNVs) affecting 1.7 Mb 

(CF) and one 86-kb CNV (HFK) all located in repeat elements (Table S4; Figure S7). We 

found one structural variation (SV) in the CF sample and two in the HFK sample (Table S4). 

None of these CNVs or SVs are functionally linked to tumors. We injected 1 × 107 young 

HFKs (<20 PDs) differentiated in a high-calcium medium for 7 days (see below), old HFKs 

(>50 PDs) differentiated for 7 days, or old HFKs (>50 PDs) in active proliferation 

subcutaneously into nude mice, and found no tumors after 12 weeks (Figure 3B), indicating 

that EpiX-expanded epithelial cells were not tumorigenic.

Tissue-Restricted Differentiation of Epithelial Cells after Long-Term Expansion in EpiX 
Medium

Increasing [Ca2+] above 1 mM in the EpiX medium quickly led to the formation of tight 

junctions stained positive for ZO-1 and Occludin (Figures 4A and 4B). Mini-domes 

occurred sporadically in confluent HFKs or HBECs cultured in EpiX with 1 mM CaCl2 

(Figures 4C and 4D). An intact epithelium sheet could be released by Dispase to create 

cultured epidermal grafts (Green, 2008) (Figure 4E). HFKs cultured at the air-liquid 

interface (ALI) matured into stratified epithelium after 2 weeks (Figure 4F). As expected 

(Doran et al., 1980), EpiX-expanded HFKs injected subcutaneously into immunodeficient 

mice formed epidermis-like cystic epithelium after 5 weeks, with basal cell layer stained 

positive for KRT14 and Ki67 (Figures 4H and 4I), spinous cell layers, a granular cell layer 

with evident keratohyaline granules, and several cornified layers (Figure 4G). 

Bioluminescence imaging (the HFKs were engineered to express firefly luciferase) 

confirmed the presence of HFKs 4 months after engraftment in the mice, indicating that 

EpiX-expanded HFKs retained self-renewal capability in vivo (Figure S8).

HBECs cultured in standard BEGM lose the ability to differentiate into mucociliary 

epithelium after four to five passages (Neuberger et al., 2011). HBECs from several healthy 

and CF donors grew for 45–60 PDs (12–16 passages) in the EpiX medium (Figure 5A), and 

readily differentiated into mucociliary epithelium at ALI or bronchospheres in Matrigel. 

Cilia of the multiciliated cells spontaneously beat (Videos S1 and S2) and stained positive 

for acetylated tubulin, and mucin-producing goblet cells stained positive by alcian blue or an 

anti-MUC5AC antibody (Figures 5C and 5D). High expression of differentiated cell markers 

(FOXJ1A, MUC5AC, SCGB1A1) was revealed by qRT-PCR (Figure 5B). The mucociliary 

epithelium also maintained physiological functions, showing a significant increase in 
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MUC5AC+ goblet cells upon IL-13 stimulation (Figures 5D). Additionally, ion channel 

physiology expected for their CFTR genotypes was maintained after >30 PDs (Figure 5E). 

For HBECs from a healthy donor, CFTR activity was readily stimulated by 10 μM forskolin, 

and diminished by the inhibitor CFTRinh-172. For CF cells with a rare CFTR variant 

(ΔF508:Q685TfsX4), the CFTR corrector (3 μM VX-809) with the potentiator (100 nM 

VX-770) increased transepithelial Cl− transport (Figure 5E). Amiloride-sensitive epithelial 

sodium channel and calcium-dependent chloride channel activities were also observed. 

Importantly, the response of CF cells to CFTR modulators did not decline in late-passage 

cells (Figure 5E).

Telomere Length and DNA Methylation Landscape Gradually Change over Long-Term In 
Vitro Expansion

As shown in Figure 1G, early-passage epithelial cells in the EpiX medium were small with a 

high nuclear/cytoplasm ratio and bright under microscope. The population doubled in <24 hr 

(Figures 1I-1L). Large cells accumulated slowly over passages and eventually the majority 

of the population appeared senescent or differentiated. Comparing the transcriptomes of 

early- versus late-passage HFKs revealed that many genes involved in the senescence-

associated secretory phenotype (Coppé et al., 2010), including IL6, IL8, IGFBP3, IGFBP5, 

THBS1, SERPINE1, and TGFB1I1 increased significantly in late passage (Figure S9). We 

examined the telomeres length of EpiX-expanded HFKs by a qPCR method (Cawthon, 

2002) and observed an inverse correlation between the T/S ratio and the PDs (Figure 6A). 

Interestingly, HFKs expanded by the CR method also exhibited telomere erosion at a similar 

rate (Liu et al., 2012), suggesting that the erosion of telomeres contributed to ultimate 

growth arrest in both conditions.

We integrated methylated DNA immunoprecipitation sequencing (MeDIP-seq) and 

methylation-sensitive restriction enzyme sequencing (MRE-seq) (Li et al., 2015; Maunakea 

et al., 2010) methods to further examine genome-wide DNA methylation (DNAme) changes 

in the HFK samples that were used in the RNA-seq study (Figure 2A; Table S5). Average 

DNA methylation levels in each passage were around 70%–75% with a slight decrease at 

higher passages (Figure S10), consistent with previous reports (Wilson and Jones, 1983). 

Bimodal distribution revealed a lower number of highly methylated CpGs in late passages, 

yet the global DNA methylation over genic regions was stable across passages (Figure S10). 

In contrast to the transcriptomic shifts, PCA showed that passage number was the only factor 

that drove DNA methylation change (Figure 6C). Over 2,400 differentially methylated 

regions (DMRs) (1,940 DNA methylation gain and 479 DNA methylation loss) were 

identified along with the increase in passages, with no statistically significant DMRs 

identified between adjacent passages in different media (Figures 6B and S10). Interestingly, 

mid-passage (P12) HFKs exhibited intermediate DNA methylation levels in these DMRs, 

confirming the DNA methylation change was gradual across passages (Figures 6D and S10). 

The DNA methylation changes were maintained after withdrawal of EpiX medium (Figure 

S10), suggesting that these changes were driven mainly by the passage number but not 

media change.
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We next investigated the potential impact of DNA methylation changes on gene expression. 

Taking advantage of the Human Reference Epigenome Map (Kundaje et al., 2015; Lowdon 

et al., 2014), we annotated the DMRs using histone modification data from reference 

foreskin keratinocytes (E057 and E058) and found that DMRs occurred more often than 

expected in promoters or enhancers (Figures 6E and S10; Table S5). The DNA methylation 

changes were weakly associated with gene expression change, and no significant DNA 

methylation change was found in or around genes involved in important signaling pathways 

(TGF-β, WNT) and cell cycle (Figure S10). Of all genes that exhibited promoter DNA 

methylation change, 18/126 down-regulated genes and 0/6 upregulated genes showed 

expected gene expression changes (Figures 6F and S10; Table S6). The majority (112/132, 

85%) of genes with promoter DNA methylation changes remained at low expression levels 

(transcripts per million [TPM] < 10; Figure S10), matching previous report that DNA 

methylation changes accumulate predominantly at inactive gene promoters in long-term 

human cell cultures (Gordon et al., 2014). We used a model derived from long-term 

fibroblast culture (Koch et al., 2012) to predict the cumulative PDs (pcPDs) of the HFKs 

using DNA methylation levels at certain CpGs, and found a good correlation between the 

predicted and actual PDs (Figure 6G; Table S7). Overall, this suggested that the majority of 

DNA methylation changes accompanied with EpiX expansion were by-products of long-

term culture and not responsible for gene expression changes.

DISCUSSION

As cell behaviors are influenced by diverse external signals, we postulated that screening 

small molecules could yield hits if we focused on desired outcome (e.g., continuous cell 

proliferation) even without a priori knowledge on the native stimuli. Through this approach, 

we found that TGF-β signaling inhibition and ROCK inhibition synergistically supported 

epithelial cell proliferation in the absence of feeder cells. TGF-β is a well-known cytostatic 

factor (Siegel and Massagué, 2003), presumably through the activation of p21Cip1 and 

p15INK4b (Bhowmick et al., 2003; Denicourt and Dowdy, 2003). Noteworthily, Rheinwald 

proposed that feeder cells protected epithelial cells from TGF-β growth inhibition by 

efficiently degraded TGF-β (Rollins et al., 1989). Attenuation of TGF-β signaling 

suppresses premature senescence in a p21Cip1-dependent manner (Lin et al., 2012) or 

antagonizes ATM-mediated growth-arrest response to genotoxic stress (Kirshner et al., 

2006), and TGF-β inhibition rescues hematopoietic stem cell defect (Zhang et al., 2016). 

Nevertheless, inhibiting TGF-β signaling with small molecule alone cannot immortalize 

epithelial cells, but can assist TERT in doing so (Natarajan et al., 2006).

Modest expressions of TGF-β were detected in epithelial cells cultured in KSFM by ELISA 

and RNA-seq (Figures S3 and S6), suggesting that autocrine TGF-β might contribute to cell 

growth arrest. Although RNA-seq detected little change in TGF-β genes transcription in 

EpiX versus KSFM (Figure S6), ELISA showed that A83-01 and Y-27632 together 

significantly reduced active TGF-β protein produced by the epithelial cells, although either 

had little effect when used alone (Figure S3). The suppression on TGF-β protein may help 

explain the synergy between A83-01 and Y-27632 on promoting cell proliferation, but how 

the TGF-β protein is reduced in the absence of transcriptional changes warrants further 

investigation.
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Recently, the Rajagopal group reported that “dual SMAD” inhibition enables long-term 

expansion of epithelial basal cells from airway, skin, and epididymis (Mou et al., 2016), 

while they also used Y-27632 and CHIR99021. They concluded that both TGF-β and BMP 

pathways needed to be suppressed by A83-01 and DMH-1, respectively. DMH-1 was 

included in our small-molecule collection but did not have a significant impact on its own 

nor with either TGF-β or ROCK inhibitors, suggesting that BMP pathway inhibition may 

not be critical at least under in vitro condition.

ROCKs influence a wide variety of signal pathways in eukaryotic cells and play pivotal roles 

in regulating actin cytoskeleton, cell polarity, microtubule dynamics, membrane transport 

pathways, and transcription factors activities (Etienne-Manneville and Hall, 2002). ROCK 

inhibitor has been widely used in mammalian cell cultures presumably for its ability to 

suppress anoikis (Watanabe et al., 2007). What has not been highlighted before is the 

synergy between TGF-β signaling inhibition and ROCK inhibition in promoting epithelial 

cell proliferation as we delineated in this study. We also found that PAK1 inhibitor (IPA-3) 

or Myosin II inhibitor (blebbistatin) had similar synergistic effect on promoting epithelial 

cell proliferation when used with A83-01. The Watt laboratory proposed that Hippo effector 

YAP nuclear translocation and its co-factor WBP2 as essential mediator to promote cell 

proliferation and drive clonal expansion when cytoskeleton and microtubule dynamics are 

pharmacologically modulated through the PAK1-ROCK-Myosin II axis (Walko et al., 2017). 

We found that Y-27632 but not A83-01 led to significant cytoskeleton reorganization and 

YAP nuclear translocation in HFKs cultured in KSFM with 1.5 mM CaCl2 (Figure S3), 

which provided an explanation for ROCK inhibitor as the primary hit in high-calcium F 

medium (Figures 1 and S1).

High extracellular [Ca2+] induces epithelial cell differentiation through promoting 

intercellular interaction (Martin et al., 1991). When [Ca2+] is below 0.3 mM, NOTCH-1 is 

constitutively active and allows cell-autonomous signaling in the absence of reciprocal cell-

cell interaction (Dalrymple et al., 2005; Rand et al., 2000). Interestingly, the low [Ca2+] in 

KSFM resulted in cytoskeletal re-organization and YAP nuclear translocation similar to 

adding Y-27632 in the presence of high [Ca2+] (Figure S3). Extracellular Ca2+ also gates 

cadherin-cadherin homotypic interaction and influences β-catenin nuclear trafficking and 

WNT target genes expression (Nusse and Clevers, 2017). Such miscellaneous effects of low 

extracellular [Ca2+] probably overshadow any activity imparted by the GSK3 inhibitor 

CHIR99021, which showed little effect in the EpiX medium.

Importantly, our study revealed that EpiX-expanded epithelial cells maintained remarkable 

genome integrity. The cells retained normal diploid and had extremely low SNV rate 

comparable to germline cells (Rahbari et al., 2016). No mutations occur in oncogenes or 

tumor suppressor genes. On the contrary, many PSC lines are reported to acquire genomic 

variations including TP53 mutations with successive passages (Merkle et al., 2017). Current 

PSC differentiation protocols produce epithelial progenitors that only propagate for a few 

passages in convention medium (Firth et al., 2014; Umegaki-Arao et al., 2014). It is 

tempting to use EpiX medium to expand PSC-derived epithelial progenitors, which could 

reduce the production cost and assure the genomic quality of end cell products.
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Transcriptomic study of HFKs cultured in EpiX versus KSFM revealed significant 

downregulation of genes involved in senescence, cell-cell interaction, interferon signaling, 

extracellular matrix organization, and stress responses, together with upregulation of genes 

involved in various metabolic processes and cell cycle (Figure 2F). Importantly, the impact 

was not permanent and reversed upon the withdrawal of EpiX medium (Figure 2E), allowing 

the cells to differentiate along their tissue lineages. Genome-wide DNA methylation study 

revealed gradual accumulation of DMRs that were mainly associated with successive 

passages. These DMRs were weakly associated with gene expression change, and occurred 

mostly in the promoters or enhancers of low-expression genes, confirming similar 

observation in long-term culture of human cell lines (Gordon et al., 2014). The DNA 

methylation changes were maintained after withdrawal of EpiX medium (Figure S10), 

suggesting that these DMRs were mainly driven by long-term in vitro expansion.

Cell proliferation eventually ground to a halt in the EpiX medium, presumably due to 

telomeres erosion that lead to ATM/TP53-dependent DNA-damage response (Lazzerini-

Denchi and Sfeir, 2016). Conversely, this might be a major contributor of the remarkable 

genome integrity due to prompt elimination of the cells with DNA damages via apoptosis. 

The accumulation of senescent cells in late-passage population is an important quality 

concern for ex vivo cell manufacturing, as they may impair healthy cells’ functions via 

destructive paracrine effect (Campisi, 2005; Rodieretal., 2009). Recent advances in the 

identification of senolytics that can postpone senescence or eliminate senescent fibroblasts, 

such as rapamycin (Iglesias-Bartolome et al., 2012), IL-1Ra (Uekawa et al., 2004), ABT-263 

(Chang et al., 2016), and FOXO4-DRI (Baar et al., 2017), might be useful to further extend 

the expansion of epithelial cells.

In summary, the EpiX medium supports over one trillion-fold expansion of epithelial cells 

from diverse tissues in the absence of feeder cells. The EpiX technology provides unique 

solutions to unleash the potential of tissue-resident epithelial stem and progenitor cells for 

cell therapy and regenerative medicine.

STAR★METHODS

Detailed methods are provided in the online version of this paper and include the following:

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Chengkang Zhang (ck.zhang@propagenix.com)

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Primary epithelial cells were purchased from Lonza or ThermoFisher or obtained from 

academic tissue bank (UNC CF Center). Fresh human foreskin tissue was purchased from 

Zenbio for keratinocyte isolation. Fresh human nasal brushing samples were collected from 

CF patients at UNC CF Clinic following approved IRB protocol. The epithelial cells were 

cultured in the CR condition, commercial media (Lonza BEGM, Lonza PrGM, Lonza 

MEGM, GIBCO KSFM), or the EpiX medium. The EpiX medium was KSFM 

supplemented with 1 μM A83–01, 5 μM Y-27632 and 3 μM isoproterenol. The epithelial 

Zhang et al. Page 10

Cell Rep. Author manuscript; available in PMC 2018 December 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cells were cultured in collagen-coated vessels (Corning) until they reach 80%–90% 

confluence, when they were passaged with Trypsin-EDTA and re-seeded into new vessels.

For in vivo animal studies, female nude mice (6-8 weeks old) were used and each group had 

6 animals. Body weight and tumor measurements were recorded twice weekly for 12 weeks. 

The study was conducted in compliance with the IACUC protocols established at Noble Life 

Sciences.

METHOD DETAILS

Lentivirus transduction and live-imaging cell growth analysis with IncuCyte—
Epithelial cells cultured using the CR method were seeded into 24-well plate and cultured 

without feeder cells. The cells were transduced with IncuCyte® NucLight Red (nRFP) 

Lentivirus Reagent (Essen BioScience) and stable clones were established by puromycin 

selection. Late-passage nRFP-expressing cells were seeded into collagen-coated 96-well or 

384-well plate (Corning). A collection of small molecules (Tocriscreen Stem Cell Toolbox, 

Tocris; Table S1) were diluted in culture medium to the desired concentrations and added to 

the culture. The cells were cultured in IncuCyte ZOOM (Essen BioScience) for live-imaging 

analysis following the manufacturer’s instructions for 5–7 days. Small molecules with 

positive effects were purchased individually from Sigma-Aldrich or Sellekchem for 

validation. Stocks of the chemicals were prepared by dissolving in DMSO to 10 mM and 

added to culture media to desired final concentrations.

Keratinocytes isolation and expansion—Fresh human skin purchased from ZenBio 

Inc. was cut into small pieces and placed in Dispase solution (Corning) at 4C overnight. The 

next day, the epidermis was separated from dermis with forceps and digested in Trypsin-

EDTA for 15 minutes. The cell suspension was filtered through a 40 μm strainer (BD 

Bioscience) and cultured in EpiX medium.

Cultured cell immunofluorescence—Cells cultured on collagen-coated CultureSlides 

(Corning) were fixed in 4% PFA for 15 min at room temperature, washed 3 times in PBST 

(PBS+0.2% Triton X-100) (5 min/wash) and incubated with the primary antibodies for 2 

hours at room temperature or 4C overnight in PBS +1% normal goat serum. Following 

incubation, the cells were rinsed 3 times in PBST and incubated with secondary antibodies 

at room temperature for 1–2 hours. After rinsing 3 times in PBST, the nuclei were stained 

with ProLong® Gold with DAPI (ThermoFisher) and imaged with a fluorescence 

microscope (EVOS-FL, ThermoFisher).

Telomere length measurement—Genomic DNA was extracted from the cells using the 

Quick-DNA Miniprep Plus Kit (Zymo Research) and quantitated on a NanoDrop 2000. 

Telomere length measurements by quantitative PCR was performed by the Risques Lab at 

University of Washington.

Quantitative RT-PCR—Total RNA was isolated using the TRIzol Plus RNA Purification 

Kit (ThermoFisher) and PureLink RNA Mini Kit (ThermoFisher). Total RNAs from human 

lung, small intestine and mammary gland were purchased from Clontech and used as 

control. RT2 Profiler PCR Array Human Cellular Senescence (QIAGEN) was used to 
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analyze the expression of genes involved in cellular senescence using twenty nanogram total 

RNA for each reaction. The primers (forward: 5′-TGACACCTCACCTCACCCAC-3′; 

reverse: 5′-CACTGTCTTCCGCAAGTTCAC-3′; Taqman probe: 5′-

ACCCTGGTCCGAGGTGTCCCTGAG-3′) were used to determine TERT expression with 

the TaqMan RNA-to-CT 1-Step Kit (ThermoFisher), using one hundred nanogram total 

RNA per reaction.

Karyotype and Whole genome sequencing—Live cells were seeded in flasks and 

sent to Cell Line Genetics for G-Band Karyotyping service. Genomic DNA was extracted 

from the cells using the Quick-DNA Miniprep Plus Kit (Zymo Research) and quantitated on 

a NanoDrop 2000. Whole genome library preparation and DNA sequencing on Illumina 

HiSeq X and data analysis were performed by Novogene Inc.

Differentiation of HBEC at ALI—HBEC were seeded onto polyester Transwell 

membranes (Corning) at a density of 400,000 cells/cm2 in EpiX+1.5 mM CaCl2. After the 

cells reached confluence on the insert, the medium was replaced with Pneumacult-ALI 

medium (STEMCELL Technologies) only in the lower chamber to initiate air-liquid 

interface culture. The medium was changed every 2–3 days for 21–28 days until 

differentiation was well established. Ciliogenesis was monitored by inverted-phase 

microscopy. The membranes were fixed in 4% PFA at room temperature for 10 min, 

followed by washing and permeabilization in PBST, for immunofluorescence staining. 

Paraffin section, H&E and alcian blue staining were performed by VitroVivo Biotech LLC.

Ion channels activity assays—Ussing assays were performed by ChanTest, a subsidiary 

of Charles River Laboratories. Frozen cells were sent to ChanTest for plating and 

differentiation at CRL using the Vertex (Neuberger et al., 2011) or Pneumacult-ALI 

medium. Short circuit current (ISC) was evaluated after 32 and 36 days in ALI culture.

Differentiation of keratinocytes at ALI and production of cultured epidermal 
grafts—HFK were seeded onto polycarbonate Transwell membranes (Corning) at a density 

of 400,000 cells/cm2 in EpiX+1.5 mM CaCl2. After 2–3 days, the medium was removed 

from top chamber and only added in the lower chamber to initiate ALI differentiation. The 

medium was changed every 2–3 days for 14 days. To make cultured epidermal graft, HFK 

were cultured in collage-coated T-75 flask in the EpiX medium until they approached 

confluence, then the medium was switched to EpiX+1.5 mM CaCl2 and cultured for another 

7 days. The whole epidermal sheet was released using Dispase solution at 37C for 30 min.

In vivo tumorigenicity and differentiation—HFK were expanded in EpiX or 

differentiated for 7 days in EpiX+1.5 mM CaCl2. The cells were harvested with Trypsin-

EDTA and resuspended in HBSS for in vivo tumorigenicity assays in female nude mice, 

performed by Nobel Life Sciences as contract service in compliance with established 

IACUC protocols. Briefly 1.0×107 cells were administered subcutaneously in a volume of 

0.1 mL in Matrigel on the flanks of 6–8 weeks old mice (n = 6 for each group). Following 

cell injection, body weight and tumor measurements were recorded twice weekly for 12 

weeks. Tissue samples were harvested at specified time points and fixed in formalin for 

paraffin sections.
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RNA-Seq library preparation—Half million HFK per replicate were collected and 

stored at −80°C in 1 mL of RNAlater solution until use. For late-passage HFK cultured in 

KSFM (P5 and P20), 66,000-150,000 cells per replicate were used as the cells quickly 

ceased expansion in KSFM. The mRNA was extracted directly from the cells by using 

Dynabeads mRNA DIRECT Purification Kit according to the manufacturer’s instructions. 

To avoid any genomic DNA and rRNA contamination, eluted mRNA was treated with 

DNase (TURBO DNA-free Kit) and bound again to the same Dynabeads used for the 

original isolation, following the manufacturer’s instructions. RNA-Seq libraries were 

generated using ScriptSeq RNA-Seq Library Preparation Kit (Illumina) according to the 

manufacturer’s instructions.

RNA-Seq data processing—RNA-Seq libraries were sequenced on the Illumina 

NextSeq 500 platform. The paired-end sequenced reads were aligned to the reference 

genome hg19 and transcriptome (gencode v19) using STAR (Dobin et al., 2013) v.2.5.3a 

with the following parameters:–outFilterType BySJout–outFilterMultimapNmax 20–

outFilterMismatchNmax 999–outFilterMismatchNoverReadLmax 0.04–alignIntronMin 20–

alignIntronMax 1000000–alignMatesGapMax 1000000–alignSJoverhangMin 8–

alignSJDBoverhangMin 1. The total number of reads overlapping each gene were counted 

using featureCounts (Liao et al., 2014) (Subread v.1.5.3) with gencode v19 gtf file and the 

following parameters: -O -s 1–primary -p. Transcripts per million (TPM) were calculated 

from the read counts obtained from featureCounts.

Differential gene expression analysis—Differential gene expression was performed 

by using DESeq2 bioconductor package (Love et al., 2014) v.1.14.1, following standard 

workflow suggested by the package. The matrix of genes and read counts generated by 

featureCounts were used as count matrix input. The dataset was pre-filtered by removing 

genes with no or only one count across all samples. For PCA analysis and heatmap, 

regularized-logarithm transformation (rlog) was performed for count data to stabilize the 

variance across the mean. Differentially expressed genes were identified by comparing two 

different media conditions, control KSFM (P2, P4, P5, and P20) and EpiX (P3, P12, and 

P19). Only genes with log2FC > 1 and adj.p <0.01 were considered significant. The 

enrichment of gene ontology terms and pathways for DEGs was analyzed by using 

Metascape (Tripathi et al., 2015).

MeDIP-seq and MRE-seq library preparation—Half million HFK per replicate were 

collected and stored as a pellet at −80°C until use. For late-passage HFK cultured in KSFM 

(P5 and P20), 66,000-150,000 cells per replicate were collected due to difficulty of culture 

expansion. The genomic DNA was extracted by incubating the cells in genomic DNA 

extraction buffer (50 mM Tris, 1 mM EDTA, 0.5% SDS, 1 mg/mL Proteinase K) followed 

by phenol-chloroform extraction. MeDIP-seq and MRE-seq libraries were generated as 

described previously (Li et al., 2015; Maunakea et al., 2010), with minor modifications. For 

MeDIP-seq, 100 ng of genomic DNA was sonicated to a fragment size of 100-500 bp, end 

processed and ligated to paired-end adapters. The DNA was then denatured and 

immunoprecipitated using 100 ng of mouse monoclonal anti-methylcytidine antibody in 400 

μL of immunoprecipitation buffer (10 μM sodium phosphate, pH 7.0, 140 mM NaCl and 
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0.05% Triton X-100) overnight at 4°C. Antibody/DNA complexes were isolated by addition 

of 0.1 μL of rabbit anti-mouse IgG secondary antibody (2.0 mg/mL, Jackson 

Immunoresearch) and 20 μL protein A/G agarose beads (Pierce Biotechnology) for 2 h at 

4°C. Beads were washed ten times with immunoprecipitation buffer and then DNA was 

eluted in TE buffer with 0.25% SDS and 0.25 mg/mL of proteinase K for 2 h at 50°C. DNA 

was then purified with MinElute PCR Purification kit (QIAGEN). DNA was amplified by 17 

cycles of PCR with the standard Illumina index primers and size selected (150–500 bp) by 

Agencourt AMPure XP beads (Beckman Coulter). For MRE-seq, five parallel digests 

(HpaII, Hin6I, SsiI, BstUI and HpyCH4IV; New England Biolabs) were performed, each 

with 20 ng of genomic DNA. The digested DNA was size selected using Agencourt AMPure 

XP beads (Beckman Coulter), end processed and ligated to adapters. Then DNA was 

amplified by 18 cycles of PCR and size selected (150–500 bp) by Agencourt AMPure XP 

beads (Beckman Coulter).

DNA methylome data processing—MeDIP-seq and MRE-seq libraries were sequenced 

on the Illumina NextSeq 500 platform. The sequenced reads were adaptor-trimmed by using 

cutadapt (Martin, 2011) v.1.9 paired-end mode with the parameters -q 10 -m 20. Trimmed 

reads were aligned to the hg19 genome assembly using BWA-MEM (Li, 2013) v.0.7.10 with 

the default parameters. The aligned MeDIP-seq reads were further processed using 

methylQA (Li et al., 2015) v.0.1.6 medip mode with the default parameters. The aligned 

MRE-seq reads were processed using methylQA (Li et al., 2015) v.0.1.6 mre mode with the 

parameter -c 4. Methylation levels at single CpG resolution were estimated by integrating 

MeDIP-seq and MRE-seq data using methylCRF with default parameters as described 

previously (Stevens et al., 2013).

Identification of differentially methylated regions—Differentially methylated 

regions between two culture conditions were identified by using methylMnM package 

(Zhang et al., 2013) with the default parameters. Briefly, the coverage of MeDIP and MRE 

sequencing data and genomic CpG information were calculated in each 500-bp genomic bin. 

The CpGs in the human blacklisted genomic regions (ENCODE Project Consortium, 2012) 

and the mitochondrial genome were excluded from the analysis. DMRs with a q-value (false 

discovery rate) <1 × 10−5 were selected for each pairwise comparison (Figure S10A). 

Highly reproducible set of DMRs were identified by intersecting all four pairwise 

comparisons between two different conditions with two biological replicates and were used 

for further analysis (Figure 6B).

DNA Methylation analyses—Average DNA methylation level of each DMR was 

calculated by using CpG methylation levels estimated by methylCRF. Principal component 

analysis was performed on the average DNA methylation levels of all union set of 2,419 

DMRs with high reproducibility. The chromatin states of each DMR was determined by 

intersecting either core 15 chromHMM states or expanded 18 states of fetal keratinocytes 

(ID# 057 and 058) from Roadmap Epigenomics Consortium data.

Prediction of cumulative population doublings—To predict cPDs, genomic 

coordinates of 6 CpG sites were determined by using sequences surrounding the CpG sites. 
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For cg03891191, two genomic locations were found in hg19 genome assembly and average 

of methylCRF values of two locations were used. Cumulative population doublings were 

calculated by using the following equation (Koch and Wagner, 2013): pcPD = 45.89 

+ (23.63 × cg02332525) + (31.61 × cg17453778) + (−53.70 × cg03891191) + (14.86 × 

cg01459453) + (−23.94 × cg01999333) + (−10.34 × cg16431978).

QUANTIFICATION AND STATISTICAL ANALYSIS

IncuCyte Zoom was used for live imaging and automatic cell counts in 96-well or 384-well 

plates. Automatic cell count was facilitated by counting nuclear-localized RFP. For multi-

well plate assay, each condition had 3–4 replicates, and all error bars correspond to SD. 

GraphPad Prism 7.0 was used for non-parametric tests. Unpaired data was compared using 

Kruskal-Wallis test. Differences were considered significant if p < 0.05. All collected data 

were included for the quantification and the statistical analysis.

In the transcriptome study, regularized-logarithm transformation (rlog) was performed for 

count data to stabilize the variance across the mean for PCA analysis and heatmap. 

Differentially expressed genes were identified by comparing two different media conditions, 

and only genes with log2FC > 1 and adj.p < 0.01 were considered significant. In the DNA 

methylation study, DMRs with a q-value (false discovery rate) <1 × 10−5 were selected for 

each pairwise comparison (Figure S10A). Highly reproducible set of DMRs were identified 

by intersecting all four pairwise comparisons between two different conditions with two 

biological replicates and were used for further analysis (Figure 6B).

DATA AND SOFTWARE AVAILABILITY

The accession number for the data reported in this paper is Gene Expression Omnibus 

(GEO): GSE103759, and contains the subseries GEO: GSE103756 (RNA-seq), GSE103757 

(MeDIP-seq), and GSE103758 (MRE-seq). All data generated in this study have been 

visualized in WashU Human Epigenome Browser (Zhou et al., 2011) and is publicly 

available in the following url: http://epigenomegateway.wustl.edu/browser/?

genome=hg19&datahub=http://wangftp.wustl.edu/~hlee/EpiX/EpiX_hg19.json.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Synergy between pharmacologic inhibition of PAK1-ROCK-Myosin II and 

TGF-β

• Transcriptomic and epigenomic studies show the approach helps cells 

overcome stress

• Whole-genome sequencing reveals that the cells retain remarkable genome 

integrity
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Figure 1. TGF-β Signaling Inhibition, ROCK Inhibition, and Low Calcium Synergistically 
Support Long-Term Epithelial Cell Proliferation
(A) Small molecules inhibiting the TGF-β signaling or ROCK supported the proliferation of 

late-passage PrECs/nRFP cells in the absence of feeder cells in the F medium. Data are 

represented as mean ±SD, n = 4.

(B) Synergy between A83-01 and Y-27632 in the F medium (four replicates per condition).

(C and F) PrECs/nRFP cells proliferated for 10 PDs in the F medium plus Y-27632 and 

A83-01 (F+Y+A) but continued to proliferate in the CR condition (C). Many cells in F+Y

+A exhibited differentiated morphology (F).

(D) ROCK inhibitors synergistically promoted the proliferation of HBECs/nRFP cells in 

KSFM plus 1 μM A83-01.

(E) Synergy between A83-01 and Y-27632 in KSFM (four replicates per condition).
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(G) Morphology of HFKs over successive passages in KSFM (P1 and P5) or the EpiX 

medium (P2, P11, and P20).

(H) TP63 was ubiquitously expressed in late-passage HFKs (P16) cultured in the EpiX 

medium.

(I-L) Expansion of HFKs (I), PrECs (J), HBECs (K), and mammary epithelial cells (L) in 

KSFM or EpiX.
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Figure 2. Transcriptome Analysis of HFKs Expanded with the EpiX Medium
(A) Experimental scheme of HFK expansion in KSFM or the EpiX medium and time points 

for samples collection. HFKs underwent three different routes: (1)stasis in KSFM (P2→P5); 

(2) transient exposure and withdrawal from the EpiX medium (P2→P3→P4); and (3) 

expansion in the EpiX medium and withdrawal at late passage (P3→P12→P19→P20). 

Each sample was collected in duplicate.

(B) PCA on HFK transcriptomes in various conditions. The red arrows represented the 

direction of culture condition changes.
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(C) MA plot of differentially expressed genes in two different media. The red dots 

represented differentially expressed genes.

(D) Temporal expression changes of two top downregulated genes, VIM (solid line) and 

FN1 (dashed line).

(E) Heatmap of 962 downregulated genes in HFKs expanded with the EpiX medium. These 

downregulated genes were de-repressed when the HFKs were withdrawn from EpiX 

medium. The red arrows indicated EpiX medium withdrawal.

(F) Gene ontology (GO) and pathway enrichment analysis of upregulated and downregulated 

genes by metascape tool.
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Figure 3. Genome Stability of Epithelial Cells Expanded with the EpiX Medium
(A) HFKs, HBECs, and PrECs expanded with the EpiX medium over 40 PDs retained 

diploid karyotypes.

(B) EpiX-expanded HFKs did not form tumors after 12 weeks in female nude mice (1 × 107 

cells per mouse, n = 6 in each group). Data are represented as mean ±SD, n = 6.

(C) Data analysis workflow for whole-genome sequencing.

(D) Distributions of de novo SNVs identified by whole genome-sequencing in late-passage 

HFK and CF samples. Venn diagram showed the overlap between the CF and HFK samples.

(E) Genes that were affected by missense de novo SNV (all heterozygous) after 40 PDs 

expansion in the EpiX medium. Two separate missense SNVs were found in the DDX11 
gene in the CF and HFK samples.
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Figure 4. Differentiation of HFKs Expanded with the EpiX Medium
(A) Addition of 1 mM CaCl2 to the EpiX medium induced the HFKs to differentiate in 24 

hr.

(B) Immunofluorescence staining of tight junctions (ZO-1 and Occludin) in HFKs cultured 

in EpiX plus 1 mM CaCl2 for 7 days. ZO-1, zonula occludens-1.

(C and D) Confluent HFKs in EpiX (C) or EpiX plus 1 mM CaCl2 (D). Many domes with 

liquid accumulated underneath occurred in the culture with EpiX plus 1 mM CaCl2.

(E) HFKs cultured in a T-75 flask in EpiX plus 1.5 mM CaCl2 for 7 days form an intact 

epithelium sheet, which was released from the flask after 30-min incubation in dispase at 

37°C.

(F) HFKs were differentiated at ALI for 14 days and formed a stratified epithelium.

(G) EpiX-expanded HFKs were subcutaneously injected into immune-comprised mice. After 

5 weeks, the cells formed cysts which resembled epidermis.

(H) Most cells in the basal layer were stained positive for the proliferation marker Ki67.

(I) The basal and supra-basal layers of the cystic epithelium stained positive for KRT14 

(K14).
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Figure 5. Differentiation of HBECs Expanded with the EpiX Medium
(A) HBECs from healthy and CF donors (n = 4) were expanded in the EpiX medium or 

conventional medium (BEGM). EpiX medium supported million-fold more expansion than 

BEGM (n = 2).

(B) HBECs from a healthy (UNC42I) or a CF donor were expanded in the EpiX medium for 

30 PDs and differentiated at ALI for 21 days. The expression of basal cell markers (TP63, 

NGFR), multiciliated cell markers (CFTR, FOXJ1A), goblet cell marker (MUC5AC), club 

cell marker (CC10), or type II cell marker (SFTPD) were checked by qRT-PCR. Gene 
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expression levels were depicted as relative to that of β-actin, which was set at 1. Data are 

represented as mean ± SD, n = 3.

(C) UNC42I cells (P8) were differentiated at ALI for 21 days. Paraffin sections were stained 

with H&E, or with an anti-acetylated tubulin antibody, or with alcian blue to show 

multiciliated cells and goblet cells.

(D) UNC42I cells (P7) were differentiated at ALI and treated with 1 ng/mL IL-13. 

Multiciliated cells and goblet cells were stained with anti-acetylated tubulin (in green) or 

anti-MUC5AC (in red) antibodies respectively. IL-13 led to goblet cell hyperplasia and a 

decrease of multiciliated cells.

(E) Early- (15 PDs) and late-passage (30 PDs) CF cells were differentiated at ALI for 

Ussing assays, using either the Vertex or the PneumaCult-ALI protocol. The activities of 

ENaC (ΔAmiloride, 30 μM amiloride), CFTR (ΔFsk peak, 10 μM forskolin; ΔVX-770 peak 

and ΔVX-770 plateau, 100 nM VX-770 and 3 μM VX-809) and CaCC (ΔUTP, 100 μM 

UTP) were measured. VX-809, a CFTR trafficking corrector; VX-770, a CFTR potentiator. 

The responses of mutant CFTR variants to the CFTR corrector (3 μM VX-809) and CFTR 

potentiator (100 nM VX-770) were similar between early and late passages. Data are 

represented as mean ± SD, n = 3.
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Figure 6. Epigenetic Changes in HFKs Expanded with the EpiX Medium
(A) Telomere length (T/S ratio) gradually decreased in HFKs expanded in the EpiX medium 

or the CR method. Data are represented as mean ±SD, n = 3.

(B) The number of differentially methylated regions (DMRs) identified between different 

culture conditions. The numbers in upper right cells were DMRs with DNA methylation 

gain, and the numbers in lower left cells were DMRs with DNA methylation loss.

(C) PCA of DNA methylomes. DNA methylation levels of DMRs were used as input data. 

The first principal component (passage) explained most variances among the DNA 

methylomes.
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(D) DNA methylation levels in HFKs gradually changed over successive passages in the 

EpiX medium. The methylation levels of DMRs at P12 was intermediate between P3 and 

P19. Also see Figure S10.

(E) The chromatin states of DMRs using 18 chromHMM expanded states in keratinocytes. 

Lots of DMRs were in regulatory regions such as promoters and enhancers. Also see Figure 

S10.

(F) Expression changes of genes whose promoters underwent DNA methylation changes. 

Expression changes were calculated as log2 of fold change between P3 and P19. The red 

dots indicated the genes whose expression was downregulated as expected from the gain of 

promoter methylation.

(G) Predicted cumulative population doublings (pcPDs) of HFKs based on the DNA 

methylation levels at six CpG sites correlated with the actual PDs at different passages.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-MUC5AC Santa Cruz Biotechnology Cat# sc-20118; RRID: AB_2146854

Mouse monoclonal anti-Acetylated Tubulin Sigma-Aldrich Cat# T7451; RRID: AB_609894

Rabbit polyclonal anti-Ki67 Abcam Cat# ab15580; RRID: AB_443209

Mouse monoclonal anti-KRT14 Thermo Fisher Scientific Cat# MA5-11599; RRID: AB_10982092

Rabbit monoclonal anti-YAP Cell Signaling Technology Cat# 14074; RRID: AB_2650491

Alexa Fluor 594 Phalloidin Thermo Fisher Scientific Cat# A12381; RRID: AB_2315633

Rabbit monoclonal anti-P63 Cell Signaling Technology Cat# 13109; RRID: AB_2637091

ZO-1 Monoclonal Antibody (ZO1-1A12), 
Alexa Fluor 488

Thermo Fisher Scientific Cat# 339188; RRID: AB_2532187

Occludin Monoclonal Antibody (OC-3F10), 
FITC

Thermo Fisher Scientific Cat# 33-1511; RRID: AB_2533102

Bacterial and Virus Strains

NucLight Red Lentivirus (EF-1 Alpha 
Promoter, Puromycin selection)

Essen Biosciences Cat# 4476

Biological Samples

Human foreskin tissue, fresh Zenbio Cat# T-FS

Human nasal brushing samples from CF 
patients

UNC CF Clinics N/A

Chemicals, Peptides, and Recombinant 
Proteins

Tocriscreen Stem Cell Toolbox Tocris Cat# 5060

A83-01 Sigma-Aldrich Cat# SML0788

Y-27632 dihydrochloride Enzo Life Sciences Cat# ALX-270-333

Isoprenaline hydrochloride Sigma-Aldrich Cat# I5627-5G

(−)-Blebbistatin Selleck Chemicals Cat# S7099

IPA-3 Tocris Cat# 3622

GSK-429286 Sigma-Aldrich Cat# SML0231

Critical Commercial Assays

Telomere length measurements by 
quantitative PCR service

Risques Lab at University 
of Washington http://depts.washington.edu/risques/

G-Band Karyotyping service Cell Line Genetics N/A

Whole genome sequencing service Novogene N/A

Ussing assays service ChanTest, a subsidiary of 
Charles River 
Laboratories

N/A

Histology service (Paraffin section, H&E 
and alcian blue staining)

VitroVivo Biotech LLC N/A

TGF-β ELISA service University of Maryland 
Cytokine Core Lab N/A

RT2 Profiler PCR Array Human Cellular 
Senescence

QIAGEN Cat# PAHS-050ZA-6

In vivo tumorigenicity service Noble Life Sciences N/A

Deposited Data
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REAGENT or RESOURCE SOURCE IDENTIFIER

Raw and analyzed RNA-seq, MeDIP-seq 
and MRE-seq data

This paper GSE103759 containing the Subseries GSE103756 (RNA-seq), GSE103757 (MeDIP-seq) and GSE103758 (MRE-seq)

Analyzed whole genome sequencing data This paper Figure 3; Table S4

Experimental Models: Cell Lines

Human bronchial epithelial cells, P1, from 
healthy and CF donors

UNC CF Center Tissue
Procurement and Cell
Culture Core

N/A

NHBE-Bronchial Epi Cells for B-ALI Lonza Cat# CC-2540S

CF-DHBE - Diseased Bronchial Epi. Cells 
(CF)

Lonza Cat# 196979

Human Epidermal Keratinocytes, adult 
(HEKa)

Thermo Fisher Scientific Cat# C0055C

Human Epidermal Keratinocytes, neonatal 
(HEKn)

Thermo Fisher Scientific Cat# C0015C

HMEC-Human Mammary Epithelial Cells Lonza Cat# CC-2551

LNCap Clone FGC Cell Line human Sigma-Aldrich Cat# D-073-1ML

Human normal prostate epithelial cells Georgetown University N/A

Experimental Models: Organisms/Strains

Nude mice (Noble Life Sciences) Jackson Lab N/A

NSG mice (Noble Life Sciences) Jackson Lab N/A

Oligonucleotides

qRT-PCR primers for TERT (forward 
primer, 5′-
TGACACCTCACCTCACCCAC-3′, 
reverse primer, 5′-
CACTGTCTTCCGCAAGTTCAC-3′ and 
Taqman probe (5′-
ACCCTGGTCCGAGGTGTCCCTGAG-3′)

This paper N/A

Software and Algorithms

STAR, v.2.5.3a Dobin et al., 2013 https://github.com/alexdobin/STAR

featureCounts (Subread v.1.5.3) Liao et al., 2014 http://bioinf.wehi.edu.au/featureCounts/

DESeq2 bioconductor package v.1.14.1 Love et al., 2014 https://bioconductor.org/packages/release/bioc/html/DESeq2.html

Metascape Tripathi et al., 2015 http://metascape.org

BWA-MEM v.0.7.10 Li, 2013 http://bio-bwa.sourceforge.net/

methylQA Li etal., 2015 http://methylqa.sourceforge.net/

methylCRF Stevens et al., 2013 http://methylcrf.wustl.edu/

methylMnM Zhang et al., 2013 http://bioconductor.org/packages/release/bioc/html/methylMnM.html

Predict cumulative population doublings 
using DNA methylation of 6 CpG sites

Koch and Wagner, 2013 Figure 6 and Table S7

Other

IncuCyte ZOOM System Essen Biosciences N/A

Data visualization in WashU Human 
Epigenome Browser

This paper http://epigenomegateway.wustl.edu/browser/?genome=hg19&datahub=http://wangftp.wustl.edu/~hlee/EpiX/EpiX_hg19.json
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