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Abstract
Mice are one of the most commonly used laboratory animals, with an extensive array of dis-

ease models in existence, including for many neuromuscular diseases. The hindlimb is of

particular interest due to several close muscle analogues/homologues to humans and other

species. A detailed anatomical study describing the adult morphology is lacking, however.

This study describes in detail the musculoskeletal geometry and skeletal muscle architec-

ture of the mouse hindlimb and pelvis, determining the extent to which the muscles are

adapted for their function, as inferred from their architecture. Using I2KI enhanced microCT

scanning and digital segmentation, it was possible to identify 39 distinct muscles of the

hindlimb and pelvis belonging to nine functional groups. The architecture of each of these

muscles was determined through microdissections, revealing strong architectural speciali-

sations between the functional groups. The hip extensors and hip adductors showed signifi-

cantly stronger adaptations towards high contraction velocities and joint control relative to

the distal functional groups, which exhibited larger physiological cross sectional areas and

longer tendons, adaptations for high force output and elastic energy savings. These results

suggest that a proximo-distal gradient in muscle architecture exists in the mouse hindlimb.

Such a gradient has been purported to function in aiding locomotor stability and efficiency.

The data presented here will be especially valuable to any research with a focus on the

architecture or gross anatomy of the mouse hindlimb and pelvis musculature, but also of

use to anyone interested in the functional significance of muscle design in relation to qua-

drupedal locomotion.
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Introduction
Despite the widespread use of mice (Mus musculus) in studies investigating pre-clinical drug
treatments and/or locomotor behaviour [1–5], the soft tissue anatomy of their musculoskeletal
system has yet to be fully described. The mouse hindlimb, specifically, is a common area of
interest for several reasons. First, the muscles are known to show obvious histopathology in
models of various neuromuscular diseases [6–8], and as such are good subjects in which to
study treatment efficacy. Second, many of the muscles are close analogues to those of the
human lower limb, so this work could provide valuable information and insight into the con-
trol of the musculoskeletal system in humans. Finally, the hindlimbs of mice are reasonably
close to the inferred ancestral morphology (and body size) of placental or other mammals, and
thus might serve as useful homologues/analogues for the evolution of mammalian locomotion
[9]. Therefore, improving knowledge of the internal structure of these hindlimb muscles, as
well as their functional roles in movement, will support both basic science and medicine. Previ-
ous detailed studies into the skeletal muscle anatomy of the mouse hindlimb have generally
focused more on the embryology and development of the muscles [10] or comparing the rela-
tive effects of architecture and fibre types on determining contractile properties [11], rather
than their geometry or functional specialisations. The architecture of the mouse forelimb mus-
cles was described recently by Mathewson et al. [12], who compared the force-generating prop-
erties of the mouse muscles to homologues in the human arm. The musculoskeletal geometry
and functional specialisations of these muscles were not investigated, however. As yet, there
has not been a comprehensive treatment of the hindlimb anatomy of adult mice, complete with
muscle architecture data, musculoskeletal geometry and assessments of the functional speciali-
sations in the limb.

Skeletal muscle architecture refers to the arrangement of fibres within a muscle relative to
its force-generating axis [13], and is known to have a major impact on force-generating proper-
ties, and by extension, function [11, 12, 14]. Important architectural variables include fibre
length (Lf), physiological cross-sectional area (PCSA) and fibre pennation angle (θ). Fibre
length is a representation of the sum of in-series sarcomeres within a fibre, and has been shown
to be directly proportional to muscle excursion (i.e. the distance a muscle shortens when con-
tracted) and velocity of contraction [15]. PCSA represents the sum of all the fibres’ cross-
sectional areas within a muscle, and is proportional to maximum force output [16]. Fibre pen-
nation refers to the angle between a muscle’s fibres and its internal tendon or main line of
action. A pennate fibre arrangement increases the number of muscle fibres which attach to this
internal tendon for a given cross-sectional area, functioning to increase the number of fibres
within a muscle, and therefore its PCSA. However, any increase in force this may provide is
negated by the fact that these fibres are orientated at an angle to the muscle’s line of action,
which means that muscles with these fibre arrangements produce less force relative to a muscle
with no fibre pennation but the same mass and fibre length. Therefore, despite its perception
as an important architectural characteristic of a muscle, it is unlikely that pennation angle itself
has much effect on absolute muscle force production. It is possible, however, than fibre penna-
tion allows muscles to uniquely distribute their mass relative to parallel fibred muscles, with
their muscle bellies located more proximally, which taper distally to connect to external ten-
dons [13, 17].

Several studies have noted that within certain functional groups, muscles have evolved to
become specifically suited to their functions through their architectural design. For example,
studies in cats [18], guinea pigs [16] and rabbits [19] have shown that the hamstring muscles, a
bi-articular group of muscles which act around both the hip and the knee, have significantly
longer absolute and relative fibre lengths and smaller PCSA values compared to the quadriceps,
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a powerful muscle group which performs an antagonistic function at the knee joint. These find-
ings illustrate how different functional designs can exist within two muscle groups that act
around the same joint. These differing functional adaptations, along with neural activity of sen-
sory and motor neurons, allow motor control to be finely tuned during locomotion. For exam-
ple, some muscles, such as the gastrocnemius group (ankle extensors), provide forceful, often
quasi-isometric contractions while storing elastic energy in compliant tendons [20, 21],
whereas others, such as the hamstrings (hip extensors and knee flexors), function to produce
fast contractions and joint control [22]. The extent to which these specialisations exist within
the functional groups of the mouse hindlimb (here including the pelvis) has yet to be eluci-
dated. With this knowledge, testable hypotheses could be made for muscle function, and in the
long term provide a strong link between detailed musculoskeletal structure and behaviour.

However, a muscle’s function is not only governed by the arrangement of its fibres. Musculo-
skeletal geometry, which refers to a muscle’s attachment points onto the skeleton and its respec-
tive path of action, also greatly affects its force-generating potential. Geometry affects muscular
moment arms, which determine the effectiveness in which muscles generate force and produce
joint rotations. Therefore when considering the functional anatomy of a musculoskeletal system,
it is important to determine sites of muscle attachment and the directions in which these mus-
cles act to the greatest degree of accuracy possible. We have recently made such representations
in a three-dimensional (3D) musculoskeletal model of the mouse hindlimb and pelvis [17].

Due to the small size of the mouse hindlimb and the fragility of its muscles, simple manual
dissection was found inadequate for determining attachment points. Therefore, we applied the
recently developed technique of contrast-enhanced microCT scanning to provide a non-
destructive alternative for discerning delicate soft tissue anatomy. This potentially reduces the
risk of damaging important structures and allows specimens to be analysed in a digital context
[23, 24]. Standard microCT scanning is a long established technique, however due to the low x-
ray attenuation of soft tissue structures, discerning the internal organisation of skeletal muscle
or internal organs is often not possible. Staining soft tissue samples in an aqueous solution of
iodine potassium iodide (I2KI) prior to scanning eliminates these drawbacks [23–31]. This
technique has since been used to visualise the skull musculature of rodents [26, 27], the Com-
mon Buzzard [30] and the American Alligator (Alligator mississippiensis) [29], as well as the
penises of bats [25, 31] and the syringeal muscles of birds [32], among other applications. It
produces images analogous to those from magnetic resonance imaging (MRI).

I2KI enhanced microCT scanning was used here to allow the bones and musculature of the
mouse hindlimb to be clearly observed, subsequently digitally segmented and finally assembled
into an interactive 3D model. With this model, it was possible for the musculoskeletal geometry
of the mouse hindlimb and pelvis to be discerned and viewed non-destructively in a digital
framework.

Our aim in this paper was to provide a detailed anatomical quantification of the musculo-
skeletal geometry and muscle architecture of the hindlimb and pelvis in mice. First, contrast-
enhanced microCT scanning was used to identify muscles of the hindlimb and elucidate their
geometry. Once identified, the internal architecture of these muscles was determined, and sta-
tistical analyses were used to investigate the extent to which the functional groups of the mouse
hindlimb are uniquely specialised for one of their primary functional roles, locomotion.

Materials and Methods

Musculoskeletal Geometry
MicroCT scanning. In preparation for I2KI enhanced microCT scanning, one C57BL/6

mouse (female, body mass 24.9g, age 117 days) was euthanized by cervical dislocation, and its
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right hindlimb was removed, skinned and immediately frozen. The limb was then thawed and
placed in 10% neutral-buffered formalin (NBF) (HT501128-4L, Sigma) for 24hrs at room tem-
perature to fix the soft tissue, and subsequently placed in 1x phosphate buffered saline (PBS) to
remove residual fixative. The specimen was then immersed in an aqueous solution of 15%
iodine-potassium iodide (I2KI, Lugols solution, Sigma, L6146) for eight days to enhance soft
tissue contrast, and then placed in 70% ethanol solution until microCT scanning. Scanning was
carried out using a SkyScan 1172 system (Bruker microCT, Belgium) at the following settings:
12.96μm resolution, 70kV, 141μA, Al 0.5mm filter. The images were reconstructed using NRe-
con software (Bruker microCT, Belgium), whereas images of the internal structures of the hin-
dlimb were captured using CTvox software (Bruker microCT, Belgium) (Fig 1).

Segmentation. The muscles and bones of the mouse hindlimb were subsequently digitally
segmented and rendered into discrete 3D meshes in Mimics software (Materialise Inc., Leuven,
Belgium) using the reconstructed microCT images. These meshes were added together to cre-
ate a 3D representation of the mouse hindlimb (Fig 2), which can be viewed as a 3D PDF (S1
Fig).

Muscle architecture
Muscle collection. In order to gather architecture data for the muscles identified

through digital segmentation, four adult C57BL/6 mice (female, body mass 23.45±2.73g, age
107.8±34.86 days; means ± S.D.) were euthanized by cervical dislocation, and both hindlimbs
were removed at the pubic symphysis and skinned. The eight limbs were then placed in 10%
NBF for 24 hours at room temperature to fix the soft tissue with the hip, knee, and ankle
joints held at 90 degrees to maximise the potential of achieving optimal muscle fibre lengths
throughout fixation. The limbs were then washed in 1x PBS to remove residual fixative, and
stored in 1x PBS until dissection. Each muscle previously identified with digital segmentation
was carefully dissected under high magnification to maximise the potential of removing
the whole muscle at origin and insertion, and individually stored in 1x PBS until further
measurement.

Measuring architecture. Six architectural variables were measured for each musculoten-
don unit (MTU): muscle (belly) mass (Mm, mg), tendon mass (Mt, mg), muscle (belly) length
(Lm, mm), tendon length (Lt, mm), optimal fibre length (Lf, mm) and fibre pennation angle
(θ; °).

To determine muscle mass, each muscle was removed from 1x PBS and gently blotted dry,
then placed on a fine electronic balance accurate to 0.01mg (Salter). Tendon mass (if applica-
ble) was also determined with an identical technique. The measurement of both these variables
was repeated three times for each muscle, and a mean value as well as standard deviations cal-
culated. Muscle (belly) length was defined as the distance from the origin of the most proximal
muscle fibres to the insertion of the most distal fibres. MTU length was defined as the distance
from proximal tendon or muscle fibre origin to the insertion of the tendon or most distal fibres,
and the tendon length of tendinous muscles was that MTU length minus the muscle (belly)
length. Pennation angle was measured as the angle of muscle fibres relative to the internal ten-
don or aponeurosis. Muscle and tendon lengths as well as pennation angles for each individual
MTU were measured with ImageJ software (U.S. National Institutes of Health, Bethesda, MD,
USA), accurate to 0.01mm and 0.01° respectively. The length measurements were repeated
three times for each muscle, with mean values as well as standard deviations calculated. Penna-
tion angles were measured at five different areas of each muscle, with the mean of these values
assumed to represent the average pennation angle of the muscle fibres. The standard deviations
of these values were also calculated.
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To determine muscle fibre length, muscles were placed in 2M sulphuric acid (H2SO4) solu-
tion (10558620, Fisher Scientific) for 24hrs to digest the surrounding connective tissue to allow
for the extraction of fibre bundles or fascicles, consisting of ~5–10 fibres, of which five were
removed for each muscle. Despite the possibility that some fibres may not extend the entire

Fig 1. Reconstructed images of a mouse hindlimb following I2KI enhancedmicroCT scanning. A, medial view; B, mid-sagittal section of the whole
limb; C, mid-sagittal section of distal leg. For muscle abbreviations, see Tables 1 and 2.

doi:10.1371/journal.pone.0147669.g001
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length of these fascicles, and may instead be connected in series, it has been shown that fibres
in this arrangement may activate simultaneously to act like single fibres [33]. It is therefore rea-
sonable to assume that fascicles may function like single muscle fibres of equivalent length.
These fibre bundles were mounted on glass slides and photographed under a microscope, and
their lengths measured using ImageJ software, accurate to 0.01mm. This was repeated three
times for each fibre of each muscle, and a mean value as well as standard deviations calculated.
From these measurements, it was possible to calculate fibre length vs. muscle (belly) length
ratio (Lf:Lm) for comparing architectural designs between muscles of different absolute lengths.

These variables were used to calculate PCSA (mm2) for each muscle using the following
equation as described by Sacks and Roy [18]:

PCSA ¼ ðMm
� cosyÞ=ðLf

� rÞ;

where Mm is muscle (belly) mass (g), Lf is muscle fibre length (mm), θ is muscle fibre pennation
angle and ρ is the density of mammalian skeletal muscle (0.001056gmm-3) [34] (see [35] for a
discussion on the validity of this value, which varies minimally in species measured to date).
From these data, it was possible to calculate two architectural indices, PCSA:Mm and Lf:PCSA,
which have been used previously to compare muscles in terms of their designs for particular

Fig 2. Three- dimensional representation of the mouse hindlimb, created through digital segmentation. A, medial view; B, lateral view. For muscle
abbreviation, see Tables 1 and 2. This model can be viewed as an interactive 3D PDF (S1 Fig).

doi:10.1371/journal.pone.0147669.g002
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functions [36]. High PCSA:Mm values suggest a muscle is adapted for high force production,
while a muscle with a high Lf:PCSA value suggests a design for high shortening velocity or
range of motion.

The methods employed here follow standard conventions established in other musculoten-
dinous architecture studies of rodent limbs [11, 12, 14, 16].

Statistical analysis. To elucidate the extent of any architectural specialisations between
muscle functional groups of the mouse hindlimb, a one-way analysis of variance (ANOVA)
was performed. Post hoc pairwise comparisons (Tukey’s multiple comparisons) were subse-
quently carried out on variables which showed significant differences in the initial one-way
ANOVA. The variables tested were: muscle mass (Mm), muscle length (Lm), optimal fibre
length (Lf), fibre length muscle length ratio (Lf:Lm), pennation angle and PCSA, as well as the
architectural indices PCSA:Mm and Lf:PCSA. The values of these variables were averaged
between paired hindlimbs, giving a total of n = 4 for the statistical analysis. The ANOVA was
carried out using statistics software SPSS (IBM, Armonk, NY), with the threshold of statistical
significance defined as P<0.05.

Results

Musculoskeletal Geometry
Reconstructed microCT images captured are shown in Fig 1, where it can be seen that the con-
trast of the hindlimb soft tissue was sufficient to allow individual muscles to be discerned. Indi-
vidual muscles were digitally segmented into discrete elements, which were used to construct a
3D representation of the mouse hindlimb (Fig 2). From the microCT images and the 3D
model, a total of 39 muscles were observed and classed into nine functional groups (Tables 1
and 2). This grouping of muscles was based on a moment arm analysis carried out on a muscu-
loskeletal model of the mouse hindlimb and pelvis [21], where a muscle’s most prominent
function was assumed to be that which had the greatest moment arm value. Muscles were
named based on those identified in previous studies of mouse hindlimb anatomy [10, 11], simi-
lar quadrupeds [14] or analogous muscles in the human leg [36–39].

Hip rotators consisted of M. gluteus maximus (GM), M. obturator externus (OE), M. obtu-
rator internus (OI), M. gemellus (GEM), M. quadratus femoris (QF) and M. tensor fascia latae
(TFL). Previous studies of rodent hindlimb muscle architecture [14] have found multiple dis-
tinct muscles present within the gluteals group, however it was not possible here to accurately
identify these. GM therefore refers to the entire group of gluteal muscles here. The TFL was
continuous with the iliotibial tract, and was seen to contain very few muscle fibres. Therefore it
was treated here as purely tendinous and only Mt and Lt were calculated. Hip adductors
included M. adductor magnus (AM), M. adductor longus (AL), M. adductor brevis (AB) and
M. gracilis (posterior, GP; and anterior, GA). Classed as hip flexors were M. psoas major
(PMA), M. psoas minor (PMI), M. iliacus (ILI) and M. pectineus (PECT). Hip extensors
included M. caudofemoralis (CF), M. semitendinosus (ST), M. semimembranosus (SM) and
M. biceps femoris (anterior, BFA; posterior, BFP). The only muscle classed solely as a knee
flexor was M. popliteus (POP). Knee extensors consisted of M. rectus femoris (RF), M. vastus
medialis (VM), M.vastus lateralis (VL) and M. vastus intermedius (VI). Ankle dorsiflexors
included M. tibialis anterior (TA), M. extensor digitorum longus (EDL) and M. extensor hallu-
cis longus (EHL). Classed as ankle plantarflexors were M. gastrocnemius (medial, MG; lateral,
LG), M. soleus (SOL), M. plantaris (PLANT), M. flexor digitorum longus (FDL) and M. tibialis
posterior (TP). Finally, M. peroneus longus (PL), M. peroneus brevis (PB), M. peroneus tertius
(PT), M. peroneus digiti quarti (PDQA) and M. peroneus digiti quinti (PDQI) were grouped
together as ankle everters. It is recognised that many muscles are multi-articular (e.g. ST, SM,
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GA, GP etc.), so have prominent actions at two or more joints. In these cases, the muscles were
grouped based on the most proximal joint on which they act. Exceptions to this included RF,
which crossed the hip as well as the knee joint, and was classed as a knee extensor along with
the other muscles of the quadriceps group (VM, VL and VI). The MG, LG and PLANT are also
exceptions to this rule, as they were classed as ankle plantarflexors along with the other muscle
of the ‘triceps surae’ group, SOL, despite crossing both the knee and ankle joints.

Muscle architecture
The 39 muscles of the mouse hindlimb and pelvis identified from digital segmentation (see
Tables 1 and 2) were dissected in order to determine their architectural properties. The average
values of the variables measured from the eight hindlimbs of four mice are shown in Tables 3
and 4.

General features. The data showed that GM had the greatest Mm (and Mm+Mt) of the
mouse hindlimb (137.60±20.17mg; mean ± SD), while FDL had the greatest Mt (6.13±0.83mg).
ST had the longest Lm (17.74±1.38mm), PDQI had the longest Lt (15.69±3.22mm) and FDL
had the longest Lm+Lt (28.28±2.33mm). CF had the longest Lf (11.15±1.44mm), while OI had

Table 1. Attachment points of muscles within four proximal functional groups.

Muscle Functional
Group

Abbreviation Origin Insertion

Gluteus maximus Hip rotators GM Lateral aspect of iliac crest Lateral aspect of proximal femur

Obturator externus Hip rotators OE Ventral aspect of caudal pubic ramus Caudal aspect of greater trochanter

Obturator internus Hip rotators OI Pubic tubercle Medial aspect of greater trochanter

Gemellus Hip rotators GEM Ischial spine Medial aspect of greater trochanter
(superior to obturator internus)

Quadratus femoris Hip rotators QF Pubic tubercle (inferior to obturator internus) Lateral aspect of mid-femur

Tensor fascia latae Hip rotators TFL Cranial-medial aspect of iliac crest Superior aspect of head of the fibula as the
iliotibial tract

Adductor magnus Hip adductors AM Cranial aspect of caudal pubic ramus Caudal aspect of distal third of femur

Adductor longus Hip adductors AL Cranial-medial aspect of cranial pubic ramus Medial aspect of medial femoral condyle

Adductor brevis Hip adductors AB Cranial aspect of cranial pubic ramus Medial aspect of distal femur

Gracilis (posterior) Hip adductors GP Body and caudal ramus of pubis Medial aspect of proximal tibia

Gracilis (anterior) Hip adductors GA Cranial aspect of body of pubis (caudal to
adductor longus)

Medial aspect of proximal tibia

Psoas major Hip flexors PMA Bodies of lower vertebrae Lesser trochanter of the femur

Psoas minor Hip flexors PMI Bodies of lower vertebrae, caudal to psoas
major

Lesser trochanter of the femur

Iliacus Hip flexors ILI Ventral aspect of iliac crest Lesser trochanter of the femur

Pectineus Hip flexors PECT Cranial aspect of the cranial pubic ramus Medial aspect of the proximal femur

Caudofemoralis Hip extensors CA Cranial facet of ischial tuberosity Caudal-medial aspect of medial femoral
condyle

Semimembranosus Hip extensors SM Mid facet of ischial tuberosity Medial aspect of proximal tibia (proximal to
gracilis)

Semitendinosus Hip extensors ST Caudal facet of ischial tuberosity Medial aspect of proximal tibia (distal to
gracilis)

Biceps femoris
(anterior)

Hip extensors BFA Cranial facet of ischial tuberosity (superficial
to caudofemoralis)

Caudal-medial aspect of lateral femoral
condyle

Biceps femoris
(posterior)

Hip extensors BFP Lower-mid facet of ischial tuberosity
(superficial to semitendinosus)

Proximolateral aspect of the head of fibula
and adjacent fascia

doi:10.1371/journal.pone.0147669.t001
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the greatest Lf:Lm ratio (0.93±0.04). GM had the highest pennation angle (20.42±3.72°); how-
ever, the other hip rotators, as well as all the hip adductors, hip extensors and knee flexors had
little or no noticeable fibre pennation. RF was calculated as having the greatest PCSA (15.26
±3.34mm2), owing to its short fibres and large mass. In terms of the architectural indices calcu-
lated, it was found that GEM had the highest PCSA:Mm value (0.51±0.10), while EHL had the
greatest Ll:PCSA value (13.26±8.11).

When the mean value for each variable was calculated within the functional groups (Fig 3),
it was found that the hip extensors had the greatest muscle belly mass (55.07±7.49mg), length
(15.59±0.44mm) and absolute fibre length (10.90±0.72mm). The hip rotators on average had
the greatest Lf:Lm value (0.83±0.10). The ankle plantarflexors had the greatest pennation angle
(15.11±2.10°), while the knee extensors had on average the greatest PCSA (7.59±1.36mm2).
The knee flexors had the highest PCSA:Mm index (0.43±0.10), and the hip adductors had the
greatest Lf:PCSA index (6.20±1.80).

Statistical analyses. The extent of the functional specialisations of mouse hindlimb mus-
cles was tested using a one-way ANOVA with post hoc pairwise comparisons (Tukey’s multiple

Table 2. Attachment points of muscles within two proximal and three distal functional groups.

Muscle Functional Group Abbreviation Origin Insertion

Popliteus Knee flexors POP Caudal aspect of lateral femoral condyle Caudal aspect of medial tibial
condyle

Rectus femoris Knee extensors RF Cranial inferior iliac spine of ilium Base (proximal surface) of patella

Vastus medialis Knee extensors VM Medial aspect of proximal part of femur Base (proximal surface) of patella

Vastus lateralis Knee extensors VL Lateral aspect of proximal part of femur Base (proximal surface) of patella

Vastus intermedius Knee extensors VI Cranial aspect of proximal part of femur Base (proximal surface) of patella

Patellar tendon Knee extensors PAT Apex (distal surface) of patella Tibial tuberosity

Tibialis anterior Ankle
dorsiflexors

TA Cranial-lateral aspect of proximal part of tibia Medial cuneiform and base of 1st
metatarsal

Extensor digitorum
longus

Ankle
dorsiflexors

EDL Cranial aspect of proximal part of fibula Dorsal surface of distal phalanges
of digits 2–5

Extensor hallucis
longus

Ankle
dorsiflexors

EHL Cranial-lateral aspect of mid part of tibia and
adjacent membrane

Dorsal surface of distal phalanx of
digit 1

Medial gastrocnemius Ankle
plantarflexors

MG Medial supracondylar ridge of femur Caudal surface of calcaneus via
calcaneal tendon

Lateral
gastrocnemius

Ankle
plantarflexors

LG Lateral supracondylar ridge of femur Caudal surface of calcaneus via
calcaneal tendon

Soleus Ankle
plantarflexors

SOL Caudal aspect of upper- mid part of fibula Caudal surface of calcaneus via
calcaneal tendon

Plantaris Ankle
plantarflexors

PLANT Lateral supracondylar ridge of femur (medial to
lateral gastrocnemius)

Caudal surface of calcaneus via
calcaneal tendon

Flexor digitorum
longus

Ankle
plantarflexors

FDL Caudal aspect of medial tibial condyle Plantar surface of distal phalanges
digits 1–5

Tibialis posterior Ankle
plantarflexors

TP Caudal aspect of proximal part of tibia Tubercle of navicular

Peroneus longus Ankle everters PL Lateral aspect of head of fibula Plantar surface of medial
cuneiform

Peroneus brevis Ankle everters PB Caudal-lateral aspect of mid portion of fibula Base of 5th metatarsal

Peroneus tertius Ankle everters PT Caudal-lateral aspect of proximal portion of fibula Base of cuboid

Peroneus digiti quarti Ankle everters PDQA Caudal-lateral aspect of proximal portion of fibula
(deep to peroneus tertius)

Dorso-lateral aspect of distal
phalanx of digit 4

Peroneus digiti quinti Ankle everters PDQI Caudal-lateral aspect of upper-mid-portion of fibula Dorso-lateral aspect of distal
phalanx of digit 5

doi:10.1371/journal.pone.0147669.t002
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Table 3. Mean (±S.D) architectural properties of twenty hindlimbmuscles, plus functional groupmeans.

Muscle Mm (mg) Mm+Mt

(mg)
Lm

(mm)
Lm+Lt

(mm)
Lf (mm) Lf:Lm Pennation

angle (°)
PCSA
(mm2)

PCSA:Mm Lf:PCSA

Gluteus maximus 137.60
±20.17

137.60
±20.17

11.67
±2.50

11.67
±2.50

8.62
±1.20

0.76
±0.16

20.42±3.72 14.16
±5.32

0.10±0.02 0.61
±0.24

Obturator externus 0.75±0.35 0.75±0.35 3.83
±0.39

3.83
±0.39

2.85
±0.79

0.81
±0.09

0.00 0.25±0.12 0.33±0.50 11.44
±6.07

Obturator internus 6.25±0.35 6.25±0.35 4.73
±0.21

4.73
±0.21

4.26
±1.26

0.93
±0.04

0.00 1.39±0.08 0.22±0.01 3.07
±0.17

Gemellus 0.90±0.20 0.90±0.20 2.44
±0.82

2.44
±0.82

1.84
±0.64

0.75
±0.12

0.00 0.46±0.09 0.51±0.10 3.97
±1.20

Quadratus femoris 33.25
±1.48

33.25
±1.48

10.75
±1.13

10.75
±1.13

8.93
±2.96

0.90
±0.10

0.00 3.52±0.16 0.11±0.01 2.53
±0.11

Tensor fascia latae N/A 83.5±3.60 N/A 15.82
±1.53

N/A N/A N/A N/A N/A N/A

Hip rotators (mean) 35.75
±4.51

43.71
±4.36

6.68
±1.01

8.21
±1.10

5.30
±1.39

0.83
±0.10

4.08±0.74 3.96±1.15 0.27±0.31 4.32
±1.56

Adductor magnus 16.44
±5.46

16.44
±5.46

11.07
±0.91

11.07
±0.91

7.99
±0.98

0.72
±0.06

0.00 1.97±0.67 0.12±0.02 4.62
±1.99

Adductor longus 10.55
±4.28

10.55
±4.28

9.84
±1.88

9.84
±1.88

7.40
±1.03

0.77
±0.11

0.00 1.32±0.41 0.13±0.02 6.09
±2.01

Adductor brevis 5.30±1.53 5.30±1.53 8.13
±1.98

8.13
±1.98

6.49
±1.45

0.80
±0.06

0.00 0.81±0.27 0.15±0.03 9.51
±5.79

Gracilis (posterior) 11.09
±2.54

11.09
±2.55

10.85
±1.25

10.86
±1.25

7.50
±1.23

0.70
±0.13

0.00 1.43±0.38 0.13±0.02 5.65
±2.09

Gracilis (anterior) 12.50
±3.04

12.50
±3.04

12.60
±1.18

12.60
±1.18

7.65
±1.87

0.61
±0.13

0.00 1.59±0.36 0.13±0.03 5.11
±1.91

Hip adductors (mean) 11.18
±2.22

11.18
±2.22

10.50
±0.74

10.50
±0.74

7.41
±0.71

0.72
±0.04

0.00 1.42±0.23 0.13±0.01 6.20
±1.80

Psoas major 32.85
±14.75

33.84
±15.04

9.88
±1.71

9.88
±1.71

5.56
±1.03

0.57
±0.09

15.54±3.08 5.35±1.72 0.17±0.03 1.17
±0.52

Psoas minor 22.04
±6.78

22.04
±6.87

9.90
±1.38

9.90
±1.38

5.63
±1.30

0.58
±0.17

12.57±7.11 3.95±2.13 0.17±0.05 1.84
±1.09

Iliacus 16.56
±7.15

16.56
±7.15

9.59
±1.51

9.59
±1.51

6.99
±0.69

0.75
±0.09

0.00 2.29±1.06 0.14±0.01 4.64
±4.83

Pectineus 3.54±1.09 3.54±1.09 5.98
±1.27

5.98
±1.27

3.58
±0.84

0.61
±0.15

15.18±2.10 0.93±0.25 0.27±0.08 4.23
±1.95

Hip flexors (mean) 18.75
±5.50

18.99
±5.50

8.84
+1.05

8.84
±1.05

5.44
±0.66

0.63
±0.09

10.82±2.50 3.13±1.07 0.19±0.03 2.97
±1.45

Caudofemoralis 22.16
±4.98

22.15
±4.98

14.13
±0.72

14.13
±0.72

11.15
±1.44

0.79
±0.10

0.00 1.90±0.43 0.09±0.01 6.18
±1.63

Semimembranosus 78.61
±9.92

78.61
±9.92

15.72
±0.55

15.72
±0.55

10.92
±0.54

0.69
±0.04

0.00 6.81±0.76 0.09±0.00 1.62
±0.19

Semitendinosus 50.79
±7.21

50.79
±7.21

17.74
±1.38

17.74
±1.38

11.00
±1.61

0.63
±0.09

0.00 4.34±0.78 0.09±0.01 2.61
±0.63

Biceps femoris
(anterior)

35.34
±17.39

35.34
±17.39

13.69
±2.13

13.69
±2.13

10.34
±2.34

0.75
±0.12

0.00 3.18±1.33 0.09±0.03 3.82
±1.81

Biceps femoris
(posterior)

88.45
±19.62

88.45
±19.62

16.68
±0.85

16.68
±0.85

11.11
±1.33

0.67
±0.06

0.00 7.90±1.56 0.09±0.01 1.44
±0.26

Hip extensors (mean) 55.07
±7.49

55.07
±7.49

15.59
±0.44

15.59
±0.44

10.90
±0.72

0.71
±0.04

0.00 4.83±0.65 0.09±0.01 3.13
±0.71

Mm, muscle (belly) mass; Mt, tendon mass; Lm, muscle (belly) length; Lt, muscle tendon length; Lf, fibre length; Lf:Lm, fibre length vs. muscle length ratio;

PCSA, physiological cross-sectional area; PCSA:Mm, PCSA vs. muscle (belly) mass index; Lf:PCSA, fibre length vs. PCSA index. Tensor fascia latae was

continuous with the iliotibial tract and was mostly tendinous. Therefore no muscle properties were measured. For muscles with no tendons, Mm = Mm+Mt

and Lm = Lm+Lt.

doi:10.1371/journal.pone.0147669.t003
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Table 4. Mean (±S.D) architectural properties of nineteen hindlimbmuscles, plus functional groupmeans.

Muscle Mm (mg) Mm+Mt

(mg)
Lm (mm) Lm+Lt

(mm)
Lf (mm) Lf:Lm Pennation

angle (°)
PCSA
(mm2)

PCSA:Mm Lf:PCSA

Popliteus 2.22±1.14 2.22±1.14 4.99
±0.90

4.99±0.90 2.36
±0.61

0.49
±0.18

0.00 0.99±0.64 0.43±0.10 4.30
±4.62

Rectus femoris 78.28
±9.21

79.23
±9.21

12.30
±0.82

15.85
±1.27

4.78
±0.68

0.39
±0.08

15.89±3.36 15.26
±3.34

0.19±0.03 0.33
±0.12

Vastus medialis 25.26
±6.39

25.26
±6.39

12.03
±0.69

12.03
±0.69

5.75
+0.91

0.48
±0.08

16.15±3.35 4.06±1.09 0.16±0.02 1.55
±0.61

Vastus lateralis 67.80
±14.19

67.79
±14.20

13.06
±1.05

13.06
±1.05

6.51
±0.89

0.50
±0.07

15.63±4.25 9.58±2.16 0.14±0.02 0.71
±0.20

Vastus intermedius 7.83±5.80 7.83±5.80 10.21
±1.82

10.21
±1.82

4.79
±1.27

0.48
±0.15

10.92±1.34 1.44±0.86 0.21±0.07 4.27
±2.44

Knee extensors
(mean)

44.79
±6.34

45.03
±6.34

11.90
±0.69

12.79
±0.63

5.46
±0.39

0.46
±0.04

14.65±2.95 7.59±1.36 0.18±0.02 1.72
±0.62

Tibialis anterior 42.17
±6.33

44.68
±7.71

11.29
±0.93

18.09
±1.62

5.28
±0.96

0.47
±0.07

16.58±2.89 7.64±1.52 0.18±0.03 0.73
±0.28

Extensor digitorum
longus

8.23±1.93 8.96±2.11 11.08
±2.21

25.67
±2.37

5.04
±0.48

0.48
±0.13

12.39±2.12 1.52±0.38 0.18±0.02 3.53
±0.99

Extensor hallucis
longus

1.44±0.73 1.72±0.89 6.57
±0.74

15.51
±6.73

3.86
±1.07

0.58
±0.13

9.56±1.69 0.35±0.14 0.26±0.11 13.26
±8.11

Ankle dorsiflexors
(mean)

17.28
±2.71

18.45
±9.19

9.64
±0.88

19.76
±3.53

4.73
±0.66

0.51
±0.02

12.84±2.39 3.17±1.02 0.21±0.06 5.84
±2.49

Medial gastrocnemius 33.89
±4.22

34.15
±4.50

10.46
±0.51

15.44
±0.79

4.25
±0.60

0.41
±0.06

14.24±2.68 7.43±1.41 0.22±0.03 0.60
±0.17

Lateral gastrocnemius 72.0
±11.84

72.7
±11.85

11.76
±0.54

16.09
±0.88

4.49
±0.47

0.38
±0.04

17.28±2.73 14.57
±2.54

0.20±0.02 0.32
±0.08

Soleus 6.58±2.09 7.89±1.43 9.23
±0.90

14.98
±1.23

4.43
±0.85

0.48
±0.11

11.43±3.11 1.42±0.50 0.22±0.04 3.56
±1.51

Plantaris 13.35
±2.56

13.92
±2.64

11.46
±1.01

15.66
±1.33

3.41
±0.84

0.29
±0.06

17.10±2.08 3.67±0.91 0.28±0.07 1.00
±0.38

Flexor digitorum
longus

28.78
±3.66

34.91
±4.39

13.15
±0.62

28.28
±2.33

3.74
±0.91

0.28
±0.07

15.20±2.50 7.30±1.46 0.26±0.06 0.55
±0.22

Tibialis posterior 6.94±2.38 7.31±2.44 10.32
±1.39

16.43
±1.44

3.03
±0.65

0.30
±0.08

15.44±1.79 2.15±0.89 0.31±0.06 1.59
±0.61

Ankle plantarflexors
(mean)

26.93
±3.64

28.48
±4.39

11.06
±0.49

17.81
±1.10

3.89
±0.62

0.36
±0.06

15.11±2.10 6.09±1.05 0.25±0.04 1.27
±2.22

Peroneus longus 8.62±2.51 9.05±2.52 9.71
±0.73

17.65
±0.64

3.68
±0.70

0.38
±0.08

14.90±2.85 2.21±0.74 0.26±0.04 1.92
±0.95

Peroneus brevis 3.19±2.58 3.72±2.97 9.50
±1.10

15.66
±4.93

2.83
±0.25

0.30
±0.05

11.46±2.24 1.06±0.87 0.33±0.03 3.72
±1.87

Peroneus tertius 5.46±1.76 6.01±1.92 10.86
±1.24

17.58
±1.03

4.06
±1.05

0.37
±0.07

12.46±3.63 1.28±0.43 0.24±0.05 3.58
±1.97

Peroneus digiti quarti 1.55±0.54 1.91±0.56 8.39
±1.90

20.80
±3.35

2.70
±0.55

0.35
±0.13

12.42±3.73 0.54±0.16 0.35±0.09 5.50
±2.02

Peroneus digiti quinti 1.30±0.17 1.67±0.17 7.21
±0.88

22.90
±2.98

3.38
±0.68

0.49
±0.12

9.44±1.76 0.33±0.10 0.27±0.08 11.16
±4.69

Ankle everters (mean) 4.02±1.13 4.47±1.15 9.13
±0.73

18.92
±1.30

3.33
±0.60

0.38
±0.07

12.14±1.87 1.09±0.24 0.29±0.05 5.18
±1.50

Mm, muscle (belly) mass; Mt, tendon mass; Lm, muscle (belly) length; Lt, muscle tendon length; Lf, fibre length; Lf:Lm, fibre length vs. muscle length ratio;

PCSA, physiological cross-sectional area; PCSA:Mm, PCSA vs. muscle (belly) mass index; Lf:PCSA, fibre length vs. PCSA index.

doi:10.1371/journal.pone.0147669.t004
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comparisons), where 130 statistically significant differences (p<0.05) were found between
functional groups for the tested variables. The results show that all of the tested variables show
statistically significant differences between various functional groups (Tables 5, 6 and 7).

In terms of Mm, the hip and knee extensors were significantly more massive than the major-
ity of other functional groups. In addition, the hip rotators and ankle plantarflexors had signifi-
cantly greater mass than the ankle everters. The hip and knee extensors were both significantly
longer in terms of Lm than most other functional groups, while the knee flexors were signifi-
cantly shorter. The ankle plantarflexors were significantly longer than the ankle everters. Most
significant differences were found in terms of Lf, where the hip adductors and extensors were
significantly longer than all other groups. The hip flexors as well as the knee flexors and exten-
sors were significantly longer than the more distal groups. Ankle dorsiflexors were also signifi-
cantly longer than the ankle everters. The Lf:Lm ratios of the hip functional groups were
significantly longer than those of the muscles acting around the knee and ankle joints. The
ankle dorsiflexors were significantly greater in Lf:Lm than the plantarflexors. In terms of penna-
tion angle, the proximal hip muscles were significantly different to the more distal knee and
ankle muscles, owing to the more parallel fibre structure of the proximal muscles. The PCSA of
the knee extensors was significantly higher than most of the other functional groups. The ankle

Fig 3. Functional groupmeans of select muscle architectural properties. Lf:Lm, fibre length vs. muscle (belly) length ratio (A); PCSA, physiological
cross-sectional area (B); PCSA:Mm, PCSA vs. muscle mass index (C); Lf:PCSA, fibre length vs. PCSA index (D). Bars represent mean ± standard deviation.

doi:10.1371/journal.pone.0147669.g003
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plantarflexors’ PCSA values were also significantly greater than the ankle everters’. Significant
differences were also found between functional groups for the two PCSA-related indices calcu-
lated. The PCSA:Mm of the knee flexors was found to be significantly greater than all the other
groups. The hip extensors were significantly lower than most other groups, especially the distal
ankle muscles (which is also the case with the hip adductors). The hip flexors and knee exten-
sors were significantly lower than the distal groups in terms of PCSA:Mm, while the ankle dor-
siflexors were significantly lower than the ankle everters. The highly pennate knee extensors
and ankle plantarflexors had significantly lower Lf:PCSA than the hip adductors and ankle

Table 5. Statistically significant differences betweenmuscle functional groups in terms of architectural properties (Mm, Lm and Lf).

Variable Functional
group

Hip
rotators

Hip
adductors

Hip
flexors

Hip
extensors

Knee
flexors

Knee
extensors

Ankle
dorsiflexors

Ankle
plantarflexors

Ankle
everters

Hip rotators n/a ns ns ns ns ns ns ns 0.006

Hip adductors ns n/a ns <0.001 ns <0.001 ns ns ns

Hip flexors ns ns n/a <0.001 ns 0.029 ns ns ns

Hip extensors ns <0.001 <0.001 n/a 0.001 ns <0.001 0.002 <0.001

Mm Knee flexors ns ns ns 0.001 n/a 0.023 ns ns ns

Knee
extensors

ns <0.001 0.029 ns 0.023 n/a 0.040 ns <0.001

Ankle
dorsiflexors

ns ns ns <0.001 ns 0.040 n/a ns ns

Ankle
plantarflexors

ns ns ns 0.002 ns ns ns n/a 0.026

Ankle everters 0.006 ns ns <0.001 ns <0.001 ns 0.026 n/a

Hip rotators n/a ns ns <0.001 ns 0.002 ns 0.027 ns

Hip adductors ns n/a ns <0.001 <0.001 ns ns ns ns

Hip flexors ns ns n/a <0.001 0.021 0.001 ns 0.019 ns

Hip extensors <0.001 <0.001 <0.001 n/a <0.001 <0.001 <0.001 <0.001 <0.001

Lm Knee flexors ns <0.001 0.021 <0.001 n/a <0.001 0.003 <0.001 0.007

Knee
extensors

0.002 ns 0.001 <0.001 <0.001 n/a ns ns 0.002

Ankle
dorsiflexors

ns ns ns <0.001 0.003 ns n/a ns ns

Ankle
plantarflexors

0.027 ns 0.019 <0.001 <0.001 ns ns n/a 0.038

Ankle everters ns ns ns <0.001 0.007 0.002 ns 0.038 n/a

Hip rotators n/a <0.001 ns <0.001 ns ns ns ns ns

Hip adductors <0.001 n/a <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Hip flexors ns <0.001 n/a <0.001 <0.001 ns ns 0.001 <0.001

Hip extensors <0.001 <0.001 <0.001 n/a <0.001 <0.001 <0.001 <0.001 <0.001

Lf Knee flexors ns <0.001 <0.001 <0.001 n/a <0.001 0.021 ns ns

Knee
extensors

ns <0.001 ns <0.001 <0.001 n/a ns 0.002 <0.001

Ankle
dorsiflexors

ns <0.001 ns <0.001 0.021 ns n/a ns 0.046

Ankle
plantarflexors

ns <0.001 0.001 <0.001 ns 0.002 ns n/a ns

Ankle everters ns <0.001 <0.001 <0.001 ns <0.001 0.046 ns n/a

P values calculated using one-way ANOVA and Tukey’s multiple comparisons. Statistical significance = p<0.05. Mm, muscle (belly) mass; Lm, muscle

(belly) length; Lf, fibre length; ns, not significant.

doi:10.1371/journal.pone.0147669.t005
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dorsiflexors. The ankle plantarflexors’ Lf:PCSA values were also significantly lower than the
ankle everters’.

Discussion
The aim of this paper was to characterise the musculoskeletal geometry and architecture of hin-
dlimb and pelvis of mice, and determine the extent to which the functional groups of muscles
are architecturally specialised for their respective functions.

Table 6. Statistically significant differences betweenmuscle functional groups in terms of architectural properties (Lf:Lm, pennation angle and
PCSA).

Variable Functional
group

Hip
rotators

Hip
adductors

Hip
flexors

Hip
extensors

Knee
flexors

Knee
extensors

Ankle
dorsiflexors

Ankle
plantarflexors

Ankle
everters

Hip rotators n/a ns ns ns ns 0.002 0.047 <0.001 <0.001

Hip adductors ns n/a ns ns 0.013 <0.001 <0.001 <0.001 <0.001

Hip flexors ns ns n/a ns ns 0.002 ns <0.001 <0.001

Hip extensors ns ns ns n/a 0.025 <0.001 <0.001 <0.001 <0.001

Lf:Lm Knee flexors ns 0.013 ns 0.025 n/a ns ns ns ns

Knee
extensors

0.002 <0.001 0.002 <0.001 ns n/a ns ns ns

Ankle
dorsiflexors

0.047 <0.001 ns <0.001 ns ns n/a 0.008 ns

Ankle
plantarflexors

<0.001 <0.001 <0.001 <0.001 ns ns 0.008 n/a ns

Ankle everters <0.001 <0.001 <0.001 <0.001 ns ns ns ns n/a

Hip rotators n/a ns 0.041 ns ns <0.001 <0.001 <0.001 <0.001

Hip adductors ns n /a <0.001 ns ns <0.001 <0.001 <0.001 <0.001

Hip flexors 0.041 <0.001 n/a <0.001 0.001 ns ns 0.001 ns

Hip extensors ns ns <0.001 n/a ns <0.001 <0.001 <0.001 <0.001

Pennation
angle

Knee flexors ns ns 0.001 ns n/a <0.001 <0.001 <0.001 <0.001

Knee
extensors

<0.001 <0.001 ns <0.001 <0.001 n/a ns ns ns

Ankle
dorsiflexors

<0.001 <0.001 ns <0.001 <0.001 ns n/a ns ns

Ankle
plantarflexors

<0.001 <0.001 0.001 <0.001 <0.001 ns ns n/a ns

Ankle everters <0.001 <0.001 ns <0.001 <0.001 ns ns ns n/a

Hip rotators n/a ns ns ns ns ns ns ns ns

Hip adductors ns n/a ns 0.043 ns <0.001 ns <0.001 ns

Hip flexors ns ns n/a ns ns 0.006 ns ns ns

Hip extensors ns 0.043 ns n/a ns ns ns ns 0.018

PCSA Knee flexors ns ns ns ns n/a 0.016 ns ns ns

Knee
extensors

ns <0.001 0.006 ns 0.016 n/a 0.021 ns <0.001

Ankle
dorsiflexors

ns ns ns ns ns 0.021 n/a ns ns

Ankle
plantarflexors

ns <0.001 ns ns ns ns ns n/a <0.001

Ankle everters ns ns ns 0.018 ns <0.001 ns <0.001 n/a

P values calculated using one-way ANOVA and Tukey’s multiple comparisons. Statistical significance = p<0.05. Lf:Lm, fibre length vs. muscle (belly)

length index; PCSA, physiological cross-sectional area; ns, not significant.

doi:10.1371/journal.pone.0147669.t006
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Musculoskeletal geometry
Contrast-enhanced microCT scanning was used here as a less destructive method of determin-
ing the musculoskeletal geometry of the mouse hindlimb compared to dissections, due mostly
to the small size and fragility of the muscles under investigation. It was found that soaking a
detached mouse hindlimb specimen in an aqueous I2KI solution prior to microCT scanning
produced remarkable soft tissue contrast, allowing individual muscles and in some cases fibre
pennation angles to be observed, without the need to remove or damage other important struc-
tures. This replicates the findings of prior studies [23–31] which used similar techniques to
investigate soft tissue anatomy. A total of 39 muscles of the hindlimb and pelvis were identified.
Using the reconstructed microCT images, digital segmentation was carried out to create 3D
meshes of each bone and musculotendon unit, allowing attachment sites and paths of action
for all these muscles to be observed in an interactive environment. A fully interactive model
can be viewed as a 3D PDF (S1 Fig). Simple guidance on manipulating this 3D model is given
in the S1 Appendix.

Musculotendon architecture
Six architectural variables (i.e. the properties of muscles which determine force-generating and
length-change potential) of the 39 muscles of the mouse hindlimb and pelvis previously

Table 7. Statistically significant differences betweenmuscle functional groups in terms of architectural properties (PCSA:Mm and Lf:PCSA).

Variable Functional
group

Hip
rotators

Hip
adductors

Hip
flexors

Hip
extensors

Knee
flexors

Knee
extensors

Ankle
dorsiflexors

Ankle
plantarflexors

Ankle
everters

Hip rotators n/a ns ns 0.001 <0.001 ns ns ns ns

Hip adductors ns n/a ns ns <0.001 ns 0.014 <0.001 <0.001

Hip flexors ns ns n/a <0.001 <0.001 ns ns ns <0.001

Hip extensors 0.001 ns <0.001 n/a <0.001 0.001 <0.001 <0.001 <0.001

PCSA:
Mm

Knee flexors <0.001 <0.001 <0.001 <0.001 n/a <0.001 <0.001 <0.001 <0.001

Knee
extensors

ns ns ns 0.001 <0.001 n/a ns 0.010 <0.001

Ankle
dorsiflexors

ns 0.014 ns <0.001 <0.001 ns n/a ns 0.014

Ankle
plantarflexors

ns <0.001 ns <0.001 <0.001 0.010 ns n/a ns

Ankle everters ns <0.001 <0.001 <0.001 <0.001 <0.001 0.014 ns n/a

Hip rotators n/a ns ns ns ns ns ns ns ns

Hip adductors ns n/a ns ns ns 0.002 ns <0.001 ns

Hip flexors ns ns n/a ns ns ns ns ns ns

Hip extensors ns ns ns n/a ns ns ns ns ns

Lf:PCSA Knee flexors ns ns ns ns n/a ns ns ns ns

Knee
extensors

ns 0.002 ns ns ns n/a 0.034 ns ns

Ankle
dorsiflexors

ns ns ns ns ns 0.034 n/a 0.004 ns

Ankle
plantarflexors

ns <0.001 ns ns ns ns 0.004 n/a 0.005

Ankle everters ns ns ns ns ns ns ns 0.005 n/a

P values calculated using one-way ANOVA and Tukey’s multiple comparisons. Statistical significance = p<0.05. PCSA:Mm, physiological cross-sectional

area vs. muscle (belly) mass index; Lf:PCSA, fibre length vs. physiological cross-sectional area index; ns, not significant.

doi:10.1371/journal.pone.0147669.t007
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identified were determined through microdissections under high magnification, and physio-
logical cross-section areas (PCSA) were calculated. The data and the results of the one-way
ANOVA indicate that the functional groups exhibited very strong functional specialisation in
terms of their architecture, which would allow each group to contribute differently to motor
output during both locomotor and non-locomotor movements.

General features. The functional group averages show that the hip extensors had the
greatest Mm, Lm and Lf, and lowest pennation angle, of all of the functional groups. They had
on average significantly greater Lf, Lf:Lm and lower pennation angles than the distal muscles of
the hindlimb, as well as the knee extensors. All of the other proximal muscle groups which act
upon the hip (rotators, adductors and flexors) also displayed significantly higher Lf:Lm values
than the more distal groups. Hip adductors also showed the greatest Lf:PCSA index [36], which
was significantly greater than the more powerful groups such as the knee flexors and ankle
plantarflexors. It is thought that architectural adaptations such as these, shown strongly here in
the hip extensors and hip adductors, adapt a muscle for high contraction velocities [13] or
range of motion. Given that contraction speed is a function of the number of in series sarco-
meres within a fibre, functionally this allows a muscle with long fibres to undergo the maxi-
mum possible excursion during contraction with the lowest possible loss of force, and also
permits the muscles to produce higher forces over a wider range of muscle lengths and shorten-
ing velocities than a similarly sized muscle with shorter fibres [13, 33].

The knee extensors, a group containing the quadriceps femoris muscles, on average had the
significantly greatest PCSA of any functional group, suggesting these are the muscles adapted
to produce the greatest absolute force. This capacity for high force-generation is also shared by
the hip extensors and ankle plantarflexors. The presumed function of these three muscle
groups in mouse locomotion is to overcome gravity and inertia during the swing phase, and
provide support and stability to the limb during the stance phase. The fibre architectural design
found in these muscles may allow them to provide high absolute forces around the respective
joints and limb segments in order to carry out these functions [13].

PCSA:Mm index, which is an indicator of a muscle’s relative ability to produce force [36],
was significantly greatest in the knee flexors, a group which here contained only M. popliteus
(POP), relative to the majority of other functional groups. This adaptation for high relative
force production is expected, as POP likely functions not only to assist in knee flexion but also
stabilise the knee joint, where it may contract eccentrically to maintain the flexed hip and knee
postures of the mouse during locomotion [40]. This was confirmed using a musculoskeletal
model of a mouse hindlimb and pelvis [17], where POP was seen to have a ‘zero-crossing’
moment arm with a negative slope around the knee joint, which is thought to reveal that the
muscle provides an intrinsic stabilisation to the joint [41].

Muscle classifications. As mentioned above, POP was the only muscle classed primarily
as a flexor of the knee, although it was recognised that there are several bi-articular muscles
which carry out functions at the knee joint, but were classified into other groups. Moment arm
analysis of the mouse hindlimb muscles using a musculoskeletal model [17] confirmed that the
bi-articular muscles of the ‘triceps surae’ group; M. gastrocnemius (medial and lateral) and M.
plantaris, also assist in knee flexion. Similarly, the bi-articular hip adductors M. gracilis anterior
and M. gracilis posterior, as well as the bi-articular hip extensors M. semimembranosus, M.
semitendinosus and M. biceps femoris posterior, all produce large flexion moment arms at the
knee, and could therefore also be classed as knee flexors. However these muscles were not
classed as knee flexors, as they provide larger moment arms at other joints (the hip and ankle)
[17]. Furthermore, bi-articular muscles are thought to carry out unique functions during
movements relative to closely associated mono-articular muscles [42–44], so may possess
unique architectural characteristics. Some justification may therefore exist for placing these
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muscles in their own functional group for future statistical analyses such as the one performed
here. Ultimately, however, although the muscles of the mouse hindlimb and pelvis could be
classified differently than done so here, given the number of redundant degrees of the freedom
and the inherent over-actuation of the vertebrate musculoskeletal system in general, issues
regarding muscle functional classifications are likely to arise in most instances when investigat-
ing anatomical specialisations between muscle functional groups, but in reality cannot be
avoided.

Proximo-distal gradient of architecture. Of the 130 statistically significant differences
that were found between the functional groups, 68 (52.30%) of these were between the proxi-
mal functional groups (hip rotators, hip adductors, hip extensors, knee extensors and knee flex-
ors) and the distal groups (ankle dorsiflexors, plantarflexors and everters). The data therefore
firmly indicate that a proximo-distal gradient of musculotendon architecture exists within the
mouse hindlimb and pelvis, a phenomenon also observed in the hindlimbs of cursorial quadru-
peds such as horses [45] racing greyhounds [46] and hares [47], non-cursorial tetrapods such
as crocodiles [48, 49] as well as flightless birds [50, 51].

In the hindlimb of mice, the proximal muscle groups such as the hip extensors, hip flexors
and knee extensors tended to exhibit greater Mm, Lf, Lf:Lm and PCSA than more distal groups
such as the ankle dorsiflexors and plantarflexors, which had greater pennation angles and
PCSA:Mm values. These are similar to other reported findings of tetrapod hindlimb anatomy,
although the distal reduction in mass and PCSA appear less pronounced in mice, something
that was also reported in the hare [47]. This is most likely due to the more flexed hindlimb pos-
tures of these animals, meaning that an increase in power from the ankle plantarflexors may be
needed during locomotion relative to more straight–limbed, cursorial quadrupeds, such horses
[45, 46].

The functional significance of this ‘limb tapering’ has been heavily studied, and is thought
to represent an adaptation for energetically efficient and stable locomotion over various ter-
rains [22, 45, 50, 52–58]. Proximal limb muscles, such as the hip extensors with their long, par-
allel fibres, function to provide mechanical power, fast contractions and precise control of joint
positions to overcome gravity and move the body’s centre of mass during locomotion. Muscles
with smaller mass, shorter fibres, higher pennation angles and long compliant tendons are gen-
erally located distally within terrestrial limbs. Tendons act as mechanical buffers, absorbing
energy from initial ground contact and subsequently using it to reduce the amount of work the
muscle needs to perform to move limb segments through elastic recoil [22, 52, 58, 59]. Further-
more, a reduction in mass distally within the limb is useful as it minimises the moment of iner-
tia acting on the limb during the swing phase of terrestrial locomotion [60].

These differences in intrinsic properties of hindlimb muscles are also thought to play a criti-
cal role in maintaining stability in response to sudden perturbations during fast locomotion,
creating a similar proximo-distal gradient in neuromuscular control within the hindlimb and
simplifying locomotor control. It is predicted that proximal muscles, with parallel fibres and
non-tendinous attachments, will be relatively insensitive to unexpected perturbations, such as
a change in terrain height, during locomotion. More distal muscles on the other hand, with
substantial in-series tendon elasticity, have been discovered to show relatively high sensitivity
to these perturbations, either increasing or decreasing their effects depending on the stage in
the stride cycle in which perturbations occur [22, 58].

Although a proximo-distal gradient of musculoskeletal architecture in hindlimb was ini-
tially thought to characterise large, cursorial tetrapods, its appearance in small, non-cursorial
animals such as the mouse is interesting. Mice are prey animals, and frequently utilise short
bursts of high speed running to escape potential predators. These movements presumably
require high work output from the proximal muscles to move the body quickly, and high
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power from the anti-gravity muscles groups to move the limb against gravity and inertia. Thus
evolutionary pressure to optimise the limb for rapid movement is expected, but this pressure
could be mitigated by an enhanced force/mass ratio that may come with smaller size. Evidence
of a similar proximo-distal gradient in mice suggests that these evolutionary pressures for fast
locomotion outweigh any gains in muscle force development capability relative to body/limb
mass that may have come with the small body size (and under the assumption of isometric
scaling) [61–64].

Conclusions
This paper described in detail the musculoskeletal geometry and architecture of the mouse hin-
dlimb and pelvis, and placed the architectural specialisations which exist between the func-
tional groups of muscles into a functional context. Strong architectural specialisations exist
between the functional groups, especially for variables which adapt a muscle for high contrac-
tion velocity, joint control and high mechanical work, which reflects their presumed functions
during locomotion. A detailed moment arm analysis of mouse hindlimb and pelvis muscula-
ture, based on a concurrently developed mouse hindlimb musculoskeletal model [17], supports
these assumed functions, and further establishes the functional significance of the muscle
architectural characteristics described here.

Our data confirm the presence of a proximo-distal gradient of architectural adaptation
within the mouse hindlimb, moving from muscles with long fibres and low pennation angles to
muscles showing highly pennate fibre arrangements and compliant, tendinous insertions as the
limb is traversed proximo-distally. This is thought to be an adaptation to improve locomotor
efficiency, motor coordination, and enhance resistance to external perturbations, and is com-
monly associated with larger, more cursorial terrestrial vertebrates [53, 58]. The appearance in
the small, non-cursorial mouse suggests that this adaptation for energy saving and resistance to
perturbations during locomotion extends far beyond larger, cursorial or bipedal organisms and
may, to a degree, characterize most extant tetrapods (e.g. [48–50]).

Supporting Information
S1 Appendix. Quick-start guide to using the 3D pdf of the mouse hindlimb and pelvis.
(PDF)

S1 Fig. Three Dimensional pdf of the mouse hindlimb and pelvis.
(PDF)
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