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Abstract

Background: Diamond-Blackfan anemia (DBA) is a lineage specific and congenital erythroblastopenia. The disease is
associated with mutations in genes encoding ribosomal proteins resulting in perturbed ribosomal subunit biosynthesis. The
RPS19 gene is mutated in approximately 25% of DBA patients and a variety of coding mutations have been described, all
presumably leading to haploinsufficiency. A subset of patients carries rare polymorphic sequence variants within the
59untranslated region (59UTR) of RPS19. The functional significance of these variants remains unclear.

Methodology/Principal Findings: We analyzed the distribution of transcriptional start sites (TSS) for RPS19 mRNAs in testis
and K562 cells. Twenty-nine novel RPS19 transcripts were identified with different 59UTR length. Quantification of expressed
w.t. 59UTR variants revealed that a short 59UTR correlates with high levels of RPS19. The total levels of RPS19 transcripts
showed a broad variation between tissues. We also expressed three polymorphic RPS19 59UTR variants identified in DBA
patients. The sequence variants include two insertions (c.-147_-146insGCCA and c.-147_-146insAGCC) and one deletion (c.-
144_-141delTTTC). The three 59UTR polymorphisms are associated with a 20–30% reduction in RPS19 protein levels when
compared to the wild-type (w.t.) 59UTR of corresponding length.

Conclusions: The RPS19 gene uses a broad range of TSS and a short 59UTR is associated with increased levels of RPS19.
Comparisons between tissues showed a broad variation in the total amount of RPS19 mRNA and in the distribution of TSS
used. Furthermore, our results indicate that rare polymorphic 59UTR variants reduce RPS19 protein levels with implications
for Diamond-Blackfan anemia.
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Introduction

Diamond-Blackfan anemia (DBA; OMIM #205900) is a rare

congenital bone marrow failure characterized by decreased

numbers or absence of erythroid precursor cells [1]. Approxi-

mately 50–60% of DBA patients carry a mutation in one of nine

ribosomal protein (RP) genes of which RPS19 mutations account

for 25% [2]. A series of .100 coding mutations in the RPS19 gene

have been identified ranging from deletions and insertions of

various sizes, single base substitutions resulting in both non-sense

and missense mutations and splice site mutations [3]. A large

proportion of mutations presumably result in functional haploin-

sufficiency for RPS19 by removing transcription from one allele

(deletions or insertions) or by nonsense mediated mRNA decay

(splice site, non-sense and missense mutations) [4]. A translated

RPS19 protein variant can also mediate haploinsufficiency due to

reduced stability, inappropriate localization to the nucleoli,

reduced affinity to interacting partners and failure to assemble

into the pre-ribosome (missense mutations) [5–7]. Haploinsuffi-

ciency for a ribosomal protein leads to perturbed ribosome subunit

synthesis [8–10] followed by increased cellular stress, cell cycle

arrest and apoptosis [11]. The precise mechanism by which RP

mutations mediate the erythroid specific phenotype in DBA is still

unclear. It has been hypothesized that erythropoiesis is particularly

sensitive to ribosomal protein insufficiency and cellular stress

because of a high proliferative and protein synthesis rate [12].

A few gene variants have been described in the non-coding

59UTR of the RPS19 gene, i.e. in the first exon upstream of the

ATG start codon [13–15]. These variants were initially identified

in a subset of DBA patients and later in healthy individuals but at a

low frequency [14,15]. In addition, targeted resequencing of the

entire RPS19 gene in DBA patients has revealed a number of non-

coding sequence variants and rare polymorphisms localized to

introns and flanking sequences [13,14,16,17]. One of the 59UTR
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variants (c.-147_-146insGCCA) has been associated with rRNA

processing defects but the RPS19 protein levels appeared

unchanged in erythroid cells from a patient with this variant

[14]. However, it is still unclear if this non-coding sequence variant

is transcribed and if it interferes with the translation of RPS19. In

addition, the distribution of TSS of w.t. RPS19 have not been

carefully analyzed.

The regulation of ribosomal protein expression is critical for

cellular adaptation to different requirements. It is well established

that the 59UTR of mRNAs is of importance for gene expression by

influencing mRNA stability, subcellular localization, accessibility

to the ribosomes and interaction with the translational machinery

[18,19]. Thus, the 59UTR mediates the adjustment of protein

levels to developmental stages, tissue types and growth rate [20].

Conversely, inappropriate expression of 59UTRs can contribute to

abnormal developmental phenotypes and disease [21–23]. Fur-

thermore, the 59UTR of mRNAs encoding ribosomal proteins

contains a 59TOP sequence which enables fast up- or down-

regulation of RP levels [24,25].

The RPS19 coding sequence and its 59UTR are highly

conserved [7,13]. However, the significance of the rare polymor-

phic 59UTR sequence identified in DBA patients is yet unknown.

We examined the transcription of 59UTR variants and we

hypothesized that they affect RPS19 protein synthesis rate as a

possible contributing mechanism in DBA. We show herein that

the expression of three structural RPS19 59UTR variants leads to a

reduced translation into RPS19. Furthermore, RPS19 uses a

broad range of TSS with effects on RPS19 translation and with

tissue variations.

Materials and Methods

RPS19 expression constructs with different 59UTR variants
RPS19 cDNA clones with three w.t. variants of the 59UTR

(figure 1) were amplified and cloned into the reporter vector

pAcGFP-N1 (Clontech) downstream of the CMV promoter. The

resulting constructs encode fusion proteins consisting of a full

length RPS19 linked to a fluorescent reporter at the C-terminus

(Figure 2A). Three DBA associated 59UTR variants (c.-147_-

146insGCCA, c.-147_-146insAGCC and c.-144_-141delTTTC)

were generated by site directed mutagenesis from the pAcGFP-

N1-382-S19-59UTR clone (INTERMEDIATE clone) with Quick

change II site directed mutagenesis kit (Stratagene) according to

manufacturers recommendations.

Cell culture and transfection
K562 [26], HeLa [27] and HEK293 [28] cells were cultured in

RPMI1640 medium supplemented with 10% fetal calf serum,

2 mM L-glutamine and 20 IU penicillin/streptomycin (all Invi-

trogen) at 37uC with 5% CO2 in a humidified environment. Cells

were transfected in 10 cm dishes with 5 mg of the respective vector

using Lipofectamine 2000 H following manufacturer’s protocols.

Transfected cells were checked for expression of GFP by

fluorescence microscopy and harvested using a cell scraper. Cells

were collected by centrifugation.

RNA isolation and quantitative RT/PCR
Total RNA was isolated from K562, HeLa and HEK293 cells

using TrizolH reagent (Invitrogen). Quality of RNA was checked

using the Agilent RNA 6000 nano kit and the Agilent 2100

bioanalyser according to manufacturer’s instructions. RNA

samples from a panel of different primary tissues were purchased

(Human total RNA master panel #636643; Clontech). cDNA was

synthesized with M-MULV reverse transcriptase (MBI Fermentas)

using random hexamer primers and 2 mg of total RNA following

manufacturer’s recommendations. Quantitative real-time PCR

was performed in triplicates using platinum SYBR green qPCR

supermix UDG (Invitrogen) according to the protocol supplied by

the manufacturer. Primer sequences and PCR conditions used to

quantify w.t. RPS19 mRNA with different 59UTRs are available

upon request.

59 Rapid Amplification of cDNA ends (59 RACE)
59RACE was performed with 1 mg of total RNA using the

GeneRacerH kit (Invitrogen) according to manufacturer’s recom-

mendation. Initially, the RNA was treated with DNase I to clean

the samples from any genomic DNA. First strand cDNA synthesis

was carried out with GeneRacer Oligo(dT) primer and Superscript

RT III RACE ready cDNA kit. For amplification of the cDNA

end we used the 59GeneRacer forward primer included in the kit

and RPS19 specific reverse primer. The PCR product was cloned

into a TOPO-TA vector (Invitrogen) and randomly picked

individual clones were sequenced.

Western blotting
HEK293T and K562 cells were lysed in RIPA buffer

supplemented with MG132 proteasome inhibitor (SIGMA),

phosphatase inhibitor cocktail 1 (SIGMA), 0.1 mM Sodium

vanadate (SIGMA) and protease inhibitor cocktail (SIGMA). Cell

lysates were separated on a 10% Bis-Tris SDS-PAGE (NuPage gel;

Invitrogen), and transferred to PVDF Immobilon-FL membranes

(Millipore). Membranes were hybridized with primary antibodies

against GFP (Clontech) and b-actin (Abcam). Proteins detected by

the antibodies were visualized using Alexa Fluor 680 (a-rabbit) and

IRD 800 labeled (a-mouse) secondary antibodies (Molecular

probes and LiCor Bioscience, respectively). Western blots were

analyzed using the OdysseyH infrared imaging system determining

integrated intensities, using b-actin as a normalization control as

described previously [29].

Results

Multiple transcript variants of the RPS19 gene
The RPS19 gene spans a genomic region of 11.5 Mb on

chromosome 19q and consists of 6 exons [13]. The first exon is

untranslated and the start codon is located in the immediate

beginning of exon 2. Ribosomal protein S19 exists in one single

form consisting of 145 amino acids. Six variants of the RPS19

transcript have been described with differences only in length of

the 59UTR from the use of alternate transcription initiation sites

[7,13,30,31]. This prompted us to search for additional RPS19

transcript variants and to analyse their effect on RPS19

expression. We performed cDNA 59RACE with RNA from

K562 cells and testis and we determined the transcript sizes and

their transcriptional start sites. We identified altogether 31

alternative RPS19 transcripts with 59UTRs ranging from 32 to

467 nucleotides. Twenty-nine transcript variants are yet unde-

scribed (figure 1A). The distribution of the RPS19 59UTR length

appeared to be different when comparing randomly picked clones

from K562 cells and testis, respectively (figure 1). Clones from

testis had a distribution towards longer 59UTRs with the longest

clone spanning 467 nucleotides, extending about 100 nucleotides

beyond the previously reported longest RPS19 transcript (Gene

bank #BC018616). Longer RPS19 59UTRs appear highly

structured as predicted by the RNA secondary structure prediction

program Mfold (data not shown).

We then analyzed the relative expression of three groups of

RPS19 transcripts with different 59UTRs on mRNA from a panel

59UTR Variants and Translation of RPS19
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of human tissues (Stratagene) as well as the cell lines K562 and

HeLa by quantitative real time PCR. Three specific primer pairs

were designed that generate amplicons from the RPS19 59UTR

corresponding to nucleotide positions 203 to +89 (amplicon A),

2350 to 2239 (amplicon B) and 2449 to 2354 (amplicon C),

respectively (figure 1B). Quantification of the RT-PCR products

revealed different patterns of 59UTRs when comparing different

tissues and cell lines (1C and D). Transcripts detected by the

shortest amplicon (amplicon A) are predominant in all tissues

investigated. The expression of longer 59UTRs defined by the

amplicons B and C constitute from ,1% to 17% of the total

amount of RPS19 mRNA (figure 1D). No strong correlation was

observed between the total amount of RPS19 mRNA and the

relative proportions of longer and short 59UTR.

Short RPS19 59UTRs show high translational activity
We made three constructs with RPS19 59UTRs of 35

nucleotides (SHORT; containing the 59TOP sequence), 382

nucleotides (INTERMEDIATE) and 467 nucleotides (LONG),

respectively. Each construct expresses a full-length RPS19. The

constructs were fused with Green fluorescent protein at the

carboxy-terminus (figure 2A) and analyzed when transiently

transfected into HEK293T and K562 cells. The SHORT

59UTR variant is translated 4–6 fold more efficient than the

variant with 59UTRs of 382 nt and .10 fold more efficient than

RPS19 with the 467 nt 59UTR (figure 2B–C). The results were

similar for both cell lines.

DBA associated 59UTR variants affect translational activity
We next investigated the effect on translation of three distinct

polymorphic sequence variants in the 59UTR of RPS19 found in a

subset of patients with DBA. We introduced two insertions (c.-

147_-146insGCCA, c.-147_-146insAGCC) and one deletion (c.-

144_-141delTTTC) into the INTERMEDIATE construct

(Figure 3A) followed by a transient transfection into K562 and

HEK293T cells. The three DBA associated 59UTR variants

reduced the RPS19 levels by approximately 20–30% when

compared to the w.t. INTERMEDIATE construct (figure 3B

and C). A marked reduction in expression (32%) was observed for

the TTTC deletion in both cell lines. The AGCC insertion showed

a 30% reduced expression in HEK293 cells and a 26% reduction

in K562 cells. The GCCA insertion was associated with a 20%

reduction in expression in both cell lines (figure 3B and C). The

RPS19 mRNA levels were similar when comparing cells

transfected with the rare variant constructs to cells transfected

with the w.t. construct.

Discussion

The 59-untranslated region (59UTR) of an mRNA is an

important regulator of translation by influencing e.g. mRNA

stability, sub-cellular localization and translational efficiency [32–

34]. Furthermore, multiple transcriptional start sites and 59UTRs

expressed from a single gene encoding one and the same protein

may regulate gene expression through differential expression with

respect to developmental stages, tissue type and in response to

stimuli [20,35,36]. One element that enables fast up- or down-

regulation of ribosomal proteins in response to nutrient supply is

the 59TOP sequence, a stretch of 4 to 14 pyrimidines following a

Cytidine as the first nucleotide located at the 59end of an mRNA

[37]. This 59TOP sequence is contained in the SHORT 59UTR

variant used for expression analysis in our study and possibly

responsible for fast adaptation of RPS19 levels. The heterogeneous

59UTRs of mRNAs transcribed from a single gene arise from the

use of alternate transcriptional initiation sites and differential RNA

processing [38]. It has been estimated that 10–18% of genes

express alternate 59UTRs by multiple promoter usage. Alternate

untranslated regions determine tissue specific function and their

inappropriate expression can contribute to the development of

abnormal phenotypes and disease [39].

We have characterized the RPS19 59UTR variants with respect

to expression levels, tissue specificity, and translation efficiency.

RPS19 is ubiquitously expressed and mutations in this gene are

associated with DBA. The precise molecular mechanisms behind

the disease remain unknown but we hypothesized that the

expression of different RPS19 59UTR variants may contribute to

the regulation of RPS19 protein levels and, ultimately, to DBA.

We determined the extent of the RPS19 mRNA 59UTR by 59-

RACE on poly(A)+ purified mRNA from testis and K562 cells.

The results show an extensive variation in the transcriptional start

sites with .30 different 59UTRs of which 29 are novel. The total

amount of RPS19 mRNA varied considerably between tissues and

we observed up to 10-fold differences. Interestingly, bone marrow

shows relatively low level of total RPS19 transcripts when

compared to several other primary tissues analyzed. We then

investigated the distribution of 59UTR variants in different tissues.

Transcripts were divided into three groups containing a 59UTR of

at least 3 nt, 350 nt and 449 nt, respectively. Our data indicate

clear differences in the distribution of RPS19 59UTRs when

comparing different tissues. The amplicon corresponding to the

shorter 59UTR (amplicon A) constituted between 83% to .99%

of RPS19 transcripts but without correlation to the variation in

total amounts of RPS19 mRNA.

To get a better insight into the translational regulation of RPS19

59UTR variants we investigated the RPS19 levels expressed from

constructs with three distinct 59UTRs length. The SHORT

59UTR variant, spanning a 35 bp 59UTR, is translated four to ten

fold more efficiently than the two longer variants with 59UTRs of

382 bp and 467 bp, respectively. This is also consistent with the

analysis of variable 59UTR length of other genes [34,36]. A

possible explanation is that the SHORT variant exhibits a less

complex secondary structure, facilitating scanning by the transla-

Figure 1. Transcriptional start sites and tissue expression of RPS19 variants. (A) RPS19 59UTR variants in testis and K562 cells. Schematic
presentation of 39 different RPS19 59UTRs identified of which 29 are yet undescribed. 59RACE was performed with 1 mg of total RNA using the
GeneRacerH kit (Invitrogen) according to manufacturer’s recommendation. The RNA was treated with DNase I to clean samples from genomic DNA.
The 59RACE protocol selected full length G-capped mRNA and ruled out the possibility of partially degraded mRNA. PCR products were cloned into a
TOPO-TA vector (Invitrogen) and 122 clones were picked randomly (83 from testis, 39 from K562 cells) and analyzed by bidirectional sequencing. The
59UTR variants identified are indicated and aligned to the first exon of RPS19 from databases with a known maximum 59UTR of 382 nt (bottom). (B) A
schematic picture of the 59 region of RPS19 cDNA (horizontal line) with relative positions of the start codon and the amplicons generated for
quantification. Primers used to generate amplicons A, B and C for quantitative PCR are shown as arrows (sequences available upon request). (C)
Tissue distribution of total RPS19 as determined by qPCR of amplicon A showing relative expression of RPS19 normalized to b-actin on a panel of
primary human tissues and cell lines. Analyses were run in triplicates and the average is shown for each tissue. (D) Expression of the amplicons B and
C representing longer variants of 59UTR as determined by qPCR and expressed as a percentage of total RPS19 expression determined by amplicon A
shown in (C).
doi:10.1371/journal.pone.0017672.g001
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tion machinery. The reduced translation from transcripts with

longer 59UTRs may be related to the more complex secondary

structures, making the transcripts less accessible for translation.

The functional significance of the longer RPS19 59UTRs is

unclear, but may be of importance for 59TOP independent

translation providing baseline amounts of RPS19. The shorter

variants could in this case be used for a fast adaptation of RPS19

levels in response to cellular needs. In combination, our

observations suggest a large variation in RPS19 mRNA levels

between tissues as well as in TSS used. The predominant and

shorter 59UTRs are more efficiently translated and may directly

reflect the levels of RPS19.

We then analyzed the effect on translation of rare sequence

variants in the RPS19 59UTR found in subsets of DBA patients.

We confirmed that the polymorphic 59UTR variants are indeed

transcribed and we hypothesized that these transcripts affect

translational efficiency. We therefore investigated the RPS19 levels

expressed from constructs with each of the two insertions (c.-147_-

146insGCCA, c.-147_-146insAGCC) or the deletion (c.-144_-

141delTTTC), respectively. All three variants result in significantly

Figure 3. Structural variants in the RPS19 59UTR associated with
Diamond-Blackfan anemia affect translational efficiency. (A)
Three DBA associated 59UTR variants (c.-147_-146insGCCA, c.-147_-
146insAGCC and c.-144_-141delTTTC), were generated by site directed
mutagenesis from the pAcGFP-N1-382-S19-59UTR clone (i.e. the
‘‘INTERMEDIATE’’ w.t. construct of 382 nt) using the Quick change II
site directed mutagenesis (Stratagene) kit. (B) Western blot of total
protein preparations isolated from transfected HEK293T and K562 cells
performed as for figure 2B. The constructs express each of the three
structural 59UTR variants. (C) Diagram showing the relative levels of
RPS19 expressed from the three constructs in 293T and K562 cells,
respectively. Quantification was made from Western blot analysis
illustrated in (B). The expression from the w.t. ‘‘INTERMEDIATE’’
construct was used as a control and is set to 100.
doi:10.1371/journal.pone.0017672.g003

Figure 2. Short RPS19 59UTR translates into more RPS19. (A)
Sequences corresponding to three w.t. variants of the RPS19 mRNA
including a 35 nt (SHORT), 382 nt (INTERMEDIATE) and 467 nt (LONG)
59UTR, respectively, were introduced into the fluorescent reporter
vector pAcGFP-N1 (Clontech) under the CMV promoter. The expressed
fusion proteins consist of a full length RPS19 linked to green fluorescent
protein (GFP). (B–C) RPS19 protein levels vary with different RPS19
59UTR length. HEK293T and K562 cells were transfected with 5 mg of
vector DNA from each of the three 59UTR variants using Lipofectami-
neH2000 (Invitrogen). After 48 h, cells were assayed for expression of
recombinant protein by fluorescence microscopy and stored at 220uC
for further analysis by Western blot (B). (C) Diagram illustrating the
relative expression of the three w.t. constructs in HEK293T and K562
cells, respectively. Quantification is based on Western blot analysis in (B)
and the expression of RPS19-GFP fusion protein was normalized to b-
actin.
doi:10.1371/journal.pone.0017672.g002

59UTR Variants and Translation of RPS19

PLoS ONE | www.plosone.org 5 March 2011 | Volume 6 | Issue 3 | e17672



reduced RPS19 levels when compared to the corresponding wild

type sequence. A possible explanation is that the mutation causes

the mRNA to adopt a more complex secondary structure that

represses translation. It is noteworthy that the observed reduction

in RPS19 levels in our cell-systems is related to a relatively large

proportion of the ‘‘INTERMEDIATE’’ RPS19 transcripts con-

taining each of the specific 59UTR variants. Still, the observed

effects of the three 59UTR variants associated with DBA do not

result in haploinsufficiency and, accordingly, the impact on RPS19

levels in vivo would depend on the relative amounts of longer

RPS19 mRNAs. Although these 59UTR variants may lead to

suboptimal conditions for growth and differentiation of tissues

sensitive to reduced RPS19 levels it is likely that additional factors

are required for overt clinical forms of DBA. Our results are

consistent with the increased ratio of 21S/18S pre-rRNAs

associated with the c.-147_-146insGCCA variant observed

previously [14]. Failure to detect reduced RPS19 levels in that

study may be due to low abundance of longer transcripts and/or

minor changes in RPS19 levels in the cells analyzed.

Our combined findings suggest complex regulatory mechanisms

of RPS19. RPS19 uses a broad range of TSS with tissue specific

differences and shorter 59UTRs are more efficiently translated.

We also show that DBA associated 59UTR variants of RPS19 are

less efficiently translated. Further investigations are now required

to understand how RPS19 is regulated in different tissues both at

the transcriptional and the translational level. These studies may

clarify the distribution and levels of RPS19 59UTR variants as well

as RPS19 protein levels at different stages of erythropoiesis. Thus,

analysis of the RPS19 TSS used in erythroid precursor cells may

provide valuable information in search for molecular mechanisms

behind DBA.
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