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Abstract

Interval estimation with accurate coverage for risk difference (RD) in a correlated 2 × 2 table

with structural zero is a fundamental and important problem in biostatistics. The score test-

based and Bayesian tail-based confidence intervals (CIs) have good coverage performance

among the existing methods. However, as approximation approaches, they have coverage

probabilities lower than the nominal confidence level for finite and moderate sample sizes.

In this paper, we propose three new CIs for RD based on the fiducial, inferential model (IM)

and modified IM (MIM) methods. The IM interval is proven to be valid. Moreover, simulation

studies show that the CIs of fiducial and MIM methods can guarantee the preset coverage

rate even for small sample sizes. More importantly, in terms of coverage probability and

expected length, the MIM interval outperforms other intervals. Finally, a real example illus-

trates the application of the proposed methods.

Introduction

An incomplete correlated 2 × 2 table exists in various biological studies, clinical trials and epi-

demiological studies [1] used this data structure to evaluate penicillin allergy [2,3] studied

tuberculosis skin tests in a two-step procedural design. A typical example is given by [4]

involving calf immunity data. Calves were first classified according to whether they had a pri-

mary pneumonia infection and then reclassified according to whether they developed a sec-

ondary infection within a certain time period after the first infection cleared up [5]. Since the

subject cannot have secondary infection when it is not infected at the first stage, the cells corre-

sponding to secondary infection without primary infection will not appear. Table 1 lists the

observed data and related probabilities.

Suppose there is a sample of n subjects, let X11 be the number of subjects infected in both

stages, X12 be the number of subjects who have a primary infection but do not have a second-

ary infection, and X22 be the number of subjects who are not infected in both stages, so that X1

+ = X11+X12 and X1++X22 = n. Here, p11, p12 and p22 denote the probabilities of the
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corresponding cells, with p1+ = p11+p12 and p1++p22 = 1. After the first infection clears up, one

wants to infer the likelihood of developing a secondary infection due to the effect of the pri-

mary infection. One common comparative measure of interest is the risk difference (RD)

between the primary infection and the secondary infection, given the primary infection. The

RD δ is defined by

d ¼ p1þ � p11=p1þ:

From the frequentist point of view [6], considered confidence intervals (CIs) for the RD

based on Wald’s test statistic, the likelihood ratio test and the basic principle of Fieller’s theo-

rem. Although these three approaches behave well in many practical problems, the CIs derived

from Wald’s test statistic, the likelihood ratio test and Fieller’s theorem fail to reach the preset

confidence level threshold even in moderate sample sizes. As an alternative [2], proposed a

score test-based CI and, although the score test statistic is undefined in one scenario, the score

CI outperforms all other frequentist intervals in terms of the coverage probability. More litera-

ture on risk factors and some potential methods can be found in [6–15].

If a prior distribution is available for the unknown parameter, the Bayesian posterior distri-

bution provides a meaningful summary of the uncertainty about the parameter. To date, the

Bayesian approach has been widely used in the interval estimation of the proportions in corre-

lated tables [16] investigated the performance of Bayesian intervals using different priors, and

they found that the Jeffreys prior is comparable to the score test-based CI [17] used a Bayesian

estimation of the false-negative rate in a clinical trial of a sentinel node biopsy. Moreover [5],

used Dirichlet priors to construct the tail-based interval for the RD. Simulation studies showed

that the Bayesian CI at the Jeffreys prior has a shorter expected length than the score test-based

CI.

The Bayesian choice of priors is a powerful tool for inferring purposes, but different priors

can lead to different posterior distributions. To eliminate the influence of the prior distribution

on the inference result, the generalized fiducial inference [18,19] is asymptotically correct and

works well in applications [20,21]. However, the determination of the fiducial distribution of

parameters remains a problem. Unlike the fiducial method, CIs derived from inferential mod-

els (IMs) [22–24] can always guarantee nominal coverage for all sample sizes. The main differ-

ence between the IM and the fiducial inference is that the IM method always carries out

probability calculation in the auxiliary variable space, which can ensure that its inference is

strict and correct. Moreover, the IM theory of precise inference needs some improvements.

For example [25–29], constructed a randomized IM inference for discrete proportions.

The frequentist methods can be undefined in some cases. Moreover, as two representative

CIs, the score and Bayesian intervals cannot guarantee the nominal coverage probability for

small to moderate sample sizes. The aim of this paper is to construct three new CIs with accu-

rate coverage for the RD mainly based on the fiducial, IM and randomized IM approaches.

Table 1. Data and probability for an incomplete 2×2 table.

Secondary infection

Primary infection Yes No Total

Yes X11(p11) X12(p12) X1+(p1+)

No − X22(p22) X22(p22)

Total X11(p11) X12+X22(p12+p22) n(1)

https://doi.org/10.1371/journal.pone.0272007.t001
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Existing methods

Score test-based CI

From Table 1, the observed vector (X11,X12) comes from the trinomial distribution model

PðX11;X12jp11; p12Þ ¼
n

X11;X12

 !

pX11
11 p

X12
12 ð1 � p11 � p12Þ

n� X11� X12 : ð1Þ

Let p̂1þ ¼ ðX11 þ X12Þ=n be the maximum likelihood estimate of p1+; then, the score test

statistic [2] for hypothesis H0:δ = δ0 is given by

TSðX11;X12;X22; d0Þ ¼
X1þðp̂1þ � d0Þ � X11

ðp̂1þ � d0Þð1 � p̂1þ þ d0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2d0 � p̂2

1þ

n
�
d0ð1þ d0Þ

np̂1þ

s

:

It is well-known that TS(X11,X12,X22,δ0) is an asymptotically standard normal distribution

underH0. Given the significance level α, the two-sided 1−α approximate confidence limits (δL
and δU) for δ can be computed by solving equations

TSðX11;X12;X22; dLÞ ¼ za=2 and TSðX11;X12;X22; dUÞ ¼ z1� a=2:

The score test is comparable to that of the likelihood ratio test [6], but the likelihood ratio test can

be undefined in many scenarios while the score test statistic is undefined when X11 = X12 = 0.

Bayesian tail-based CI

The conditional probability function of (x11,x12) given (p11,p12) (p11+p12<1) is the trinomial

distribution with probability function

Pðx11; x12jp11; p12Þ ¼
n

x11; x12

 !

px11
11 p

x12
12 ð1 � p11 � p12Þ

n� x11 � x12 ;

where x11+x12�n. Recalling Bayes’ rule, if one chooses a prior that is conjugate to the likeli-

hood, then the posterior will have the same form as the conjugate prior distribution. Clearly,

the Dirichlet D3(k1,k2,k3) prior for the parameter (p11,p12) leads to the posterior being a Dirich-

let-type distribution D3(x11+k1,x12+k2,n−x11−x12+k3) with the posterior density function

f ðp11; p12jx11; x12Þ / p
x11þk1 � 1

11 px12þk2 � 1

12 ð1 � p11 � p12Þ
n� x11 � x12þk3 � 1

:

Shi, Sun and Bai [5] studied the symmetric Dirichlet prior ki = k, i = 1,2,3 for the RD. They

recommended the Jeffreys prior D3(1/2,1/2,1/2). Moreover, the posterior distribution function

of δ given (x11,x12) has the following expression

Fðdjx11; x12Þ ¼
cðx; kÞJx11þx12þ2k;n� x11� x12þk;x12þk;x11þk

ðdÞ; � 1 < d < 0;

1 � cðx; kÞJn� x11� x12þk;x11þx12þ2k;x11þk;x12þk
ðdÞ; 0 � d < 1;

(

ð2Þ

where cðx; kÞ ¼ Gðnþ 3kÞ=½Gðx11 þ kÞGðx12 þ kÞGðn � x11 � x12 þ kÞ� and Jm1 ;m2 ;m3;m4
ðdÞ for

mi>0, i = 1,2,3,4 is defined by

Jm1 ;m2 ;m3 ;m4
ðdÞ ¼ ð1þ dÞ

m1

Z 1

0

tm1 � 1½1 � ð1þ dÞt�m2 � 1gm3 ;m4
ðð1þ dÞð1 � tÞÞdt; ð3Þ

where gm3 ;m4
ðyÞ ¼

Z y

0

um3 � 1ð1 � uÞm4 � 1du. For the tail-based CI with a significance level α, the
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lower and upper limits (L,U) are obtained by minimizing the following function

GðL;UÞ ¼ jFðUjx11; x12Þ � ð1 � a=2Þj þ jFðLjx11; x12Þ � a=2j: ð4Þ

Note that mathematical calculations of the integral formulae (3) and function (4) require some

specific algorithms, such as the Nelder–Mead algorithm.

New confidence intervals

The small sample properties for approximate score and Bayesian methods may not be cali-

brated for meaningful probabilistic inference. These two CIs have lower coverage probability

in some cases. To date, fiducial and IM-based methods have been used in other inference

problems where classic approaches cannot lead to valid inference. Therefore, we consider fidu-

cial and IM solutions for the RD.

Fiducial CI

Fiducial inference is based entirely on the fiducial distribution of the parameters. We first

review the fiducial framework [18]. Suppose that X is a random variable indexed by a parame-

ter θ which is generated using the structural equation given by

X ¼ aðy;UÞ;

where a is a measurable function and U is an auxiliary variable with a known distribution.

Note that the distribution of U is free of θ.

Let x and u be realization of X and U, respectively. The information provided by x and u
about θ is encapsulated in the set

Yðx; uÞ ¼ fyjx ¼ aðy; uÞg:

Clearly, x = a(θ,u) is equivalent to Θ(x,u)6¼;. The fiducial argument involves replacing u with

U’ to obtain the random set Θ(x,U’), where U’ is an independent copy of U. Since the fiducial

distribution of θ is given by

y ¼ Yðx;U 0 ÞjYðx;U 0 Þ 6¼ ;:

Then, we can easily derive a fiducial CI for θ.

From Table 1, if the condition is based on the number (x11+x12), such that all marginal

totals are fixed, the probability of observing x11 follows a binomial distribution. By derivation,

letting T = X11+X12 and X = X11, the probability function of (x11,x12) in (1) can be simplified as

the product of two independent binomial distributions as follows:

Pfx11; x12; p11; p12g ¼ PfT ¼ t; yg � PfX ¼ xjT ¼ t;φg; ð5Þ

where θ = p11+p12 and φ = p11/(p11+p12).

Naturally, we have T~Bin(n,θ) and X|T = t~Bin(t,φ). Moreover, if we define the value of the

random variable to be 1 if a trial results in success, and 0 otherwise, then the structural equa-

tion can be given by

T ¼
Xn

i¼1

I½0;y�ðUiÞ and X ¼
Xt

j¼1

I½0;φ�ðVjÞ

where IA(�) is the indicator function and Ui, i = 1,. . .,n, and Vj, j = 1,. . .,t, are independent uni-

form(0,1) random variables.
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Due to the discrete nature, event Ak1
¼ fT ¼ k1g is equivalent to event

Bk1
¼ f
Xk1

i¼1
Ui � y <

Xk1þ1

i¼1
Uig. Similarly, event Ak2

¼ fX ¼ k2g is equivalent to event

Bk2
¼ f
Xk2

j¼1
Vj � φ <

Xk2þ1

j¼1
Vjg. Given T = t and X = x, we have

Xt

i¼1
Ui � y <

Xtþ1

i¼1
Ui and

Xx

j¼1
Vj � φ <

Xxþ1

j¼1
Vj:

Moreover, the fiducial quantity for the RD d ¼ y � φ is given by

Xt

i¼1
Ui �

Xxþ1

j¼1
Vj � d �

Xtþ1

i¼1
Ui �

Xx

j¼1
Vj: ð6Þ

Since we can easily obtain a Monte Carlo approximation for the distribution of the two end-

points, constructing a fiducial CI for δ is not problematic.

Remark 1. Compared to Bayesian inference, the fiducial idea may be more attractive

because no prior distributions are needed. Moreover, the fiducial idea has been shown to be

asymptotically correct for a single discrete population. However, there is little research on risk

factors between two independent binomial distributions. As an extension, our research can fill

this gap and is easily applied to other multiparameter inference problems. Furthermore, our

simulation studies will show that the fiducial method can guarantee nominal coverage even for

small sample sizes.

IM-based CI

Martin and Liu [22] proposed an IM framework for valid probabilistic inference. The IM starts

with an association between data, parameters and auxiliary variables. Using the optimal pre-

dictive random set to predict the auxiliary variables, the IM produces a postdata probabilistic

measure function of uncertainty about the unknown parameter. To summarize, the IM has the

following three steps:

A-step: From an appropriate mapping a: x = a(θ,U), the IM associates the parameter θ with

(x,u) for each possible pair to obtain a collection of sets Θx(u) of candidate values.

P-step: Given data x , suppose θ� is the true value of θ, there exists a u�, such that x = a(θ�,
u�). Moreover, the true value u� is predicted with a valid predictive random set S(u). The valid-

ity condition ensures that S(u) will hit u� with large probability.

C-step: The A-step and P-step are combined to obtain a final random set of θ, that is, Θx(S
(u)) = [u2S(u)Θx(u). Then, for any assertion A about the parameter of interest θ, the probabili-

ties that belx(A) = P{Θx(S(u))�A} and plx(A) = P{Θx(S(u))⊄Ac} are computed as two measure

functions of the available evidence in x supporting A.

The belief function belx(A) and the plausibility function plx(A) are known as the minimum

and maximum probabilities that support the truth of assertion A. It is more convenient to

report the plausibility function, which can easily be used to create frequentist procedures. To

test the assertion A = {δ:δ = δ0}, we reject H0:δ = δ0 if plx(A)�α for a significance level α, and

this plausibility function yields a two-sided 1−α IM CI {δ: plx(A)>α}.

Theorem 1 [22]. Suppose X~PX|θ and let A be an assertion of interest, the IM with the plau-

sibility function plX(A) is valid for assertion A if, for each α2(0,1),

sup
y2A

PXjyfplXðAÞ � ag � a:

The resulting IM CI can guarantee the nominal coverage probability when the plausibility

function plX(A) is said to be valid. Moreover, if "�α" can be replaced by "= α", then the IM CI

controls the coverage probability exactly at the confidence level 1−α.
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Here, we construct a new IM CI for the RD. Let Fn,θ(�) denote the distribution function of

T~Bin(n,θ). Martin and Liu [22] gave an association linking t, θ, and an auxiliary variable

u~Pu as follows:

t ¼ minfk : u < Fn;yðkÞg; u � Unif ð0; 1Þ: ð7Þ

Moreover, the association model (7) can be simplified as

Fn;yðt � 1Þ � u < Fn;yðtÞ; u � Unif ð0; 1Þ: ð8Þ

Similarly, the association for x, given φ, may be written as

Ft;φðx � 1Þ � v < Ft;φðxÞ; v � Unif ð0; 1Þ: ð9Þ

To derive an initial IM’s association for δ = θ−φ, we will take advantage of the well-known

relationship between the binomial and beta distribution functions, that is,

Fn;yðtÞ ¼ 1 � Gtþ1;n� tðyÞ, where Ga,b(�) is the beta (a, b) distribution function. Furthermore, we

can rewrite joint associations (8) and (9) as follows:

G� 1

t;n� tþ1
ðuÞ � y < G� 1

tþ1;n� tðuÞ and G
� 1

x;t� xþ1
ðvÞ � φ < G� 1

xþ1;t� xðvÞ;

where u and v are i.i.d. uniform(0,1) random variables. Hence, the A-step of the IM for δ is

G� 1

t;n� tþ1
ðuÞ � G� 1

xþ1;t� xðvÞ � d < G� 1

tþ1;n� tðuÞ � G
� 1

x;t� xþ1
ðvÞ: ð10Þ

A-step: Let Ht−1,x(�) and Ht,x−1(�) be the distribution functions of the two endpoints in (10).

The association step of IM for the RD is

Yt;xðwÞ ¼ fd : H� 1

t� 1;xðwÞ � d < H� 1

t;x� 1
ðwÞg; w � Unif ð0; 1Þ:

P-step: We are interested in two-sided CIs. Following [22], for a singleton assertion A = {δ},

the default predictive random set for the auxiliary variable w,

S ¼ fw : jw � 0:5j � jW � 0:5jg,

W � Unif ð0; 1Þ:

C-step: Combine Θt,x(w) and S to obtain a random setYt;xðSÞ ¼ [w2SYt;xðwÞ for δ. Since

d=2Yt;xðSÞ , Ht;x� 1ðdÞ > supS orHt−1,x(δ)<inf S,

we find that the corresponding plausibility function for a singleton assertion A = {δ} is

plt;xðAÞ ¼ PSfd 2 Yt;xðSÞjYt;xðSÞ 6¼ ;g

¼ 1 � PWf0:5þ jW � 0:5j < Ht;x� 1ðdÞ [ 0:5 � jW � 0:5j > Ht� 1;xðdÞg

¼ 1 � PWfj2W � 1j < 2Ht;x� 1ðdÞ � 1g � PWfj2W � 1j < 1 � 2Ht� 1;xðdÞg

¼ 1 � f2Ht;x� 1ðdÞ � 1g
þ
� f1 � 2Ht� 1;xðdÞg

þ
;

where the ‘‘+” superscript denotes the positive part.

Theorem 2. According to Theorem 1, the plausibility function plt,x(A) of our IM method is

valid for assertion A if, for each α2(0,1),

sup
d2A

PT;XjdfplT;XðAÞ � ag � a:
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Proof. Given any α2(0,1), we have

PT;XjdfplT;XðAÞ � ag

¼ PT;Xjdf1 � f2Ht;x� 1ðdÞ � 1g
þ
� f1 � 2Ht� 1;xðdÞg

þ
� ag

¼ PT;Xjdf1 � ð2Ht;x� 1ðdÞ � 1Þ � a;Ht;x� 1ðdÞ � 1=2g þ PT;Xjdf2Ht� 1;xðdÞ � a;Ht� 1;xðdÞ � 1=2g

¼ PT;XjdfHt;x� 1ðdÞ � 1 � a=2;Ht;x� 1ðdÞ � 1=2g þ PT;XjdfHt� 1;xðdÞ � a=2;Ht� 1;xðdÞ � 1=2g:

Then, supd2A PT;XjdfplT;XðAÞ � ag � a: Hence, the proof is complete.

For any α2(0,1), if plt,x(A)�α, then the assertion A is wrong. Moreover, this plausibility

function yields an IM 1−α CI {δ: plt,x(A)>α}, such that δ2[δL,δU], where δL and δU satisfy

Ht� 1;xðdLÞ ¼ a=2; Ht;x� 1ðdUÞ ¼ 1 � a=2:

Remark 2. The IM CI has the same form as the generalized fiducial CI. However, these two

intervals are obtained under different theoretical derivations, fiducial approaches and IM theo-

ries, respectively. While the general fiducial distributions in (6) may not be calibrated for

meaningful probabilistic inference, IM provides meaningful probabilistic summaries of the

information in data concerning the quantity of interest. Moreover, the IM CI derived from a

valid plausibility function of IM can guarantee the nominal coverage probability for all sample

sizes.

Modified IM CI

In general, the association model (10) of IM is an interval, which will result in a conservative

CI. Some adjustments are needed to handle this discreteness. Inspired by the randomized IM

idea [25], we consider a modified IM (MIM) approach to modify in Eq (10) to an accurate

equation so that we can improve the accuracy of the candidate value of δ.

Theorem 3 [25]. Suppose Y~Bin(m,ϕ), let ω be uniformly distributed in (0,1), and Y and ω
are independent. Then oFm;yðy � 1Þ þ ð1 � oÞFm;yðyÞ � Unif ð0; 1Þ:

For association (8), since the auxiliary variable u is in the interval ½Fn;yðt � 1Þ; Fn;yðtÞÞ, there

exists a weight ω1 such that

u ¼ o1Fn;yðt � 1Þ þ ð1 � o1ÞFn;yðtÞ; ð11Þ

where ω1 follows a uniform(0,1) distribution and is independent of t. Note that o1Fn;yðt �
1Þ þ ð1 � o1ÞFn;yðtÞ is a strictly decreasing function of θ, for every u,ω12(0,1), we can obtain a

unique solution y ¼ G0tðu;o1Þ from Eq (11). Moreover, let its distribution function be Gt(�);
then, the association model for θ can be rewritten as follows:

y ¼ G� 1

t ðu
0

Þ; u0 � Unif ð0; 1Þ: ð12Þ

Similarly, for inequality (9), if ω2~Unif(0,1) and is independent of x, then we obtain

v ¼ o2Ft;φðx � 1Þ þ ð1 � o2ÞFt;φðxÞ: ð13Þ

Given x, for every v,ω22(0,1), Eq (12) gives a unique solution φ ¼ H 0xðv;o2Þ. Let its distribu-

tion function beHx(�); then, the association model for φ is

φ ¼ H� 1

x ðv
0

Þ; v0 � Unif ð0; 1Þ: ð14Þ
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A’-step: Based on (12) and (14), our new association step of the MIM for the RD δ = θ−φ is

Y
0

t;xðwÞ ¼ fd : d ¼ G� 1

t ðu
0

Þ � H� 1

x ðv
0

Þ ¼ K � 1

t;x ðwÞg; w � Unif ð0; 1Þ;

where Kt,x(�) is the distribution function of G� 1
t ðu

0

Þ � H� 1
x ðv

0

Þ.

P’-step: For a singleton assertion A, the default predictive random set for the auxiliary vari-

able w is

S ¼ fw : jw � 0:5j � jW � 0:5jg; W � Unif ð0; 1Þ:

C’-step: To obtain a final random set for δ, Y
0

t;xðwÞ and S are combined as

Y
0

t;xðSÞ ¼ [w2SY
0

t;xðwÞ ¼ ½K
� 1

t;x ð0:5 � jW � 0:5jÞ;K � 1

t;x ð0:5þ jW � 0:5jÞ�;

whereW~Unif(0,1). Then, we can compute the plausibility function of A, that is,

pl0t;xðAÞ ¼ PrfY
0

t;xðSÞ \ A 6¼ ;jY
0

t;xðSÞ 6¼ ;g

¼ PrfW � 0:5 � jKt;xðdÞ � 0:5j [W � 0:5þ jKt;xðdÞ � 0:5jg

¼ 1 � j2Kt;xðdÞ � 1j

.

Theorem 4. Let S~PS be a valid predictive random set forW~Unif(0,1), that is,

PS(w2S)�stUnif(0,1), where "�st" means “stochastically no smaller than”. If Kt,x(δ)~Unif(0,1)

for (t,x)~P(t,x)|δ for all δ, then the MIM method is valid.

Proof. Given any α2(0,1), since Kt,x(δ)~Unif(0,1) for (t,x)~P(t,x)|δ for all δ, and

pl0t;xðAÞ ¼ PSfY
0

t;xðSÞ \ A 6¼ ;g ¼ PSfKt;xðdÞ 2 Sg ¼ PSfw 2 Sg:

Moreover, the predictive random set S~PS is valid, that is, PS(w2S)�stUnif(0,1).

Hence, sup
d2A Pðt;xÞjdfpl

0

t;xðAÞ � ag ¼ sup
d2A Pðt;xÞjdfPSfw 2 Sg � ag

� sup
d2A

Pðt;xÞjdfUnif ð0; 1Þ � ag ¼ a:

The MIM inference is valid, by Theorem 1. Hence, the proof is complete.

The plausibility function of our MIM method yields a new CI ½dL; dU � ¼ fd : pl0t;xðAÞ > ag,

where δL and δU satisfy Kt,x(δL) = α/2 and Kt,x(δU) = 1−α/2.

Remark 3. Similar to the classical approaches, the Monte Carlo method is also an approxi-

mate solution. The main difference between our MIM approach and other approximations is

that the accuracy of MIM depends on the repetition times N, but accuracies of other approxi-

mations depend on the sample size n. We recommend N = 1,000,000 in practical applications

to assure that there is a greater than 95% probability of the absolute error being less than 0.001.

Simulation results

The fiducial and IM CIs have the same form. The score, Bayesian, fiducial and MIM

approaches are approximations. We conduct some Monte Carlo simulations to assess the per-

formance of fiducial and MIM intervals, and compare them to the score and Bayesian inter-

vals. Since it is often difficult to obtain explicit expressions of the fiducial and MIM CIs, we

suggest approximating these two CIs using the following Monte Carlo algorithms. R codes are

available in the S1 Appendix.

Table 2 lists four 95% CIs for various combinations including some special cases of zero

cells. We see that the Bayesian, fiducial and MIM intervals are well defined for all cases. How-

ever, when X11 = X12 = 0, the score interval does not exist and the fiducial and MIM CIs have
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shorter widths than the score and Bayesian CIs. Note that the expected lengths of the score,

Bayesian and MIM intervals are almost the same when the sample size increases.

__________________________________________________________________________
Algorithm 1: Fiducial CI (δα/2 , δ1−α/2 )
————————————————————————————————————————————————————————————————————
Step 1. For the given sample (x11,x12) from the incomplete correlated
2 × 2 table,
t = x11+x12 and x = x11 are calculated;
Step 2. Then, u1,u2,. . .,ut+1 and v1,v2,. . .,vx+1 are generated from a uni-
form(0,1) distribution,

and δ is calculated using
Xt

i¼1
ui �

Xxþ1

j¼1
vj � d �

Xtþ1

i¼1
ui �

Xx

j¼1
vj;

Step 3. Step 2 is repeated N times (1,000,000 for example) to obtain N
realizations of δ;

Step 4. The α/2 quantile of
Xt

i¼1
Ui �

Xxþ1

j¼1
Vj and the 1−α/2 quantile of

Xtþ1

i¼1
Ui �

Xx

j¼1
Vj are calculated to approximate δα/2 and δ1−α/2, respec-

tively.
————————————————————————————————————————————————————————————————————

__________________________________________________________________________
Algorithm 2: MIM CI (δα/2, δ1−α/2)
————————————————————————————————————————————————————————————————————
Step 1. For the given sample (x11,x12), t = x11+x12 and x = x11 are
calculated;
Step 2. Then ω1, ω2, u and v are randomly sampled from the uniform(0,
1) distribution, and
equations u ¼ o1Fn;yðt � 1Þ þ ð1 � o1ÞFn;yðtÞ and v ¼ o2Ft;φðx � 1Þ þ ð1 � o2ÞFt;φðxÞ are
solved to obtain the unique solution (θ,φ). Then, δ = θ−φ is
calculated;
Step 3. Step 2 is repeated N times (1,000,000 for example) to obtain N
realizations of δ;
Step 4. The α/2 and 1−α/2 quantiles of δ are calculated to approximate
δL and δU,
respectively.
————————————————————————————————————————————————————————————————————

Table 2. The four 95% confidence intervals and widths for the selected combinations of (n,X11,X12).

n X11 X12 Score Bayesian Fiducial MIM

5 0 0 -

-

(-0.990, 0.830)

1.820

(-1.000, 0.519)

1.519

(-1.000, 0.371)

1.371

5 5 0 (-0.301, 0.329)

0.630

(-0.415, 0.457)

0.872

(-0.522, 0.522)

1.044

(-0.406, 0.406)

0.812

5 2 0 (-0.847, 0.352)

1.199

(-0.805, 0.217)

1.022

(-0.946, 0.460)

1.406

(-0.897, 0.294)

1.191

5 0 2 (-0.300, 0.754)

1.054

(-0.290, 0.744)

1.034

(-0.607, 0.854)

1.461

(-0.457, 0.774)

1.231

30 1 20 (0.432, 0.804)

0.372

(0.425, 0.800)

0.375

(0.371, 0.825)

0.454

(0.411, 0.803)

0.392

50 20 5 (-0.477, -0.056)

0.421

(-0.477, -0.068)

0.409

(-0.507, -0.040)

0.467

(-0.486, -0.068)

0.418

50 10 10 (-0.338, 0.155)

0.493

(-0.329, 0.163)

0.492

(-0.374, 0.182)

0.556

(-0.347, 0.153)

0.500

https://doi.org/10.1371/journal.pone.0272007.t002

PLOS ONE Accurate interval estimation for the risk difference in an incomplete correlated 2×2 table

PLOS ONE | https://doi.org/10.1371/journal.pone.0272007 July 22, 2022 9 / 23

https://doi.org/10.1371/journal.pone.0272007.t002
https://doi.org/10.1371/journal.pone.0272007


For comparison, simulation studies are conducted to examine the performances of the

score, Bayesian, fiducial and MIM CIs under different sample sizes. The parameters of the

comparison are mainly the coverage probability and expected length. Refer to [2,5] for the

parameter settings. We consider p1+ = 0.3, 0.5 and 0.8; δ = −0.3 (0.1) 0.3; and n = 20, 50, 100

and 300. In each simulation, we first resample the observed value (X11,X12) 10,000 times from

the trinomial distribution, calculate the four different CIs accordingly, and compute the corre-

sponding frequencies that cover δ. We regard the coverage frequency as the coverage probabil-

ity. According to the central limit theorem, the coverage frequency of the nominal 95%

Table 3. The coverage probability (CP) and the expected length (EL) of various 95% CIs.

Score Bayesian Fiducial MIM

n p1+ δ CP EL CP EL CP EL CP EL

20 0.3 -0.3 96.06 0.78 96.06 0.74 98.93 0.90 97.02 0.78

-0.2 96.02 0.79 93.29 0.75 98.96 0.91 95.32 0.79

-0.1 94.31 0.80 94.31 0.74 98.71 0.91 96.34 0.79

0.0 95.02 0.82 94.03 0.72 98.88 0.89 96.44 0.77

0.1 96.60 0.85 96.15 0.69 98.62 0.87 96.50 0.74

0.2 96.47 0.93 95.81 0.64 98.78 0.83 96.79 0.70

0.5 -0.3 95.97 0.68 95.49 0.61 98.53 0.75 97.28 0.64

-0.2 95.77 0.68 93.76 0.65 98.93 0.78 95.24 0.67

-0.1 95.13 0.68 95.13 0.67 97.75 0.80 95.94 0.69

0.0 93.56 0.68 93.41 0.68 98.26 0.81 95.62 0.69

0.1 94.84 0.68 93.76 0.67 98.39 0.80 95.76 0.70

0.2 95.20 0.66 93.36 0.65 98.40 0.78 94.86 0.69

0.3 95.34 0.65 94.58 0.61 98.34 0.75 95.26 0.67

0.8 -0.1 96.15 0.60 95.70 0.45 99.23 0.56 96.44 0.47

0.0 95.57 0.55 94.45 0.50 98.07 0.61 95.71 0.52

0.1 95.03 0.55 94.60 0.53 98.06 0.64 95.34 0.55

0.2 94.92 0.56 94.79 0.55 98.03 0.65 95.54 0.56

0.3 95.04 0.56 93.85 0.55 97.68 0.66 95.39 0.57

50 0.3 -0.3 94.84 0.52 95.07 0.52 97.70 0.59 95.73 0.53

-0.2 95.37 0.53 94.49 0.52 97.42 0.60 95.52 0.53

-0.1 95.15 0.52 94.46 0.52 97.56 0.59 95.28 0.53

0.0 94.61 0.50 94.66 0.50 97.80 0.57 95.68 0.51

0.1 95.11 0.49 95.05 0.46 97.99 0.54 95.84 0.47

0.2 95.36 0.54 95.00 0.40 98.42 0.48 96.08 0.42

0.5 -0.3 95.14 0.42 94.85 0.40 97.17 0.46 94.97 0.41

-0.2 95.26 0.44 94.43 0.43 97.42 0.49 95.36 0.44

-0.1 94.79 0.46 94.89 0.45 96.97 0.51 95.34 0.46

0.0 95.01 0.46 95.11 0.46 97.11 0.51 95.64 0.46

0.1 95.18 0.45 95.38 0.45 97.02 0.51 95.48 0.46

0.2 94.79 0.44 94.73 0.43 97.17 0.49 95.05 0.44

0.3 94.60 0.41 94.75 0.40 97.23 0.46 95.21 0.41

0.8 -0.1 95.31 0.31 94.48 0.29 97.74 0.33 95.27 0.29

0.0 95.62 0.34 95.02 0.33 97.34 0.37 95.25 0.33

0.1 95.48 0.36 94.91 0.35 97.38 0.39 95.11 0.36

0.2 95.05 0.37 94.85 0.36 97.30 0.41 95.07 0.37

0.3 94.99 0.37 94.80 0.37 97.31 0.41 95.30 0.37

https://doi.org/10.1371/journal.pone.0272007.t003
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confidence level tends to fall in the interval (0.9457, 0.9543) for 10,000 experimental repeti-

tions. Moreover, the expected length is

Expected length ¼ En;p11;p12
ðlengthðCIÞÞ

¼
X

ðX11;X12Þ

ðdU � dLÞ �
n

X11;X12

0

@

1

ApX11
11 p

X12
12 ð1 � p11 � p12Þ

n� X11 � X12

where δU and δL are the upper and lower limits of the interval, respectively.

We report the simulation results in Tables 3 and 4. Cases in which the coverage probability

is less than 0.9457 appear in bold underlined. Clearly, the score and Bayesian CIs cannot

Table 4. The coverage probability (CP) and the expected length (EL) of various 95% CIs.

Score Bayesian Fiducial MIM

n p1+ δ CP EL CP EL CP EL CP EL

100 0.3 -0.3 94.90 0.38 94.62 0.38 96.99 0.42 94.93 0.38

-0.2 95.17 0.39 94.88 0.39 96.96 0.43 94.94 0.39

-0.1 95.05 0.38 94.71 0.38 97.09 0.42 95.11 0.38

0.0 94.81 0.36 94.92 0.36 96.68 0.40 95.25 0.36

0.1 95.41 0.33 94.65 0.33 97.09 0.37 95.30 0.33

0.2 95.16 0.28 94.97 0.28 98.15 0.32 94.88 0.28

0.5 -0.3 95.04 0.29 94.80 0.29 96.95 0.32 95.07 0.29

-0.2 95.16 0.31 94.98 0.31 96.72 0.34 95.20 0.31

-0.1 94.89 0.33 94.94 0.33 97.06 0.36 95.01 0.33

0.0 95.04 0.33 95.05 0.33 96.44 0.36 95.10 0.33

0.1 95.08 0.33 94.75 0.33 96.62 0.36 95.10 0.33

0.2 94.89 0.31 94.94 0.31 96.44 0.34 94.76 0.31

0.3 94.90 0.29 94.90 0.29 96.92 0.32 94.80 0.29

0.8 -0.1 95.11 0.20 94.88 0.20 97.11 0.22 94.70 0.20

0.0 95.02 0.23 94.74 0.23 96.57 0.25 95.04 0.23

0.1 95.28 0.25 94.97 0.25 96.55 0.27 94.78 0.25

0.2 95.15 0.26 94.98 0.26 96.74 0.28 95.10 0.26

0.3 95.00 0.26 95.00 0.26 96.43 0.29 95.00 0.26

300 0.3 -0.3 94.81 0.23 94.82 0.23 96.32 0.24 94.91 0.23

-0.2 95.13 0.23 94.93 0.23 96.34 0.24 95.03 0.23

-0.1 95.29 0.23 95.01 0.23 96.25 0.24 95.19 0.23

0.0 95.08 0.21 95.38 0.21 96.59 0.23 95.18 0.21

0.1 94.99 0.19 94.79 0.19 95.94 0.21 94.99 0.19

0.2 95.07 0.16 95.26 0.16 96.84 0.17 95.17 0.16

0.5 -0.3 94.99 0.17 94.99 0.17 95.87 0.18 94.89 0.17

-0.2 94.83 0.18 94.92 0.18 95.79 0.19 94.83 0.18

-0.1 94.70 0.19 94.79 0.19 95.96 0.20 94.80 0.19

0.0 94.86 0.19 94.96 0.19 95.76 0.20 94.86 0.19

0.1 94.88 0.19 94.88 0.19 95.65 0.20 94.78 0.19

0.2 94.89 0.18 95.01 0.18 95.98 0.19 94.99 0.18

0.3 94.96 0.17 94.97 0.17 96.14 0.18 94.97 0.17

0.8 -0.1 94.88 0.12 94.94 0.12 96.12 0.13 94.83 0.12

0.0 95.16 0.14 95.12 0.14 96.20 0.14 95.07 0.14

0.1 95.02 0.15 95.26 0.15 96.08 0.15 95.22 0.15

0.2 94.98 0.15 95.03 0.15 95.87 0.16 95.12 0.15

0.3 94.93 0.16 95.17 0.16 96.19 0.16 95.21 0.16

https://doi.org/10.1371/journal.pone.0272007.t004
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guarantee the nominal coverage probability for small to moderate samples, except for the fidu-

cial and MIM CIs. Moreover, the score and MIM intervals have similar coverage in most cases,

but the expected lengths of score CIs are longer than those of MIM CIs. For example, when

n = 20, p1+ = 0.3 and δ = 0.2, the coverage rates of the score and MIM CIs are 0.9647 and

0.9679, respectively. In this case, the expected lengths of the score CI (0.93) are significantly

longer than those of the MIM CI (0.70). Furthermore, it seems that the score CI has a more

accurate coverage probability than the MIM CI in some cases such as n = 50, p1+ = 0.3 and δ =

0.1, but our MIM CI also has a shorter length than the score CI. Note that our MIM method

Fig 1. Coverage probabilities and expected lengths of the Score, Bayes, fiducial and MIM confidence intervals versus

P12 for fixed P11, where n = 30 and P11 = 0.1.

https://doi.org/10.1371/journal.pone.0272007.g001
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uses a shorter interval to obtain higher coverage, which shows that the MIM CI outperforms

the score CI.

From Table 4, when the sample size increases, the coverage probabilities of the score, Bayes-

ian and modified IM CIs all fall in the interval (0.9457, 0.9543). Although the fiducial CI has a

slightly larger coverage rate than other intervals, the expected lengths of the four CIs are almost

the same. In this sense, the fiducial method is not inferior to existing methods. Moreover,

according to the central limit theorem, the large sample properties indicate that the theoretical

results of the score, Bayesian, fiducial and modified IM methods will tend to be consistent. In

Fig 2. Coverage probabilities and expected lengths of the Score, Bayes, fiducial and MIM confidence intervals versus P12

for fixed P11, where n = 30 and P11 = 0.2.

https://doi.org/10.1371/journal.pone.0272007.g002
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summary, the fiducial and MIM methods can improve the poor coverage probabilities of the

score and Bayesian approaches for small to moderate sample sizes. For larger samples, the CIs

of score, Bayesian and MIM are the same, and the fiducial interval is not inferior to the other

three intervals. Compared with the fiducial interval, the MIM interval exhibits more accurate

coverage with a shorter expected length for all sample sizes. Hence, in terms of coverage proba-

bility and expected length, the MIM CI is the best of all.

To obtain a better understanding of the different performances of various intervals for

small sample sizes. Let n = 30. Figs 1–3 give plots of the coverage probabilities and expected

Fig 3. Coverage probabilities and expected lengths of the Score, Bayes, fiducial and MIM confidence intervals versus

P12 for fixed P11, where n = 30 and P11 = 0.5.

https://doi.org/10.1371/journal.pone.0272007.g003
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lengths of four CIs versus p12 for fixed p11 = 0.1, 0.2 and 0.5, respectively. Here, we draw a

dashed line (y = 0.9457) as the maximum lower bound of the coverage probability. Clearly, the

score and Bayesian intervals have coverage probabilities lower than 0.9457 in some cases, espe-

cially when p12 is very close to zero. In contrast, the fiducial approach can always guarantee

nominal coverage for all cases, and the MIM CI improves the conservative coverage of the

fiducial CI. For expected length, the fiducial and MIM methods have shorter expected lengths

than score and Bayesian approaches when p12 is close to zero. Moreover, although the score

and Bayesian CIs have shorter expected lengths in most cases, differences between various

expected lengths are small when p12 becomes larger. Note that the score and Bayesian CIs can-

not guarantee the preset coverage probability; hence, the fiducial and MIM intervals are supe-

rior to the score and Bayesian intervals.

Fig 4. Distribution functions of Kt,x(δ) (black) compared with that of Unif(0, 1) (gray) based on Monte Carlo samples from the

trinomial distribution versus p12 for fixed n = 20 and p11 = 0.1. Panel (a): p12 = 0.1. Panel (b): p12 = 0.2. Panel (c): p12 = 0.3. Panel

(d): p12 = 0.5.

https://doi.org/10.1371/journal.pone.0272007.g004
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Following [30], when the observed data (t,x) cannot be separated from the auxiliary vari-

ables (u’,v’), the validity condition Kt,x(δ)~Unif(0,1) may not be automatic. However, different

from other approaches, we can check the good coverage performance of the MIM method for

different parameter settings, p11 = 0.1 (0.2) 0.5; p12 = 0.1 (0.1) 0.5; n = 20 and 50. In each simu-

lation, we take 10,000 samples. The corresponding Monte Carlo estimators of the distribution

function of Kt,x(δ) in Figs 4–9 show that the approximate pl0t;xðAÞ is valid, that is,

sup
d2A

Pt;xjdfpl
0

t;xðAÞ � ag ¼ sup
d2A

Pt;xjdfKt;xðdÞ � a=2 [ Kt;xðdÞ � 1 � a=2g

� sup
d2A

PWfW � a=2 [W � 1 � a=2g ¼ a;

Fig 5. Distribution functions of Kt,x(δ) (black) compared with that of Unif(0, 1) (gray) based on Monte Carlo samples from the

trinomial distribution versus p12 for fixed n = 20 and p11 = 0.3. Panel (a): p12 = 0.1. Panel (b): p12 = 0.2. Panel (c): p12 = 0.3. Panel

(d): p12 = 0.5.

https://doi.org/10.1371/journal.pone.0272007.g005
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whereW~Unif(0,1). In particular, from Fig 7–9, the distribution function of Kt,x(δ) is very

close to that of Unif(0, 1) for a moderate sample size, hence the MIM method has accurate

coverage.

A real data analysis

We illustrate the application of the proposed methods with a real example. A sample of 156

dairy calves born in Florida, were classified according to whether they had pneumonia within

60 days after birth [4]. Calves that got a pneumonia infection were also classified according to

whether they got a secondary infection within two weeks after the first infection cleared up.

Table 5 shows the data. Calves that did not get a primary infection could not get a secondary

infection, so no observations can fall in the cell for “no” primary infection and “yes” secondary

Fig 6. Distribution functions of Kt,x(δ) (black) compared with that of Unif(0, 1) (gray) based on Monte Carlo samples from the

trinomial distribution versus p12 for fixed n = 20 and p11 = 0.5. Panel (a): p12 = 0.1. Panel (b): p12 = 0.2. Panel (c): p12 = 0.3. Panel

(d): p12 = 0.5.

https://doi.org/10.1371/journal.pone.0272007.g006
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infection. The goal of this study was to test whether the probability of primary infection was

the same as the conditional probability of secondary infection, given that the calf got the pri-

mary infection.

Here we used the RD to study the effect of primary infection on the likelihood of developing

secondary infection. Under the 95% confidence level, the score, Bayesian, fiducial and MIM

CIs for δ are (0.15, 0.39), (0.15, 0.39), (0.14, 0.40) and (0.15, 0.39), respectively. Clearly, the

lower bounds of the four intervals are all larger than 0. It is suggested that the primary infec-

tion of pneumonia should stimulate a natural immunity to reduce the likelihood of secondary

infection. Hence, the fiducial and MIM methods work well with calf immunity data. More

importantly, the MIM method also provides probabilistic summaries of the information in

data concerning the quantity of interest. To be more informative, we plot the plausibility

Fig 7. Distribution functions of Kt,x(δ) (black) compared with that of Unif(0, 1) (gray) based on Monte Carlo samples from the

trinomial distribution versus p12 for fixed n = 50 and p11 = 0.1. Panel (a): p12 = 0.1. Panel (b): p12 = 0.2. Panel (c): p12 = 0.3. Panel

(d): p12 = 0.5.

https://doi.org/10.1371/journal.pone.0272007.g007
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function pl0t;xðdÞ, as a function of δ in Fig 10. By locating α = 0.05 on the vertical axis, we can

easily find that the lower bound (0.15) and the upper bound (0.39) are in the MIM CI. Further-

more, the plausibility function shows that each point δ in the MIM interval is individually suf-

ficiently plausible. Clearly, no frequentist or Bayesian interval can assign such a meaning to the

individual elements it contains. In this sense, the proposed MIM interval is recommended for

practical use.

Discussion

The RD is a comparative measure between the probability of the primary infection and the

conditional probability of the secondary infection, given the primary infection. The confidence

Fig 8. Distribution functions of Kt,x(δ) (black) compared with that of Unif(0, 1) (gray) based on Monte Carlo samples from the

trinomial distribution versus p12 for fixed n = 50 and p11 = 0.3. Panel (a): p12 = 0.1. Panel (b): p12 = 0.2. Panel (c): p12 = 0.3. Panel

(d): p12 = 0.5.

https://doi.org/10.1371/journal.pone.0272007.g008
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intervals of the score and Bayesian methods have poor coverage performance for small to

moderate sample sizes. In this paper, we propose three valid CIs based on the fiducial, IM and

MIM approaches for the RD. The fiducial and IM-based CIs have more accurate coverage

Fig 9. Distribution functions of Kt,x(δ) (black) compared with that of Unif(0, 1) (gray) based on Monte Carlo samples from the

trinomial distribution versus p12 for fixed n = 50 and p11 = 0.5. Panel (a): p12 = 0.1. Panel (b): p12 = 0.2. Panel (c): p12 = 0.3. Panel

(d): p12 = 0.4.

https://doi.org/10.1371/journal.pone.0272007.g009

Table 5. Primary and secondary pneumonia infections of calves.

Secondary infection

Primary infection Yes No Total

Yes 30 63 93

No 0 63 63

Total 30 126 156

https://doi.org/10.1371/journal.pone.0272007.t005
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performance than the score and Bayesian CIs. Compared with the fiducial approach, IM-based

approaches can provide meaningful probabilistic summaries of the information in data con-

cerning the quantity of interest. Moreover, the MIM method uses a randomized IM idea to

modify the two inequation associations of IM to an accurate equation model. A real data

example shows that the proposed methods work well for the calf immunity data.

Different from other approximate approaches, our MIM solution has the advantage that its

approximation precision, which only depends on the simulation times rather than the sample

size, may tend to be as high as possible whether the sample size is large or small. Moreover, the

IM’s output is posterior-probabilistic in nature and, therefore, has a meaningful interpretation

within and not just across experiments. Moreover, our fiducial and IM-based methods are

general ideas that can be applied to infer other risk factors, such as the risk ratio. Finally, since

the effect of the observed data cannot be separated from the auxiliary variables, there could be

interest in the simultaneous prediction of several auxiliary variables. The best choice of predic-

tive random set needs further study.

Fig 10. MIM’s Plausibility function of δ in the calf immunity data.

https://doi.org/10.1371/journal.pone.0272007.g010
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