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Mutational scanning can be used to probe effects of large numbers of point mutations on
protein function. Positions affected by mutation are primarily at either buried or at exposed
residues directly involved in function, hereafter designated as active-site residues. In the
absence of prior structural information, it has not been easy to distinguish between these
two categories of residues. We curated and analyzed a set of twelve published deep
mutational scanning datasets. The analysis revealed differential patterns of mutational
sensitivity and substitution preferences at buried and exposed positions. Prediction of
buried-sites solely from the mutational sensitivity data was facilitated by incorporating
predicted sequence-based accessibility values. For active-site residues we observed
mean sensitivity, specificity and accuracy of 61, 90 and 88% respectively. For buried
residues the corresponding figures were 59, 90 and 84%while for exposed non active-site
residues these were 98, 44 and 82% respectively. We also identified positions which did
not follow these general trends and might require further experimental re-validation. This
analysis highlights the ability of deep mutational scans to provide important structural and
functional insights, even in the absence of three-dimensional structures determined using
conventional structure determination techniques, and also discuss some limitations of the
methodology.
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INTRODUCTION

Mutagenesis is a tool to learn about proteins, identifying functionally significant protein positions,
and understanding determinants of protein folding and stability. Deep mutational scanning
involving a combination of saturation mutagenesis, phenotypic screening and next generation
sequencing allows high-throughput analysis by measuring the effects of all possible amino acid
substitutions on protein function (Fowler and Fields, 2014). Deep mutational scanning reveals the
impact of mutations on a specific protein property, for example, interaction with a partner protein or
enzymatic activity. A general workflow for a deep mutational scan involves the creation of a library of
variants by applying a mutagenesis protocol to the genetic region of interest (Fowler et al., 2010)
which can include an entire coding sequence (Adkar et al., 2012). Next, these libraries are subjected to
some selection pressure, and this is used to observe the change in the frequency of variants with a
particular phenotype. The libraries are sequenced before and after selection to obtain relative
occurrences of different mutants in the population and estimate relative enrichment with respect to
the wild type sequence (Tripathi and Varadarajan, 2014).
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There have been numerous attempts to understand and
predict functional consequences of mutations by using
computational methods (Bloom et al., 2005; Moretti et al.,
2013). The availability of deep mutational scanning data has
helped to understand the contribution of every amino acid in a
protein to its structure, stability, and function, understand how
these mutations regulate protein activity, and to build on this
information to predict functional effects of mutations in other
contexts. Mutations can affect activity either by altering the
specific activity, altering the level of properly folded protein in
vivo, or by a combination of the above (Tripathi et al., 2016).
Identifying which of these is the primary contributor to an
observed phenotype is non-trivial.

For understanding the functional role of a protein, it is essential
to identify the key catalytic or functionally important residues that
we collectively refer to as active-site residues. There are several tools
available to predict protein function based on query protein
sequence or structural homology with well-characterized proteins
(Gherardini and Helmer-Citterich, 2008). One of the common
methods used to identify catalytic sites is using sequence
conservation (Berezin et al., 2004; Fischer et al., 2008). With the
availability of three-dimensional structures of proteins, these
methods can be further improved by combining structural and
sequence conservation information (Lichtarge et al., 1996; Aloy
et al., 2001; Capra et al., 2009). These methods provide cues to
design experiments, including site-directed mutagenesis
experiments, and help to give an improved prediction of
function (George et al., 2005). Such methods are helpful in cases
where protein structural information is available. For cases with
insufficient structural information, the data from deep mutational
scans can be utilized in order to infer functional sites based on the
substitution preferences across the protein under study.

In the present study, we have analyzed several deep
mutational scanning datasets and observed the mutational
sensitivity patterns at buried and exposed positions. Further,
the sequence-based predicted accessibility values were
incorporated together with the mutational sensitivity scores to
predict functional or active-site residues. These residues include
residues involved in catalytic activity, substrate binding, as well
as protein-protein or protein-ligand interactions. Predicted
accessibility scores help in the separation of the exposed from
the buried residues. Residues that are sensitive to mutation and
predicted to be exposed are likely to constitute the active-site,
while the remaining mutationally sensitive residues are likely to
be buried.

MATERIALS AND METHODS

Datasets for Large-Scale Mutagenesis
A subset of the published deep mutational scanning datasets was
curated. The result was a set of 12 deep mutational scans
(Table 1). While several other studies have been published,
most lack sufficient coverage of single-site mutations over the
region of interest, have more than one mutation per read or
describe complex phenotypes which preclude easy interpretation
of the data. Alternatively, several studies report heatmaps and raw

sequencing data without having the underlying numerical values
of the processed enrichment scores publicly available.

Data Rescaling
Most of the deep mutational scanning datasets reported
mutational effect scores as the log-transformed ratio of
mutant frequency before and after selection, divided by
wild-type frequency before and after selection. The counts/
frequency of the mutational sensitivity scores were considered
from the original datasets, and their distribution was plotted.
The values were sorted, and the 5th percentile of the value was
taken as the minimum value, min(M), for rescaling. The
maximum value, max(M), for the rescaling was considered
as the value at the peak for the wild type in the histograms. This
peak arises because many mutational effect scores are close to
that of the WT. The scores were rescaled between 0 and −1
using the formula:

Mrescaled � (b − a) M −min(M)
max(M) −min(M) + a,

where, M is the mutational effect score, a and b are −1 and 0,
respectively. With this normalization, the most sensitive positions
have mutational effect score ≈−1 and the wild type like mutations
have mutational effect score ≈0 (Supplementary Figure S1 and
Supplementary Table S1).

Depth and Accessibility Calculations
Both depth and accessibility of each residue were calculated from
the available structures deposited in the Protein Data Bank.
Amongst the datasets in the study, five of the proteins had
high-resolution PDB structures, namely dimeric CcdB
structure (PDB ID 3VUB) (Loris et al., 1999), PSD95 pdz3
domain (PDB ID 1BE9), BRCA1 RING domain (PDB ID
1JM7) (Starita et al., 2015), Gal4 (PDB ID 3COQ)
(Marmorstein et al., 1992) and TEM1 β-lactamase (PDB ID
1FQG) (Strynadka et al., 1992).

The residue depth calculations were performed using the
DEPTH server (http://cospi.iiserpune.ac.in/depth/htdocs/index.
html) (Chakravarty and Varadarajan, 1999; Tan et al., 2011). A
residue was defined as buried or exposed if the side chain
accessibility is ≤5 or >5% respectively, based on the
accessibility calculated using the NACCESS program (Adkar
et al., 2012).

Prediction of Sequence-Based Surface
Accessibility
The sequence-based surface accessibility values were predicted
using PROF (Rost and Sander, 1994), a neural network-based
method (https://open.predictprotein.org/). These values were
compared with the structure-based surface accessibility values,
which were calculated using the NACCESS program (Hubbard
and Thornton, 1993). NetSurfP was also used for the prediction of
sequence-based surface accessibility (Petersen et al., 2009) and
compared with the prediction results obtained using PROF.
PROF and NetSurfP predictions were also compared with
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SPIDER3 (Heffernan et al., 2017), a machine learning method
that takes into account the non-local interactions in its
predictions.

Prediction of the Active-Site, Buried and
Exposed Non Active-Site Residues
The rescaled mutational sensitivity values were averaged across
mutations for each position. The averaged mutational sensitivity
scores were filtered to include only those positions that had
mutational data for a minimum of 10 mutants per position.
Also, only those positions were considered for which the
predicted sequence-based accessibility values were predicted.
Both the scores for averaged mutational sensitivity and PROF
accessibility are converted to Z-scores by subtracting the mean
value and dividing by the standard deviation. The final score for
predicting the active-site residues is obtained by using the
following formula:

Zpred � Zaveragemut−sens ± Zprof−acc,

Where, Z represents the z-scores. For the prediction of active-site
residues, the two scores are added, whereas the scores are
subtracted for the prediction of buried positions. The mean
and standard deviation were calculated for the combined
score. Residues with scores one standard deviation away from
the mean were predicted as active-site or buried.

For the prediction of exposed non-active site residues, the
same scores that used the rescaled averaged mutational sensitivity
scores along with the sequence-based accessibility scores were
considered. The residues that occurred beyond the cut-off for
prediction of active-site residues were predicted to be exposed
non active-site residues. A similar analysis was performed by
incorporating the sequence-based accessibility values obtained
using NetSurfP and SPIDER3 to compare the three classes of
prediction namely, active-site, buried and exposed non active-site
residues.

Evaluation Metrics
We assume the active-site residues to represent the positive
samples and non active-site residues to represent the negative

samples for the prediction of active-site residues. On the other
hand, for the prediction of the buried sites, we consider the buried
site residues as the positive samples and the exposed residues as
the negative samples. The exposed non active-site prediction
considered the positive and negative samples in similar way.
To evaluate the performance of prediction, four evaluation
metrics are used in this study: sensitivity, specificity, accuracy,
and Matthews correlation coefficient (MCC).

Sensitivity � TP
TP + FN

,

Specificity � TN
TN + FP

,

Accuracy � TP + TN
TP + TN + FP + FN

,

Matthews Correlation Coefficient

� (TPp TN) − (FPp FN)
�����������������������������������(TP + FP)(TP + FN)(TN + FP)(TN + FN)√ ,

where TP, TN, FP, FN are True Positives, True Negatives, False
Positives, and False Negatives, respectively.

RESULTS

Deep mutational scanning involves measurement of large
numbers of mutational phenotypes for a given protein using
phenotypic screening coupled to deep sequencing (Adkar et al.,
2012; Fowler et al., 2010). It can be used to quantify the
phenotypic effects of all mutations at each position in a
protein. These deep mutational scanning data sets help
understand the relationships between amino acid sequence
and phenotype. The assay formats used for the deep
mutational scans included plate-based activity screens, FACS,
phage display and yeast two-hybrid methodologies (Gupta and
Vardarajan, 2018). Site-saturation mutagenesis (SSM) has been
employed in several studies to probe residue-specific
contributions to activity, stability, and binding for whole
proteins (Gray et al., 2017). This study analyzed 12 large-scale
mutational datasets of 11 proteins from existing deep mutational

TABLE 1 | Large-scale deep mutational scanning datasets used in this study.

Data set Mutagenized
positions

Host Selection PDB ID Citation

Aminoglycoside kinase 264 E. coli. Antibiotic resistance 1ND4 (Melnikov et al. (2014))
BRCA1 RING domain-BARD1 binding 102 S. cerevisiae Binding activity (Y2H) 1JM7 (Starita et al. (2015))
BRCA1 RING domain–E3 ligase activity 102 S. cerevisiae Ubiquitin ligase activity 1JM7 (Starita et al. (2015))
CcdB 100 E. coli. Toxin activity 3VUB (Adkar et al. (2012))
Gal4 (DBD) 64 S. cerevisiae Transcription factor activity 3COQ (Kitzman et al. (2015))
G protein (GB1-IgG-Binding domain) 54 Streptococcus sp. group G IgG-Fc binding 1PGA (Olson et al., (2014))
Hsp90 (ATPase domain) 219 S. cerevisiae Chaperone activity 2CG9 (Mishra et al. (2016))
NUDT15 163 E. coli Abundance and drug sensitivity 5LPG (Suiter et al. (2020))
Pab1 (RRM domain) 75 S. cerevisiae mRNA binding 1CVJ (Melamed et al. (2013))
PSD95(pdz3 domain) 83 E. coli. Ligand binding 1BE9 (McLaughlin et al. (2012)
TEM1 β-lactamase 263 E. coli Antibiotic resistance 1FQG (Stiffler et al. (2015))
Ubiquitin 75 S. cerevisiae Ubiquitin ligase activity 1UBQ (Roscoe et al. (2013))

Frontiers in Molecular Biosciences | www.frontiersin.org March 2021 | Volume 8 | Article 6354253

Bhasin and Varadarajan Structural Inferences from Saturation Mutagenesis

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


scan experiments (Figure 1 and Table 1). In the case of BRCA1,
there are two independent deepmutational scan experiments, one
for BRCA1 BARD1 binding and the other for E3 ligase activity
(Starita et al., 2015). In these separate experiments, a multiplexed
yeast two-hybrid assay was used to select for the ability of BRCA1
RING domain (2–103) variants to interact with the RING domain
of BARD1. The structure is also available for the BRCA1/
BARD1 RING-domain heterodimer (1JM7) (Brzovic et al.,
2001). Since the present study involves the prediction of the
active-site residues based on the mutational effect scores and the
sequence-based accessibility predictions, the variants from the
same region (2–103) of BRCA1 were used for the E3 ligase
function experiment instead of using the E3 ligase scores
available for full-length BRCA1 protein.

Some general patterns of mutational sensitivity were observed
for the datasets used in the present study. Buried residues have
high mutational sensitivity compared to those that are exposed
and not part of the active-site. The residues that show high
mutational sensitivity at exposed regions are typically involved in
an interaction with some other proteins or are part of a catalytic
or ligand binding site. As discussed above, these residues are
classified as active-site residues. Hence, it is important to examine
if these active-site residues can be distinguished from buried
residues based on the mutational sensitivity scores, even in the
absence of structural data (Tripathi et al., 2016).

Analysis of Mutational Sensitivity Data
The datasets contained effect scores for most mutations at each
position. To facilitate comparisons between each data set, the
mutational effect scores were rescaled for each protein. To
understand the overall trends in mutational sensitivity, the
substitution preferences were examined for all the proteins in
the dataset. A residue was defined as buried or exposed based on
its side-chain accessibility calculated using the NACCESS
program. A cut-off of 5% side-chain accessibility was used

(Adkar et al., 2012). The interface residues for the proteins in
the dataset were determined from the corresponding literature
citations of their respective structures.

Most exposed positions have a low mutational sensitivity
(Supplementary Figure S2). It has been observed that buried
residues along with some of the exposed residues have a high
mutational sensitivity. Exposed residues that are sensitive to
mutations are likely to be a part of the active-site (Wu et al.,
2015). We examined if the substitution specific patterns of
mutational sensitivity could help to distinguish the active-site
residues from the buried ones. The effect of various substitutions
was analyzed for different categories, namely aliphatic, aromatic,
polar and charged (Supplementary Figure S2). In most cases,
buried positions tolerated aliphatic substitutions, except when the
wild-type residue is an Alanine or Glycine residue. Polar and
charged residues are poorly tolerated at buried positions. Exposed

TABLE 2 | Correlation coefficients of surface accessibility predicted using PROF,
NetSurfP and SPIDER3 with values calculated from the structure using
NACCESS. The oligomeric state of the protein based on the PDB structure is also
mentioned.

Protein Correlation coefficient Oligomeric
statePROF NetSurfP SPIDER3

Aminoglycoside kinase 0.66 0.75 0.69 Dimer
BRCA1 RING domain 0.45 0.62 0.66 Monomer
CcdB 0.71 0.75 0.74 Dimer
Gal4 (DBD) 0.73 0.77 0.66 Tetramer
GB1 (IgG-binding
domain)

0.67 0.52 0.64 Monomer

Hsp90 (ATPase domain) 0.56 0.64 0.59 Tetramer
NUDT15 0.55 0.63 0.62 Dimer
Pab1 (RRM domain) 0.75 0.81 0.77 Dimer
PSD (pdz3 domain) 0.74 0.81 0.61 Dimer
TEM1 β- lactamase 0.74 0.81 0.79 Monomer
Ubiquitin 0.74 0.84 0.73 Monomer

FIGURE 1 | The number of single amino-acid mutations in various deep mutational scanning datasets of 12 proteins.
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active-site residues showed very high mutational sensitivity
including for substitutions to aliphatic residues
(Supplementary Figure S2). The general trends in mutational
sensitivity were similar for most proteins that were considered for
the analysis. However, some proteins namely E3 ligase activity of
BRCA1 RING domain, NUDT15 and aminoglycoside kinase
were exceptionally sensitive to mutation, even at exposed non

active-site residues. Even for the same protein, two different
activity assays namely BARD1 binding and E3 ligase activity
showed very different mutational sensitivity profiles. While this is
understandable for active-site residues, it is hard to understand
for buried residues where mutations are expected to primarily
affect protein levels, rather than specific activity (Bajaj et al., 2008;
Tripathi et al., 2016)

Correlation Between Calculated and
Predicted Solvent Accessibility
To predict the active-site residues solely from the mutational
sensitivity data, the accessibility was predicted based on sequence
using PROF (Rost and Sander et al., 1994). Further, the
correlation was calculated between the calculated surface
accessibility and the predicted accessibility values (Table 2).
The predicted surface accessibility for the 11 proteins from 12
datasets showed a Pearson’s correlation coefficient r ∼ 0.6 with
the calculated surface accessibility values in most cases. The
predicted accessibility information was combined with the
mutational sensitivity scores to predict the active-site and
buried residues as described in the Methods section.

To illustrate the accuracy of the accessibility predictions,
results obtained from PROF and the calculated accessibility
from NACCESS are mapped on the structure of CcdB (PDB
ID: 3VUB). CcdB is a 101-residue homodimeric toxin found on
F-plasmid (Figure 2). The true positives, false positives, true
negatives and false negatives are highlighted in the figure. Here,
true positives are correctly predicted exposed residues while false
positives are buried residues that are incorrectly predicted as
exposed by PROF. True negatives were correctly predicted buried

FIGURE 3 | Flowchart of the methodology for prediction of active-site, buried and exposed non-active site residues. The mutational sensitivity score was
determined for each mutant from deep sequencing-based screening. These scores were rescaled and averaged across each position. The sequence-based surface
accessibility was predicted using the PROF server. The residues that showed significant sensitivity to mutations and which were predicted to be exposed were further
considered to be the active-site residues.

FIGURE 2 | PROF prediction results for CcdB. The sequence-based
surface accessibility results obtained from PROF mapped onto the structure
of CcdB homodimer (PDB ID: 3VUB). The predictions with respect to the
exposed positions are mapped on the structure. One monomer is
highlighted in gray and the prediction results are mapped onto the other
monomer. The true positives are highlighted in blue, false positives in pink, true
negatives in tan and false negatives in orange based on the predictions from
PROF and crystal structure accessibilities calculated using NACCESS.
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residues and false negatives were exposed residues wrongly
predicted as buried.

Performance of theMethod for Prediction of
Active-Site, Buried and ExposedNon-Active
Site Residues
Deep mutational scanning plays a crucial role in identifying
protein-ligand interfaces and is useful regardless of the
structural context. To identify the active-site residues and
distinguish them from buried residues, we analyzed the
structures of 11 proteins for the dataset used. The dataset
comprises proteins that share interfaces with other proteins
and includes a protein that binds to DNA. For all the
proteins, structure-based solvent accessibilities were calculated
to validate the predicted accessibilities (Figure 3).

For the prediction of active-site residues, an average sensitivity
of ∼61% was observed (Table 3). This shows that if only the
mutational sensitivity scores and sequence-based accessibility
values are used, then those residues which are exposed and
non-interacting, as well as ones that are buried, are segregated
from the active-site residues. There is often a trade-off between
specificity and sensitivity. Consistent with this, it was observed
that for some of the datasets, there is low sensitivity, i.e., not all
active-site residues are identified. In these cases, most of the

exposed active-site residues have been incorrectly predicted as
buried residues.

It has been observed that active-sites, as well as buried
positions, have high mutational sensitivity. Therefore, it is
essential that these buried positions are separated from the
exposed active-site residues to enhance the accuracy of active-
site prediction. To identify buried residues, we employed
predicted accessibility values that have been obtained from
sequence information. Since sequence-based accessibility
Z-scores for buried residues are typically very low, these scores
are subtracted from the averaged mutational sensitivity scores to
predict them in the absence of structural information. After
combining both averaged mutational sensitivity scores and
sequence-based accessibility values from PROF, an average
specificity of ∼90% is observed (Table 4). The sensitivity is
∼55% as some buried residues are predicted as exposed by the
sequence-based accessibility predictor. The overall value of
average sensitivity is affected by the low sensitivity of
predictions in the case of HSP90 (Mishra et al., 2016). The
pattern of mutational sensitivity for the buried positions in
this protein is atypical, relative to the overall trend observed in
the other large-scale mutagenesis datasets, with many buried
positions tolerating charged substitutions. A similarly high degree
of tolerance is observed for the BRCA1 RING domain, but only
when BARD1 binding, rather than E3 ligase activity is assayed.

TABLE 4 | Prediction of buried sites based on mutational sensitivity data and PROF predicted sequence-based accessibility values.

Dataset Sensitivity (%) Specificity (%) Accuracy (%) Matthews correlation coefficient

Aminoglycoside kinase 66.6 90.8 85.6 0.57
BRCA1 RING domain-BARD1 binding 38.5 88.2 80.2 0.27
BRCA1 RING domain–E3 ligase activity 38.5 80.6 73.3 0.12
CcdB 68.4 96.1 90.6 0.69
Gal4 (DBD) 50 78.6 77.6 0.13
GB1 (IgG-binding domain) 70 90.9 87 0.58
Hsp90 (ATPase domain) 18.8 84.7 73.5 0.06
NUDT15 69.7 88 84.2 0.55
Pab1 (RRM domain) 80 89.8 87.8 0.65
PSD (pdz3 domain) 55 90.5 81.9 0.48
TEM1 β- lactamase 59.8 91.5 80.9 0.55
Ubiquitin 45.5 83.3 76.9 0.26

TABLE 3 | Active-site prediction based on the mutational sensitivity data and PROF predicted sequence-based accessibility values.

Dataset Sensitivity (%) Specificity (%) Accuracy (%) Matthews correlation coefficient

Aminoglycoside kinase 72.7 87.7 87.1 0.34
BRCA1 RING domain-BARD1 binding 45.5 91.4 85.2 0.37
BRCA1 RING domain–E3 ligase activity 50 92.3 86.6 0.42
CcdB 75 98.9 96.9 0.79
Gal4 (DBD) 46.6 86.1 75.9 0.34
GB1 (IgG-binding domain) 85.7 91.5 90.7 0.66
Hsp90 (ATPase domain) 93.3 92 92.1 0.63
NUDT15 50 91.2 85.4 0.41
Pab1 (RRM domain) 62.5 87.9 85.1 0.41
PSD (pdz3 domain) 75 90.6 89.2 0.53
TEM1 β-lactamase 66.6 85.8 85.2 0.26
Ubiquitin 70 96.4 92.3 0.69
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The accuracy of prediction results for both active-site and
buried residues are ∼88% and ∼84%, respectively. In the case of
prediction of the buried positions, it was observed that the
incorporation of sequence-based accessibility values played an
important role in improving the results (Supplementary Figure
S3). This helped to distinguish both the categories of mutationally
sensitive positions, namely exposed active-site and buried
positions. In contrast, prediction of the exposed non active-site
residues prediction did not show significant improvement after
incorporating the sequence-based accessibility scores
(Supplementary Figure S3). Overall, incorporating the
sequence-based accessibility values along with the averaged
mutational sensitivity scores improves the prediction
performance of the method primarily for buried residues and
can be useful in identifying key residues in the protein even in the
absence of structural information.

Along with the prediction of the active-site and buried
residues, the exposed non active-sites can also be
distinguished from the other two categories. The high value
of sensitivity in these prediction results points to the ability of
the method to identify these residues (Table 5). In a few cases,
it was observed that there are a few exposed positions far from
the active-site that show high mutational sensitivity. In the
case of TEM1 β-lactamase, it was observed that exposed
positions with large side chain show a high mutational
sensitivity in comparison to the other exposed non active-
site residues. For example, Trp210, Trp229 and Trp290 are
exposed residues that are crucial for the structure and activity
of β-lactamase (Huang et al., 1996). Mutations at such
positions may lead to the instability of the enzyme, thus
abrogating its function, though this needs to be confirmed
by experiments. In comparison to predictions in the other two
categories, prediction specificity was low for exposed non
active-site residues, probably resulting from the lower
fraction of true negatives in this category.

The Matthew’s correlation coefficient (MCC) was computed
using either the experimental mutational effect scores or the
PROF predicted accessibility values. These values were compared
with corresponding values obtained using the combined score for
all the three categories of predictions (Figure 4). The results show
that overall, the combined score yields the best results.

Comparison of the Results Across Other
Solvent Accessibility Predictors
In the above analysis, the sequence-based accessibility scores
from PROF were considered along with the experimental
mutagenesis scores to calculate the prediction sensitivity for
the active-site, buried and exposed non active-site residues.
The average Pearson’s correlation coefficient of predicted
accessibility from PROF with calculated surface accessibility
from NACCESS is 0.66.

The analysis was also performed with another sequence-based
accessibility predictor NetSurfP (Petersen et al., 2009). In this
case, the correlation between the predicted accessibility from
NetSurfP and calculated accessibility from NACCESS, is
improved with an average correlation coefficient of 0.72. The
sensitivity, specificity and accuracy of the results were
recalculated using NetSurfP rather than PROF for residue
accessibility prediction (Figure 5, Supplementary Tables
S3–S5). Results for prediction of buried and exposed non-
active site residues are comparable with both accessibility
predictors. However for active-site residues the sensitivity was

FIGURE 4 | Comparison of Matthew’s correlation coefficients of
predictions using experimental mutational effect scores alone, PROF
predicted accessibility alone and experimental mutational effect scores
combined with the PROF predicted accessibility scores (combined
score).

TABLE 5 | Prediction of exposed non active-site residues based on mutational sensitivity data and PROF predicted sequence-based accessibility values.

Dataset Sensitivity (%) Specificity (%) Accuracy (%) Matthews correlation coefficient

Aminoglycoside kinase 94.9 22.1 76.1 0.25
BRCA1 RING domain-BARD1 binding 94.7 25 74.1 0.29
BRCA1 RING domain–E3 ligase activity 92.3 34.8 74.7 0.34
CcdB 97.1 29.6 78.1 0.39
Gal4 (DBD) 92.3 41.2 77.5 0.41
GB1 (IgG-binding domain) 89.2 35.3 72.2 0.29
Hsp90 (ATPase domain) 92.3 36.2 80 0.34
NUDT15 90.3 23.6 67 0.27
Pab1 (RRM domain) 94.2 50 81.1 0.52
PSD (pdz3 domain) 92.7 35.7 73.5 0.36
TEM1 β-lactamase 92.0 31 68.8 0.3
Ubiquitin 97.8 40 80 0.5
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lower when the NetSurfP predicted accessibility was used instead
of the PROF predicted accessibility.

In order to compare between the various surface accessibility
predictors, SPIDER3 (Heffernan et al., 2017) was also used for
prediction of active-site, buried and exposed non active-site
residues. SPIDER3 is a method that captures long-range, non-
local interactions and predicts the protein one-dimensional
structural properties. The correlation between the predicted
accessibility using SPIDER3 and calculated accessibility using
NACCESS was 0.68 which is comparable to the correlation
coefficient observed in the case of PROF. After incorporating
sequence-based accessibility scores from SPIDER3 with the

experimental mutational sensitivity scores, there was a very
slight improvement in the prediction sensitivity of the buried
positions. However as with NetSurfP, the mean sensitivity values
for prediction of active-site residues and mean accuracy values
were lower with SPIDER3, relative to PROF (Figure 5;
Supplementary Tables S3–S5).

Comparison of the Results with Mutational
Effect Predictors
As there is currently a limited number of complete deep
mutational scanning datasets, a similar analysis was carried
out by using the predicted mutational effect scores from the
computational variant effect predictor SNAP2 (Hecht et al.,
2016), which required only the sequence as the input to
predict mutational effect scores. An average Pearson’s
correlation coefficient of 0.5 was see between the experimental
and SNAP2 predicted scores. The three categories of residues
namely, active-site, buried and exposed non active-site residues
were further predicted using the SNAP2 scores by combining
them with PROF predicted accessibility (Figure 6,
Supplementary Table S6). The predicted variant effect scores
poorly predict active-site residues. However, prediction metrics
for buried and exposed non active-site residues are comparable in
terms of their sensitivity, specificity and accuracy to those
obtained with experimental mutational scores.

DISCUSSION

Deep mutational scanning is a method that is widely used to
probe the effects of substitutions on proteins, which helps to
identify functionally important residues (Adkar et al., 2012). In
this study, we examined if such large-scale mutagenesis datasets,
could be used to infer locations of functional sites in proteins and
distinguish them from other positions based on their specific
mutational sensitivity pattern.

The present analysis reveals that active-site residues are on
average more sensitive to mutation than buried residues. Use of
sequence-based accessibility predictions further contributes to
distinguishing buried positions from the exposed active-site
residues. The third category of residues that is largely
insensitive to mutation, is exposed non active-site residues
There are a few exposed non active-site residues that are mis
predicted as active-site residues. One of the reasons for this is
their proximity to the active-sites, thus making them sensitive to
substitutions. In some cases, these exposed mutationally sensitive
residues have accessibility values that are close to the cut-off that
is used for classifying them as exposed or buried. Among the
datasets considered for prediction of active-site residues, there is
one deep mutational scan of the DNA-binding domain (DBD) of
Gal4, a yeast transcription factor (Kitzman et al., 2015). Gal4
binds DNA as a homodimer via a Zn2Cys6-class domain centered
on a pair of Zn2+ ions. This helps to maintain the fold of the
DNA-binding residues. Substitutions at any of six cysteines
completely disrupts the function (Marmorstein et al., 1992).
Since these cysteines are both buried, but also involved in the

FIGURE 5 | Comparison of mean values of sensitivity, specificity and
accuracy of predictions using mutational effect scores combined with the
predicted accessibility results from PROF, NetSurfP and SPIDER3
respectively.
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activity of the protein, they are considered as active-site residues
for analysis. They have been further excluded in the prediction of
the buried residues. It was also observed that sensitivity of
predictions decreases for proteins with a large number of
interacting partners or with limited mutational sensitivity data.
Thus, for the present study only those deep mutational scanning
datasets are considered which have an average of at least ten
mutants per residue.

For datasets where the relative fitness effects of single amino
acid mutations were observed under antibiotic selection, an

optimum antibiotic concentration value was selected for
prediction. In the case of TEM1 β-lactamase, mutational data
foe selection with an ampicillin concentration of 625 μg/ml were
used (Stiffler et al., 2015). Higher concentrations of ampicillin
result in highmutational sensitivity across the entire protein. This
results in inability to separate the key catalytic residues from the
non-interacting ones. For aminoglycoside kinase, the relative
abundance of mutant vs. wild-type amino acids at each
position was examined under kanamycin selection at a range
of inhibitory concentrations (Melnikov et al., 2014). At high
kanamycin concentration, the mutational sensitivity was again
very high, thus data from the lower kanamycin concentration was
used for analyzing the pattern of mutational sensitivity. In
general, it appears that mutational scanning datasets are most
useful when phenotypic screens are carried out under conditions
where ∼25% of substitutions yield measurable phenotypes.

Amongst the deep mutational scanning datasets analyzed in
this study, there are a few cases where there is high mutational
sensitivity at non active-site residues. One such example is the
deep mutational scan of TEM1 β-lactamase (Stiffler et al., 2015).
There are residues that are distal from the active-site but are
highly sensitive to substitutions, suggesting possible allostery
(Avci et al., 2016). However, it is difficult to know if such
mutational sensitivity is because of functional allostery or
because of a decreased level of secreted protein, for example
because of increased proteolysis. This emphasizes the need to
measure both levels of properly folded protein as well as activity.
This is not done in most mutational scans.

Since there still relatively few proteins that have been subjected
to deep mutational scans, computationally predicted variant
effect scores were used in place of experimental data.
However, this led to poor predictions for active-site residues.
In future, given recent advances in deep learning based structure
prediction (Senior et al., 2020), it would be interesting to map
computationally predicted variant scores onto structural models
to more accurately predict active-site residues.

In addition to identifying buried, active-site and exposed non
active-site residues, the present analysis has identified puzzling
mutational sensitivity features in some of the proteins in the
present dataset, that reflect either our incomplete understanding
of determinants of protein stability and function or potential
lacunae in the experimental data that need additional validation
through repeat experiments.
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