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Abstract: 6-hydroxydopamine (6-OHDA) is used to induce oxidative damage in neuronal cells, which
can serve as an experimental model of Parkinson’s disease (PD). Jujuboside A and B confer free radical
scavenging effects but have never been examined for their neuroprotective effects, especially in PD;
therefore, in this study, we aimed to investigate the feasibility of jujubosides as protectors of neurons
against 6-OHDA and the underlying mechanisms. 6-OHDA-induced neurotoxicity in the human
neuronal cell lines SH-SY5Y and SK-N-SH, was used to evaluate the protective effects of jujubosides.
These findings indicated that jujuboside A and B were both capable of rescuing the 6-OHDA-induced
loss of cell viability, activation of apoptosis, elevation of reactive oxygen species, and downregulation
of the expression levels of superoxide dismutase, catalase, and glutathione peroxidase. In addition,
jujuboside A and B can reverse a 6-OHDA-elevated Bax/Bcl-2 ratio, downregulate phosphorylated
PI3K and AKT, and activate caspase-3, -7, and -9. These findings showed that jujubosides were
capable of protecting both SH-SY5Y and SK-N-SH neuronal cells from 6-OHDA-induced toxicity via
the rebalancing of the redox system, together with the resetting of the PI3K/AKT apoptotic signaling
cascade. In conclusion, jujuboside may be a potential drug for PD prevention.

Keywords: apoptosis; caspase; 6-hydroxydopamine; jujubosides; Parkinson’s disease; reactive
oxygen species

1. Introduction

The etiology of Parkinson’s disease (PD), a neurodegenerative disorder characterized
by a progressive loss of dopamine-producing neurons in the substantia nigra of the brain,
has not been well studied [1]. It is widely believed that oxidative stress near dopaminergic
neurons plays a critical role in the disease [2–5], and it has been reported that the metabolism
of dopamine is the main cause of the imbalance of redox status around the neurons, which
at a relatively high level can damage themselves [6,7].
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6-hydroxydopamine (6-OHDA), a metabolite of the neurotransmitter dopamine, may
cause an accumulation of ROS near the cells themselves and damage dopaminergic neu-
rons [8]. Accumulated ROS include hydrogen peroxide (H2O2), superoxide radicals
(O2
•−) [8,9], and oxidized products [9,10]. In cells and animal models, 6-OHDA has

been commonly used as a Parkinson’s experimental model for drug screening and path-
way investigation [9,11–13]. For instance, 6-OHDA may induce p53- and Bax-mediated
apoptotic signaling networks in PC12 cells [14]. In SH-SY5Y cells, 6-OHDA can cause
oxidative stress, inducing breakage of the mitochondrial membrane, leakage of cytochrome
c, activation of caspase-3, and the promotion of programmed cell death [15]. More interest-
ingly, Cirmi et al. found that 6-OHDA could also induce the production of nitric oxide and
affect Parkinson-related genes, such as SNCA, LRRK2, PINK1, DJ-1 and PARK2 [12]. Thus,
revealing the underlying mechanisms of 6-OHDA to damage neuronal cells and identifying
drugs that can reverse or prevent 6-OHDA-induced damage are important for providing
possible strategies against Parkinson’s disease.

Jujubae Fructus (also named jujube, or red date) contains abundant flavonoids, polysac-
charides and triterpenic acids. In ancient Chinese culture, jujube has been widely used
as a Chinese herbal medicine for thousands of years without scientific evidence. Recent
pharmaceutic and pharmacodynamics investigations have shown that flavonoids and
polysaccharides are major contributors to the antioxidative efficacy of jujube [16–18]. In
addition, these polysaccharides in jujube are beneficial to human health because of their
immuno-modulatory and hematopoietic efficacies [19,20]. Furthermore, the triterpenic
acids present in jujube are the main ingredients responsible for their anti-inflammatory and
anticancer properties [21,22]. Betulinic acids and jujuboside Bin jujube have been proven
to be beneficial to the cardiovascular system both in cells and animal models [23,24]. In
the 2010s, several reports summarized the major components of jujube and their potential
health benefits [25,26]. Jujuboside A has been reported to have multiple properties, in-
cluding antioxidant, anti-inflammatory, anti-anxiety, hypnotic-sedative, and anti-apoptosis
capacities [27,28]. Han et al. found that jujuboside A is capable of reducing isoproterenol-
induced damage via the PI3K/AKT/mTOR signaling axis [29]. The sedative-hypnotic
capacity of jujuboside B is a major characteristic [30–32]. In 2014, jujuboside B was first
found to have anticancer activity, suppressing the proliferation of AGS and HCT116 cells
via the activation of p38 and JNK-mediated apoptotic signals [33]. In 2020, jujuboside B
was found to trigger apoptosis in acute leukemia U937 cells via the RIPK1/RIPK3/MLKL
signaling pathway [34]. In 2021, Guo et al. reported that jujuboside B can induce apopto-
sis and autophagy in MDA-MB-231 and MCF-7 human breast cancer cells [35]. Overall,
jujubosides A and B, rather than other constituents of jujube, have therapeutic potential
in multiple organs and tissues, and translational scientists are just beginning to reveal
their mechanisms.

Although several studies have investigated the efficacy of jujuboside A and B in
various types of cells, studies focusing on the neuroprotective activities are lacking. In
this study, we aimed to reveal the mechanisms by which jujubosides (jujuboside A and B,
the main active components in the seeds of wild jujube) prevent the neurotoxic effects of
6-OHDA in SH-SY5Y and SK-N-SH cells.

2. Results
2.1. 6-OHDA Induced Suppression in Cell Viability

The structures of jujuboside A and B are shown in Figure 1A,B. As shown in Figure 1C,D,
treatment with 6.25, 12.5, 25 and 50 µM of 6-OHDA alone for 24 h significantly suppressed
SH-SY5Y and SK-N-SH cells’ viability in a dose-dependent manner (Figure 1C,D). In detail,
the 6.25, 12.5, 25 and 50 µM 6-OHDA treatments for 24 h were capable of suppressing
cell viability to 93.67 ± 1.75, 84.00 ± 4.69, 51.17 ± 8.16, and 16.83 ± 4.26% of untreated
SH-SY5Y cells, respectively (Figure 1C). At the same time, 6.25, 12.5, 25, and 50 µM of
6-OHDA treatments for 24 h were capable of suppressing the cell viability to 92.17 ± 5.12,
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59.83 ± 9.81, 42.00 ± 9.34 and 11.83 ± 2.64% of untreated SK-N-SH cells, respectively
(Figure 1D).
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Figure 1. Structures of jujuboside A and B, and 6-OHDA suppressive effects on cell viabilities in
SH-SY5Y, and SK-N-SH cells. (A,B) Structures of jujuboside A and B, respectively. (C,D) 6-OHDA
suppressive effects on cell viabilities in SH-SY5Y and SK-N-SH cells, respectively. * Statistically
significant from untreated group. Each experiment was repeated for at least 6 times.

2.2. Alleviation Effects of Jujubosides on 6-OHDA-Induced Decease in Cell Viability

To determine whether jujuboside A and B have protective effects on 6-OHDA-suppressed
cell viability, SH-SY5Y and SK-N-SH cells were co-treated with jujuboside A (0, 1, 2, 4, 8, 16,
32, and 64 µM) or jujuboside B (0, 1, 2, 4, 8, 16, 32, and 64 µM) and 25 µM of 6-OHDA for
24 h. As shown in Figure 2, jujuboside A or B alone did not induce a significant suppression
of cell viability at a dose of less than 16 µM in either cell line. In addition, they induced less
than a 20% loss of cell viability at 32 or 64 µM (Figure 2).

As shown in Figure 3A,B, jujuboside A significantly reversed the cell viability sup-
pressed by 25 µM of 6-OHDA at 4, 8, and 16 µM to 59.83 ± 4.54, 72.67 ± 4.84, and
86.50 ± 3.83% in SH-SY5Y cells, and 60.50 ± 2.66, 73.50 ± 5.13, and 79.83 ± 3.06% in SK-N-
SH cells, respectively (Figure 3A,B). Similarly, jujuboside B was capable of rescuing the cell
viability suppressed by 25 µM of 6-OHDA at 16, 32 and 64 µM to the levels of 57.83 ± 3.82,
74.17 ± 3.92, and 77.00 ± 5.48% in SH-SY5Y cells, and 59.50 ± 3.45, 75.17 ± 6.40, and
76.50 ± 5.17% in SK-N-SH cells, respectively (Figure 3C,D).
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Figure 2. Suppressive effects of jujuboside A and B on cell viabilities in SH-SY5Y and SK-N-
SH cells. (A,B) Suppressive effects of jujuboside A on SH-SY5Y and SK-N-SH cells, respectively.
(C,D) Suppressive effects of jujuboside B on SH-SY5Y and SK-N-SH cells, respectively. * Statistically
significant from untreated group. Each experiment was repeated for at least 6 times.

2.3. 6-OHDA Would Induce Cell Apoptosis

To examine whether 6-OHDA-suppressed cell viability was induced by the induction
of apoptosis, the appearance of sub-G1 cells was measured by flow cytometry. The results
showed that 6-OHDA could induce cells to undergo apoptosis at the dose above 12.5 µM
and 6.25 µM in SH-SY5Y and SK-N-SH cells, respectively (Figure 4). In detail, 6-OHDA
12.5, 25, and 50 µM treatments were capable of inducing 14.52 ± 6.93, 38.75 ± 5.77, and
72.75 ± 12.74% apoptosis of SH-SY5Y cells, respectively. At the same time, 6-OHDA
12.5, 25, and 50 µM treatments were capable of inducing 19.55 ± 6.39, 44.62 ± 5.95, and
73.92 ± 7.92% apoptosis of SK-N-SH cells, respectively.



Molecules 2022, 27, 4106 5 of 17

Molecules 2022, 27, x FOR PEER REVIEW 4 of 17 
 

 

 
Figure 2. Suppressive effects of jujuboside A and B on cell viabilities in SH-SY5Y and SK-N-SH cells. 
(A,B) Suppressive effects of jujuboside A on SH-SY5Y and SK-N-SH cells, respectively. (C,D) Sup-
pressive effects of jujuboside B on SH-SY5Y and SK-N-SH cells, respectively. * Statistically signifi-
cant from untreated group. Each experiment was repeated for at least 6 times. 

 
Figure 3. Jujuboside A and B reversed the 6-OHDA-induced loss of cell viability in SH-SY5Y and 
SK-N-SH cells. (A,B) Effects of jujuboside A on SH-SY5Y and SK-N-SH cell viabilities, respectively. 
(C,D) Effects of jujuboside B on SH-SY5Y and SK-N-SH cell viabilities, respectively. * Statistically 
significant from 6-OHDA 25 μM group. # Statistically significant from untreated group. Each exper-
iment was repeated for at least 6 times. 

Figure 3. Jujuboside A and B reversed the 6-OHDA-induced loss of cell viability in SH-SY5Y and
SK-N-SH cells. (A,B) Effects of jujuboside A on SH-SY5Y and SK-N-SH cell viabilities, respectively.
(C,D) Effects of jujuboside B on SH-SY5Y and SK-N-SH cell viabilities, respectively. * Statistically
significant from 6-OHDA 25 µM group. # Statistically significant from untreated group. Each
experiment was repeated for at least 6 times.

Molecules 2022, 27, x FOR PEER REVIEW 5 of 17 
 

 

2.3. 6-OHDA Would Induce Cell Apoptosis 
To examine whether 6-OHDA-suppressed cell viability was induced by the induction 

of apoptosis, the appearance of sub-G1 cells was measured by flow cytometry. The results 
showed that 6-OHDA could induce cells to undergo apoptosis at the dose above 12.5 μM 
and 6.25 μM in SH-SY5Y and SK-N-SH cells, respectively (Figure 4). In detail, 6-OHDA 
12.5, 25, and 50 μM treatments were capable of inducing 14.52 ± 6.93, 38.75 ± 5.77, and 
72.75 ± 12.74% apoptosis of SH-SY5Y cells, respectively. At the same time, 6-OHDA 12.5, 
25, and 50 μM treatments were capable of inducing 19.55 ± 6.39, 44.62 ± 5.95, and 73.92 ± 
7.92% apoptosis of SK-N-SH cells, respectively. 

 

 

Figure 4. Cont.



Molecules 2022, 27, 4106 6 of 17

Molecules 2022, 27, x FOR PEER REVIEW 5 of 17 
 

 

2.3. 6-OHDA Would Induce Cell Apoptosis 
To examine whether 6-OHDA-suppressed cell viability was induced by the induction 

of apoptosis, the appearance of sub-G1 cells was measured by flow cytometry. The results 
showed that 6-OHDA could induce cells to undergo apoptosis at the dose above 12.5 μM 
and 6.25 μM in SH-SY5Y and SK-N-SH cells, respectively (Figure 4). In detail, 6-OHDA 
12.5, 25, and 50 μM treatments were capable of inducing 14.52 ± 6.93, 38.75 ± 5.77, and 
72.75 ± 12.74% apoptosis of SH-SY5Y cells, respectively. At the same time, 6-OHDA 12.5, 
25, and 50 μM treatments were capable of inducing 19.55 ± 6.39, 44.62 ± 5.95, and 73.92 ± 
7.92% apoptosis of SK-N-SH cells, respectively. 

 

 

Molecules 2022, 27, x FOR PEER REVIEW 6 of 17 
 

 

 
Figure 4. 6-OHDA dose-dependently induced apoptosis in SH-SY5Y and SK-N-SH cells. (A) After 
treatment with 6-OHDA at the indicated concentrations, SH-SY5Y cells were harvested, stained 
with propidium iodide (PI), and analyzed by flow cytometry. (B) After treatment with 6-OHDA at 
the indicated concentrations, SK-N-SH cells were harvested, stained with PI, and analyzed by flow 
cytometry. (C) The effect of 6-OHDA on SH-SY5Y cell apoptosis. (B,D) Effects of 6-OHDA on SK-
N-SH cell apoptosis. * Statistically significant compared with the untreated group. Each experiment 
was repeated at least six times. 

2.4. Rescuing Effects of Jujubosides on 6-OHDA-induced Cell Apoptosis 
We selected the most obvious doses of 6-OHDA (25 and 50 μM) to induce sub-G1 

cells (Figure 4) for further investigation. In Figure 5, it was observed that co-treatment 
with 4, 8 and 16 μM of jujuboside A and 16, 32 and 64 μM of jujuboside B can effectively 
suppress the 6-OHDA-induced appearance of sub-G1 apoptotic SH-SY5Y, and SK-N-SH 
cells (Figure 5). In detail, 4, 8 and 16 μM of jujuboside A treatments were capable to reverse 
50 μM 6-OHDA-induced apoptotic cells to the level of 54.72 ± 2.90, 35.53 ± 5.69 and 26.12 
± 4.01% of intact SH-SY5Y cells, respectively (Figure 5A). The same doses of 4, 8, and 16 
μM of jujuboside A treatments were capable to reverse 50 μM 6-OHDA-induced apoptotic 
cells to the level of 64.42 ± 4.60, 36.92 ± 6.63 and 23.43 ± 3.81% of intact SK-N-SH cells, 
respectively (Figure 5B). At the same time, 16, 32, and 64 μM of jujuboside B treatments 
were capable to reverse 50 μM 6-OHDA-induced apoptotic cells to the level of 65.20 ± 4.22, 
60.92 ± 5.86, and 50.17 ± 7.09% of intact SH-SY5Y cells, respectively (Figure 5C). The same 
doses of 16, 32 and 64 μM of jujuboside B treatments were capable to reverse 50 μM 6-
OHDA-induced apoptotic cells to the level of 66.13 ± 7.97, 63.58 ± 7.07 and 56.93 ± 4.81% 
of intact SK-N-SH cells, respectively (Figure 5D). Similar patterns of alterations were ob-
served for 25 μM 6-OHDA-induced apoptosis in both the SH-SY5Y and SK-N-SH cells 
(Figure 5). 

Figure 4. 6-OHDA dose-dependently induced apoptosis in SH-SY5Y and SK-N-SH cells. (A) After
treatment with 6-OHDA at the indicated concentrations, SH-SY5Y cells were harvested, stained
with propidium iodide (PI), and analyzed by flow cytometry. (B) After treatment with 6-OHDA
at the indicated concentrations, SK-N-SH cells were harvested, stained with PI, and analyzed by
flow cytometry. (C) The effect of 6-OHDA on SH-SY5Y cell apoptosis. (B,D) Effects of 6-OHDA
on SK-N-SH cell apoptosis. * Statistically significant compared with the untreated group. Each
experiment was repeated at least six times.

2.4. Rescuing Effects of Jujubosides on 6-OHDA-Induced Cell Apoptosis

We selected the most obvious doses of 6-OHDA (25 and 50 µM) to induce sub-G1 cells
(Figure 4) for further investigation. In Figure 5, it was observed that co-treatment with 4, 8
and 16 µM of jujuboside A and 16, 32 and 64 µM of jujuboside B can effectively suppress the
6-OHDA-induced appearance of sub-G1 apoptotic SH-SY5Y, and SK-N-SH cells (Figure 5).
In detail, 4, 8 and 16 µM of jujuboside A treatments were capable to reverse 50 µM 6-
OHDA-induced apoptotic cells to the level of 54.72 ± 2.90, 35.53 ± 5.69 and 26.12 ± 4.01%
of intact SH-SY5Y cells, respectively (Figure 5A). The same doses of 4, 8, and 16 µM of
jujuboside A treatments were capable to reverse 50 µM 6-OHDA-induced apoptotic cells to
the level of 64.42± 4.60, 36.92± 6.63 and 23.43± 3.81% of intact SK-N-SH cells, respectively
(Figure 5B). At the same time, 16, 32, and 64 µM of jujuboside B treatments were capable to
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reverse 50 µM 6-OHDA-induced apoptotic cells to the level of 65.20 ± 4.22, 60.92 ± 5.86,
and 50.17 ± 7.09% of intact SH-SY5Y cells, respectively (Figure 5C). The same doses of 16,
32 and 64 µM of jujuboside B treatments were capable to reverse 50 µM 6-OHDA-induced
apoptotic cells to the level of 66.13± 7.97, 63.58± 7.07 and 56.93± 4.81% of intact SK-N-SH
cells, respectively (Figure 5D). Similar patterns of alterations were observed for 25 µM
6-OHDA-induced apoptosis in both the SH-SY5Y and SK-N-SH cells (Figure 5).
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Figure 5. Jujuboside A and B reversed the 6-OHDA-induced cell apoptosis in SH-SY5Y and SK-
N-SH cells. (A,B) Effects of jujuboside A on SH-SY5Y and SK-N-SH cell apoptosis, respectively.
(C,D) Effects of jujuboside B on SH-SY5Y and SK-N-SH cell apoptosis, respectively. * Statistically
significant from 6-OHDA group. Each experiment was repeated for at least 6 times.

2.5. 6-OHDA Induced Intracellular ROS Elevation

To investigate the time-dependent elevation of 6-OHDA-induced ROS in SH-SY5Y, and
SK-N-SH cells, the cells were treated with 10 and 25 µM of 6-OHDA for 0.5, 1, 2, 4, 12, and
24 h, and intracellular ROS levels were measured at the indicated time points. Evidently,
25 µM of 6-OHDA induced an increase in ROS in both the SH-SY5Y and SK-N-SH cells
compared to 10 µM of 6-OHDA. The data showed that the elevation of ROS was dose
dependent. In addition, the ROS peaks appeared at 12 h and lasted for 24 h in both cell
types, and the SK-N-SH cells produced more ROS than the SH-SY5Y cells (Figure 6).

2.6. Eliminative Effects of Jujubosides on 6-OHDA-Induced ROS

To determine whether jujuboside A and B have eliminative effects on 6-OHDA-induced
ROS production, SH-SY5Y and SK-N-SH cells were co-treated with jujuboside A (0–16 µM)
or jujuboside B (0–64 µM) and 25 µM of 6-OHDA for 24 h. As shown in Figure 7, jujuboside
A or B alone did not induce any elevation or suppression of ROS production at any dose
tested in either cell lines (Figure 7).
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Figure 7. Effects of jujuboside A and B on intracellular reactive oxygen species (ROS) in SH-SY5Y
and SK-N-SH cells. (A,B) Effects of jujuboside A on intracellular ROS of SH-SY5Y and SK-N-SH
cells, respectively. (C,D) Effects of jujuboside B on intracellular ROS of SH-SY5Y and SK-N-SH cells,
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As shown in Figure 8A,B, jujuboside A significantly reduced the ROS levels elevated by
25 µM of 6-OHDA at 4, 8, and 16 µM in both the SH-SY5Y and SK-N-SH cells (Figure 8A,B).
Similarly, jujuboside B reduced the ROS produced by 25 µM of 6-OHDA at 16, 32, and
64 µM in both the SH-SY5Y and SK-N-SH cells (Figure 8C,D).
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2.7. Alterations of Apoptotic-Related and Redox-Related Proteins

The expression levels of apoptosis-related and redox-related proteins were detected by
Western blotting to reveal the signaling network induced by the treatment with 6-OHDA
and jujubosides. First, phosphorylated PI3K and AKT were suppressed by a 25 µM 6-
OHDA 24 h treatment, and rebounded by co-treatment with jujubosides in SH-SY5Y cells
(Figure 9). Second, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase
(GPx) were also suppressed by a 25 µM 6-OHDA 24 h treatment, and rebounded by co-
treatment with jujubosides (A at 16 µM and B at 64 µM) in SH-SY5Y cells (Figure 10).
Third, the pro-apoptotic protein Bax was upregulated by a 6-OHDA 24 h treatment, and
suppressed by co-treatment with jujubosides in SH-SY5Y cells (Figure 11). At the same time,
the anti-apoptotic protein Bcl2 seemed to be suppressed by the 6-OHDA 24 h treatment
and rebounded by co-treatment with jujubosides in SH-SY5Y cells (Figure 11). Lastly, the
active forms of caspase-3, -8, and -9 were obviously overexpressed by the 6-OHDA 24 h
treatment, and suppressed by co-treatment with jujubosides in SH-SY5Y cells (Figure 12).
The changes in these proteins measured in the SH-SY5Y cells were the same as those in the
SK-N-SH cells (data not shown).
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Figure 10. The signaling patterns altered by the treatments of 6-OHDA and jujubosides. (A) Western
blotting was conducted specifically for SOD, CAT and GPx. (B) Quantitative analysis of the intensities
of SOD bands. (C) Quantitative analysis of the intensities of CAT bands. (D) Quantitative analysis of
the intensities of GPx bands. β-actin served as an internal loading control in each repeat of experiment.
* significant different from untreated group. # significant different from the 6-OHDA treated group.
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Figure 11. The signaling patterns altered by the treatments of 6-OHDA and jujubosides. (A) Western
blotting was conducted specifically for Bax and Bcl2. (B) Quantitative analysis of the intensities of Bax
bands. (C) Quantitative analysis of the intensities of Bcl2 bands. β-actin served as an internal loading
control in each repeat of experiment. * significant different from untreated group. # significant
different from the 6-OHDA treated group.
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Figure 12. The signaling patterns altered by the treatments of 6-OHDA and jujubosides. (A) Western
blotting was conducted specifically for cleaved caspase-3, cleaved caspase-7 and cleaved caspase-9.
(B) Quantitative analysis of the intensities of cleaved-caspase 3 bands. (C) Quantitative analysis of the
intensities of cleaved-caspase 7 bands. (D) Quantitative analysis of the intensities of cleaved-caspase
9 bands. β-actin was served as an internal loading control in each repeat of experiment. * significant
different from untreated group. # significant different from the 6-OHDA treated group.

3. Discussion

To the best of our knowledge, the current study is the first to reveal the neuroprotective
effects and mechanisms of jujubosides in 6-OHDA-challenged SH-SY5Y and SK-N-SH cells.
SH-SY5Y is a widely used cell line that mimics PD at the cellular level [36]. The SK-N-SH
cell line is the parental cell line from which SH-SY5Y cells are sub-cloned and was originally
established from a bone marrow biopsy of a neuroblastoma case [37]. Both cell lines are not
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well differentiated cells; however, they are useful in neuroscience because it is not easy to
keep neural cells proliferating or even alive.

In the 6-OHDA-induced PD cellular model, we systematically examined the feasibility
of applying jujubosides to protect neuronal cells from the attack of 6-OHDA in multiple
aspects. First, we revealed that both jujubosides A and B protected SH-SY5Y and SK-N-
SH cells from 6-OHDA-suppressed cell viability (Figure 3). In addition, jujubosides A
and B reversed the 6-OHDA-induced apoptosis (Figure 5). As for the 6-OHDA-induced
ROS, jujuboside A and B effectively reversed those ROS elevated by 6-OHDA in the SH-
SY5Y and SK-N-SH cells (Figure 8). As for the detailed mechanisms, 6-OHDA-suppressed
phosphorylation of PI3K, and AKT was rebounded when the jujubosides were co-treated
with 6-OHDA (Figure 9A). These antioxidant enzymes, including SOD, CAT and GPx, were
downregulated by the 6-OHDA and their expression was restored by co-treatment with
jujubosides and 6-OHDA (Figure 9B). The elevated Bax/Bcl2 ratio induced by the 6-OHDA
was reversed by co-treatment with jujubosides (Figure 9C).

Redox imbalances may be the main toxicity caused by 6-OHDA in neuronal cells.
In our study, treatments of 25 and 50 µM of 6-OHDA to both SH-SY5Y and SK-N-SH
cells elevated dose-dependent intracellular ROS, which was reversed by co-treatment
with jujubosides (Figures 6 and 8). Jujubosides did not cause any obvious changes in
the SH-SY5Y and SK-N-SH cells (Figure 7). Although we have no direct evidence of
the source of the ROS, it is hypothesized that the elevation of ROS is a direct result of
mitochondrial impairment [38]; however, there are still other possible mechanisms, such as
intracellular enzymes (e.g., NADPH oxidases), the electron transportation chain reaction
in mitochondria and hydrogen peroxide metabolism, which require further validation.
Simultaneously, we found that antioxidant enzymes, including SOD, CAT, and GPx, were
downregulated by 6-OHDA treatment and their expression was restored by co-treatment
with jujubosides and 6-OHDA (Figure 9B). The downregulation of SOD and CAT by 6-
OHDA in the SH-SY5Y cells is consistent with that reported by Crimi [12]. The alterations
of GPx in the SH-SY5Y and SK-N-SH cells strengthened the concept that GPx is also
involved in 6-OHDA neurotoxicity, and redox impairment may be critical and does not
have cell specificity. The superoxide radical, a type of ROS, can interact with nitric oxide
to form a more toxic molecule, peroxynitrite, to attack neuronal cells non-specifically [39].
It has been reported that 6-OHDA can also produce nitric oxide in SH-SY5Y cells [12].
The role of peroxynitrite in 6-OHDA-induced neurotoxicity and PD etiology requires
further investigation.

The 6-OHDA-induced neuro-damaging signaling network of apoptosis is complex and
interesting. According to the KEGG prediction for 6-OHDA-induced signals, the outcomes
indicated that the top signaling pathway cluster is PI3K/AKT, which is involved in cell
growth, survival, and proliferation [40]. We hypothesized that the PI3K/AKT signaling
pathway is involved in the neuroprotective effects of 6-OHDA-induced toxicity. The results
showed that 6-OHDA significantly suppressed the expression of phosphorylated PI3K
and AKT, which could be rescued by the addition of jujubosides together with 6-OHDA
(Figure 9A). An elevated Bax/Bcl2 ratio was found (Figure 9C), although the changes
in Bcl2 by the 6-OHDA were not as obvious as Chen’s [40], which is consistent with
our previous report [13]. This significant increase in Bax is consistent with the results of
Chen et al. [13,40]. Activated caspase-3, -7, and -9 were observed and downregulated to
basal levels by co-treatments of jujuboside (Figure 12), whereas alterations in caspase-1,
-2 and, -8 were not obvious (data not shown). Notably, the elevated Bax/Bcl2 ratio and
activated caspase-3, -7, and -9 were reversed by a co-treatment with jujuboside A or B. The
overall network of how 6-OHDA induced neurotoxicity and how jujubosides rescue these
effects is summarized in Figure 13.
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In 2018, Wan et al. examined the effects of jujuboside A on norepinephrine-induced loss
of cell viability and apoptosis in rat H9c2 cardiomyocytes. The cells were pretreated with
jujuboside A and it was found that jujuboside A was capable of reversing norepinephrine-
induced loss of cell viability and apoptosis. This is the first study to provide solid evidence
for jujuboside A as a potential therapeutic strategy for the treatment of heart disease.
Jujuboside A altered the signaling molecules, including p-AKT, p-ERK, p-p38, p-c-Jun,
Bax, Bcl-2 and cleaved caspase-3 and -9 [41]. In the current study, we had a higher clinical
practicability than their methodology in the following aspects: (a) both jujuboside A
and B were examined and proved to be feasible; (b) in human SH-SY5Y and SK-N-SH
neuronal cells rather than rat cells; (c) we applied the co-treatment protocol rather than a
pre-treatment. The norepinephrine-induced alterations and 6-OHDA-induced signaling
may share some common pathways, such as p-AKT, Bax, Bcl-2, cleaved caspase-3 and -9.
We examined the involvement of the antioxidant enzymes CAT, SOD, and GPx and found
the involvement of cleaved caspase-7 and p-PI3K.

Permeability of the blood–brain barrier is frequently the most important issue in novel
drug discovery. We are also interested in the feasibility of jujubosides to penetrate the
blood–brain barrier. Currently, there is a lack of evidence in animal models to test whether
jujubosides can cross the blood–brain barrier via any mechanism; however, several lines
of evidence show that jujuboside A can influence the brain area. For instance, as early as
2002, jujuboside A was recognized for its inhibitory effect on paired-pulse responses of
dentate gyrus granule cells in the hippocampus of rats [42]. In 2019, jujuboside A treatment
effectively prevented memory impairment in a mouse model [43]. Daily treatment with
300 mg/kg of jujuboside A has been proven to effectively ameliorate high-fat-diet and
streptozotocin-induced diabetic nephropathy in SD rats [44]. The structure of jujuboside B
is similar to that of jujuboside A (Figure 1A,B). Thus, it is possible that jujuboside B can
cross the blood–brain barrier through mechanisms similar to those of jujuboside A.
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In summary, this study is the first to demonstrate that jujubosides exert neuroprotective
effects by suppressing the apoptosis of neuronal cells induced by 6-OHDA. In detail, we
have shown that 6-OHDA-induced redox imbalance together with PI3K/AKT/caspase-
related apoptotic signaling can be rescued by both jujuboside A and B. More investigations
are needed to validate the specific intracellular mechanisms underlying the protective
effects of the jujubosides in PD. From a therapeutic viewpoint, jujuboside supplementation
could be a potential non-toxic strategy for the treatment of PD.

4. Materials and Methods
4.1. Cell Culturing Conditions

The SH-SY5Y cells were purchased from American Type Culture Collection (ATCC,
Rockville, MD, USA) and cultured at 37 ◦C in minimum essential media (MEM) sup-
plemented with 10% heat-inactivated fetal bovine serum (FBS, Mediatech Inc., Herndon,
VA, USA) [13]. The SK-N-SH cells were also purchased from the American Type Culture
Collection and cultured in Dulbecco’s Modified Eagle/F12 medium (Sigma Chemical Co.,
St Louis, MO, USA) as previously described [45].

4.2. Chemicals and Common Treatment Protocols

Chemicals, including the 6-OHDA, jujuboside A, jujuboside B, dimethyl sulfoxide
(DMSO), propidium iodide (PI) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium
bromide (MTT), were obtained from Sigma Chemical Co. (St. Louis, MO, USA) and Aldrich
Chemical Co. (Milwaukee, WI, USA). The 6-OHDA (10 mM stock solution) was diluted in
the medium to obtain concentrations ranging from 10 to 100 µM [13]. The jujubosides were
freshly dissolved in DMSO, and further diluted to several dosages with the medium for
the cell treatment.

4.3. Determination of Cell Viability by MTT Assay

Cell viability was assessed using a tetrazolium 3-(4,5-dimethylthiazole-2-yl)- 2,5-
diphenyltetrazolium bromide (MTT) assay as previously described [46,47]. Briefly, the cells
were cultured in 96-well plates at a density of 3 × 104 cells/well, grown for another day
and then exposed to 25 or 50 µM of 6-OHDA, with or without treatment with jujubosides
at different concentrations for 1 h prior to 6-OHDA exposure. Twenty-four hours after the
6-OHDA exposure, the medium was removed and replaced with a final concentration of
0.5 mg/mL of MTT. The plates were incubated for 4 h in a humidified atmosphere at 37 ◦C,
and 5% CO2. The color intensity was measured at 570 nm using a Multiskan MS ELISA
reader (Labsystems, Helsinki, Finland).

4.4. Measurement of ROS Production

The SH-SY5Y and SK-N-SH cells were plated at a density of 2 × 105 cells/well into 12-
well plates and incubated with 6-OHDA alone or in combination with jujubosides for 24 h.
The cells were then harvested and resuspended in 500 µL DCFH-DA (10 µM), incubated
at 37 ◦C for 30 min, and analyzed by flow cytometry to detect the intracellular ROS, as
previously described [45].

4.5. Determination of Apoptosis

In total, 2 × 106/mL SH-SY5Y and SK-N-SH cells were seeded in 10 cm dishes with
6-OHDA alone, or with a jujuboside co-treatment. After 24 h, the cells were harvested,
fixed gently with 70% ethanol, incubated with a PI buffer (4 µg/mL PI, 0.5 µg/mL RNase,
and 1% Triton X-100 in PBS), filtered through a 40 µm nylon filter, and 10,000 PI-stained
cells in each experiment were detected for the appearance of the sub-G1 phase using a
FACS Calibur instrument (BD Biosciences, San Jose, CA, USA) equipped with Cell Quest
software as described previously [48,49].
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4.6. Western Blotting Procedure

A Bio-Rad protein assay system (Bio-Rad Laboratories, Inc.) was used to determine the
protein concentrations. The samples (35 µg per lane) were separated by 10–12% SDS-PAGE
and transferred to a polyvinylidene fluoride (PVDF) membrane using a transfer apparatus.
The bands were cut into streams by molecular weight, according to the rainbow markers.
The protocols for blocking and incubating with primary and secondary antibodies were the
same as previously published [50–52]. Primary antibodies including phospho-AKT(S473)
(sc-293125, 1:1000), Bcl2 (sc-7382, 1:2000), Bax (sc-7480, 1:500), SOD (sc-101523, 1:1000),
CAT (sc-271358, 1:2000), GPx (sc-133160, 1:1000), cleaved caspase-3 (sc-56052, 1:1000),
cleaved caspase-9 (sc-56073, 1:2000), β-actin (sc-47778, 1:1000), and horseradish peroxidase
(HRP)-conjugated secondary antibodies (sc-2031, 1:15000) were purchased from Santa Cruz
Biotechnology (Santa Cruz, CA, USA). Antibodies against phospho-PI3K (4228, 1:2000),
and cleaved caspase-7 (9491, 1:2000) were purchased from Cell Signaling Technology, Inc.
(Danvers, MA, USA). Finally, the bands were visualized with enhanced chemiluminescence
(ECL) and the ImageJ 1.52v program was used for the quantitative analysis of the intensity
of the band signal.

4.7. Statistical Methodology

Statistical significance was assessed using a Student’s t-test and one-way ANOVA
followed by a post hoc test. The results are plotted as the mean ± SEM and any value of
p < 0.05 was considered statistically significant and is shown with a star mark in the Figures.
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