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The learning curve in perceptual learning is typically
sampled in blocks of trials, which could result in
imprecise and possibly biased estimates, especially when
learning is rapid. Recently, Zhao, Lesmes, and Lu (2017,
2019) developed a Bayesian adaptive quick Change
Detection (qCD) method to accurately, precisely, and
efficiently assess the time course of perceptual
sensitivity change. In this study, we implemented and
tested the qCD method in assessing the learning curve in
a four-alternative forced-choice global motion direction
identification task in both simulations and a
psychophysical experiment. The stimulus intensity in
each trial was determined by the qCD, staircase or
random stimulus selection (RSS) methods. Simulations
showed that the accuracy (bias) and precision (standard
deviation or confidence bounds) of the estimated
learning curves from the qCD were much better than
those obtained by the staircase and RSS method; this is
true for both trial-by-trial and post hoc segment-by-
segment qCD analyses. In the psychophysical
experiment, the average half widths of the 68.2%
credible interval of the estimated thresholds from the
trial-by-trial and post hoc segment-by-segment qCD
analyses were both quite small. Additionally, the overall
estimates from the qCD and staircase methods matched
extremely well in this task where the behavioral rate of
learning is relatively slow. Our results suggest that the
qCD method can precisely and accurately assess the trial-
by-trial time course of perceptual learning.

Introduction

Research in the last 30 years has revealed a great deal
about the characteristics and mechanisms of perceptual
learning (Dosher & Lu, 2017; Green, Banai, Lu, &
Bavelier, 2018; Sagi, 2011; Sasaki, Nanez, & Watanabe,
2010; Seitz, 2017). It has been shown that perceptual
learning can improve human performance over a wide
range of perceptual tasks, with relatively long-lasting
changes to the perceptual system (Goldstone, 1998;
Zhou et al., 2006). The benefits from training or
practice are often specific or partially specific to the
characteristics of the trained stimulus or task (Fio-
rentini & Berardi, 1980; Karni & Sagi, 1991), with the
degree of transfer or specificity depending critically on
the difficulty (Ahissar & Hochstein, 1997; Z. Liu, 1995,
1999) or precision (Jeter, Dosher, Petrov, & Lu, 2009)
of the training and/or transfer tasks, and training
protocol (J. Huang, Liang, Zhou, & Liu, 2017; Hung &
Seitz, 2014; Liang, Zhou, Fahle, & Liu, 2015; Xiao et
al., 2008). In the meantime, a large number of studies in
psychophysics (Dosher & Lu, 1998, 1999; Gold,
Bennett, & Sekuler, 1999; Saarinen & Levi, 1995) and
neurophysiology (Crist, Li, & Gilbert, 2001; Ghose,
Yang, & Maunsell, 2002; Schoups, Vogels, Qian, &
Orban, 2001) have focused on the mechanism of
perceptual learning. There is also an active market
place for perceptual learning (Lu, Lin, & Dosher,
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2016). Overall, these findings of perceptual learning
have revealed important plasticity of the adult human
perceptual system and become an integral component
of our understanding of perception.

One fundamental building block in all the perceptual
learning studies is the learning curve—that is, how
perceptual sensitivity changes as a function of training.
The learning curve is important not only for estimating
the magnitude of learning and the degree of specificity
and transfer (Ahissar & Hochstein, 1997; C.-B. Huang,
Lu, & Dosher, 2012; Jeter et al., 2009; Z. Liu &
Weinshall, 2000), but also for specifying the functional
form of learning (Dosher & Lu, 2007; Poggio, Fahle, &
Edelman, 1992). Comparisons of learning curves
obtained under different external noise (Dosher & Lu,
2005; Lu, Chu, & Dosher, 2006), training difficulty (J.
Liu, Lu, & Dosher, 2010; J. Liu, Lu, & Dosher, 2012;
Z. Liu & Weinshall, 2000), training schedule (Hung &
Seitz, 2014; Xiao et al., 2008), feedback (Fahle &
Edelman, 1993; Herzog & Fahle, 1997; J. Liu et al.,
2010; J. Liu et al., 2012; Shibata, Yamagishi, Ishii, &
Kawato, 2009), attention (Donovan, Szpiro, &
Carrasco, 2015; Mukai et al., 2007; Szpiro & Carrasco,
2015; Szpiro, Lee, Wright, & Carrasco, 2013), and
reward conditions (Seitz, Kim, & Watanabe, 2009;
Zhang, Hou, et al., 2018) can reveal the impact of the
manipulations on perceptual learning and inform and
constrain computational models of perceptual learning
(Dosher & Lu, 2017; Lu, Liu, & Dosher, 2010; Petrov,
Dosher, & Lu, 2005). Unbiased, precise, and detailed
assessment of the learning curve is critical in perceptual
learning research.

Three types of performance measures—accuracy
(percent correct or d-primes), contrast thresholds, and
difference thresholds (Ball, Sekuler, & Machamer,
1983; C.-B. Huang, Zhou, & Lu, 2008; Karni & Sagi,
1991; Leek, 2001; Levi & Polat, 1996; Z. Liu, 1999; Pelli
& Bex, 2013; Pelli & Farell, 1995; Petrov et al., 2005)—
are often used to construct learning curves. Existing
methods for assessing all three performance measures
are based on blocks of measurements with relatively
large numbers of trials. The basic assumption of many
of these methods is that performance does not change
within each measurement block and that some form of
averaging can be used to gauge the performance in the
block. However, because performance may change
continuously during perceptual learning (Lu, Hua,
Huang, Zhou, & Dosher, 2011; Mazur & Hastie, 1978;
Petrov et al., 2005), even within each measurement
block, especially in the early phase of learning, the
resulting learning curves can be imprecise and the
measurements may be biased; this in turn may, in some
circumstances, lead to incorrect inferences about
properties of perceptual learning.

Take as an example the up-down staircase method,
originally introduced as a method to estimate a fixed

threshold (Leek, 2001; Levitt, 1971). In perceptual
learning studies, the up-down staircase method is often
used to estimate the threshold at a certain percent
correct performance level by adjusting the stimulus
level (e.g., contrast, luminance, orientation difference,
motion coherence) based on the observer’s responses
(Ahissar & Hochstein, 1996, 1997; Dosher & Lu, 1998;
Polat, Ma-Naim, Belkin, & Sagi, 2004; Xiao et al.,
2008). Specifically, the method begins with an initial
stimulus level, usually chosen based on prior knowl-
edge about the observer and task, then increases or
decreases the stimulus level with either fixed or adaptive
step sizes based on the observer’s response in each trial,
and stops after a predefined number of trials or number
of reversals. A single threshold is obtained by averaging
the endpoints of multiple reversals of the staircase in
each measurement block, and the learning curve is
constructed from the estimated thresholds over blocks.
There are three major problems associated with the
staircase procedure as applied to situations where the
threshold may be changing (Zhang, Zhao, Dosher, &
Lu, 2018): (a) It often takes 60–80 trials for the
staircase procedure to converge and therefore a
measurement block usually contains 60–80 trials. This
limits the temporal resolution of the estimated learning
curve, which, in certain cases, may miss rapid learning
in the early phase of training if it occurs (Fahle,
Edelman, & Poggio, 1995; Hawkey, Amitay, & Moore,
2004; Poggio et al., 1992). (b) It may lead to biased
estimates of the initial performance level, learning rate,
and specificity/transfer index (Lu, Zhang, Zhao, &
Dosher, 2018). (c) Choosing the optimal starting
stimulus level and step size is very challenging (Lu &
Dosher, 2013). Nonoptimal settings can increase the
bias even in estimates of fixed thresholds.

The importance of a detailed estimate of the time
course of perceptual learning has been previously
argued in the literature (Kumar & Glaser, 1993). To
obtain a detailed time course of learning, Kumar and
Glaser (1993) averaged observers’ trial-by-trial perfor-
mance in hyperacuity tasks over 34 different nonstereo
and 49 stereo hyperacuity stimuli. By using this trial-
by-trial method, they discovered very rapid learning
(within the first few trials) for nonstereo stimuli, and
learning that was far slower for the stereo stimuli. This
procedure, which averages over many stimuli and
training runs, is, however, not practical in most
perceptual learning studies because large numbers of
different stimuli in the same task category are often not
available.

In another approach to estimating a more detailed
time course of the learning curve, Kattner, Cochrane,
and Green (2017) fitted data obtained with the method
of constant stimuli using psychometric functions with
learning dependent parameters. In their fitting proce-
dure, the threshold was modeled as a function of time/
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trial number. Although this procedure can provide an
estimated continuous trial-by-trial learning curve that
is more detailed than the block-by-block analysis
typically used in perceptual learning studies, there are
still limitations because the selection of test stimuli
during learning was not optimized for rapid assess-
ment. With the method of constant stimuli used in the
study, the stimulus level in each trial was randomly
sampled from a uniform distribution in a predeter-
mined range (random stimulus selection, RSS). As
learning proceeded, more and more of the stimuli
resulted in ceiling level performance and so provided
very little new information about, thus not much
constraint on, the psychometric function. Although the
new fitting procedure significantly improved the confi-
dence intervals of the estimated thresholds in the late
phase of the learning curve, it did not substantially
benefit estimates in the early phase of learning.

Here, we implemented and validated a Bayesian
adaptive procedure, the quick change detection (qCD,
see Figure 1) method developed by Zhao, Lesmes, and
Lu (2017, 2019) to measure the learning curve in
perceptual learning. The qCD method was designed to
accurately, precisely, and efficiently measure the time
course of perceptual sensitivity change. Unlike existing
procedures that assume that perceptual sensitivity does
not change within each measurement block or epoch
(Leek, 2001; Lesmes, Jeon, Lu, & Dosher, 2006;
Lesmes, Lu, Baek, & Albright, 2010; Lesmes et al.,
2015; Taylor & Creelman, 1967; Treutwein, 1995;
Watson & Pelli, 1983), the qCD method explicitly
models and estimates how perceptual sensitivity
changes over time. Using the Bayesian adaptive testing
framework (Lesmes et al., 2006; Lesmes et al., 2010;

Lesmes et al., 2015; Watson & Pelli, 1983), the method
selects the optimal stimulus—the stimulus for which the
response gives the most of new information—and
updates, trial by trial, a joint probability distribution of
the parameters of a model of perceptual sensitivity
change over time. In its first implementation in dark
adaptation, Zhao et al. (2017, 2019) demonstrated with
computer simulations of an eight-alternative forced-
choice (8AFC) task in which one run of the qCD
method can be used to estimate the dark adaptation
curve with better accuracy and precision than 10 runs
of the quick Forced Choice (qFC; Lesmes et al., 2015)
and staircase methods. Furthermore, the dark adapta-
tion curve obtained from one qCD run in a psycho-
physics experiment was highly consistent with the
average of four qFC runs (RMSE¼ 0.076 log10 units).

Zhao et al. (2017, 2019) developed the general qCD
method and evaluated the method with computer
simulations and a psychophysical task for dark
adaptation in an 8AFC task. In the current paper, we
further evaluated the qCD method in simulations and a
psychophysical experiment in perceptual learning in a
four-alternative forced-choice (4AFC) task. There are
several important new aspects of the current study.
First, unlike the dark adaptation curve, the learning
curve in perceptual learning cannot be measured
repeatedly. This makes the qCD method even more
valuable, but also poses unique challenges for validat-
ing the method. In the current study, we developed an
interleaved validation procedure in which we alternated
qCD trials with staircase trials. Second, the perfor-
mance of the qCD method depends on the number of
alternatives in the perceptual task. Its performance in
4AFC must be independently evaluated. Third, we

Figure 1. (A) Exponential function with three parameters: (1) k: dynamic range of learning; (2) c: time constant of exponential

function; and (3) a: asymptotic performance level. (B) The qCD method consists of five steps: (1) The time course of motion

coherence threshold is defined as an exponential function (as a function of trial number n) with three parameters ~h ¼ k; c; að Þ, and
their joint prior distribution; (2) The proportion of coherent dots in the next trial is selected to optimize the expected information gain

on the joint distribution of the parameters; (3) The posterior distribution is updated by Bayes’ rule based on the observer’s response

after each trial. (4) Steps 2 and 3 are repeated until the stop criterion is met (e.g., predetermined number of trials). (5) Trial-by-trial

and post hoc segment-by-segment thresholds are computed from the posterior distributions.
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compared the performance of the qCD method with
that of a staircase procedure in a range of initial
stimulus intensity levels.

Simulations

Method

To evaluate the performance of the qCD method in
assessing the exponential learning curve (see the
function Figure 1B), we simulated three observers with
different learning parameters with the qCD, staircase,
and RSS methods (Table 1). These simulations were set
up to approximate performance in a global motion
direction identification task used for experimental
validation (Figure 2).

A description of the qCD method is provided in
Supplementary Appendix A. The prior of the param-
eters of the exponential function in the qCD method in
the simulation study was set up based on results from a
pilot behavior experiment. The parameter space in-
cluded 50 log-linearly spaced k values (from 0.05 to
0.7), 50 log-linearly spaced c values (from 20 to 600),
and 50 log-linearly spaced a values (from 0.1 to 0.4).
(The k and a are in the units of the threshold
measurement—here proportion of coherent dots—
while the c values are in units of trials. Also, in the
behavioral experiment, the discrete values of propor-
tions of coherent dots that can be programmed depends
on the total number of dots). For k, 0 was also included
to account for no learning. (kmode, cmode, amode) = (0.36,
326, 0.26) are the modes of the respective secant

functions; (kconfidence, cconfidence, aconfidence) = (5.81, 3.82,
12.67) are the spreads of the respective secant
functions. A one-dimension space X included 100 log-
linearly spaced values from 0.01 to 1.

The simulated observers performed a 4AFC task.
One thousand simulated runs were conducted for each
observer. Each run consisted of 960 trials of the qCD
method and 960 trials of the three-down/one-up
staircase method (Levitt, 1971), arranged in alterna-
tion. Therefore, the odd trials (e.g., 1, 3, 5, . . . and
1919) and even trials (e.g., 2, 4, 6, . . . and 1920) were
simulated by the qCD and staircase methods, respec-
tively. No information was shared between the qCD
and staircase procedure, and they were run indepen-
dently and separately. In each simulated trial, the true
threshold, T(n), was calculated using Equation 1. Then,
the expected probability of making a correct response
was calculated for the stimulus level x using Equation 4
(e.g., given the value of the percent correct psycho-
metric function on trial n). To determine if the
observer’s response is correct or not on that trial, we
first drew a random number r from a uniform
distribution over the interval from 0 to 1, and then
labeled the response as correct if r , pnðr ¼ 1j~h; xÞ, and
incorrect otherwise.

In the staircase procedure, if the simulated observer
makes three consecutive correct responses (in the
staircase trials), the proportion of coherent dots is
reduced by 10% (multiplied by 0.9) in the next trial; if
the simulated observer makes a single incorrect
response, the proportion of coherent dots is increased
by 10% (multiplied by 1.1) in the next trial. A reversal
happens if the staircase changes its direction (from up
to down or vice versa). Usually, one block of three-
down/one-up staircase with a 10% step size produces
about a dozen ‘‘reversals’’ (or endpoints) in 80 trials.
The estimated threshold of the block is calculated by
averaging the proportion of coherent dots at the
reversals after deleting the first four or five of them.

To compare the performance of the qCD with that
of the RSS method, we conducted a simulation study
using the RSS method on the same three simulated

Observer 1 Observer 2 Observer 3

k 0.385 0.385 0.385

c 40 80 160

a 0.275 0.275 0.275

Table 1. Parameters of the three simulated observers.

Figure 2. Illustration of a single trial in the 4AFC global motion direction identification experiment. Each trial began with a brief tone,

followed by a 250-ms intervals that contained 400 moving dots. Observers indicated the direction of coherent motion (458, 1358,

2258, and 3158) by pressing the button on keyboard. The proportion of coherent motion could be updated according to subjects’

response. Auditory feedback was given after each correct response. A 1-s blank screen was shown between trials.
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observers. Specifically, we simulated the even trials with
the RSS method. Following Kattner et al. (2017), we
simulated 1,000 runs of the experiment (only the even
trials) with stimulus intensities in each trial randomly
selected from 1,000 possible values ranging from 0.001
to 1. Then, we fit the trial-by-trial data from each run
of the RSS procedure with a maximum likelihood
method to obtain the best fitting exponential learning
curve. See details in Supplementary Appendix B.

In order to measure the accuracy and precision of
estimation from the qCD, staircase, and RSS methods,
bias, root-mean-square error (RMSE) and standard
deviation (SD) were computed (see details in Supple-
mentary Appendix C: Evaluation Methods). We tested
the qCD and staircase methods with the same starting
levels: þ25%, 0%, and �25% from the true threshold
(i.e., proportion of coherent dots) in the first trial.
Because the pattern of results with the three starting
levels exhibited a similar trend, we only present the
results with the 0% starting level in the main text. The
results with the other two starting levels are presented
in the Supplementary Appendix D. We did not vary the
initial stimulus intensity level in the RSS method
because it is randomly selected by the method.

Results

Staircase convergence

Estimated thresholds in the simulated staircase
procedure were computed by averaging thresholds in
the remaining even number of reversals, after deleting
the first four or five reversals in each block. We used
three different block sizes—40, 80, and 160 trials per
block—in the staircase simulations. The respective
simulations are labeled with block size. For example,
SC80 denotes the simulation in which the block
thresholds were computed every 80 trials (e.g., Trials 2,
4, 6 . . . and 160 for Block 1) and the estimated
threshold of Block b was used to predict the threshold
of trial b� 0:5ð Þ3 80 on the learning curve form the
staircase method. Table 2 shows the percentage of
staircase runs in the first block of the simulated
experiment that had more than five reversals. With a
block size of 40 trials per block, we can’t reliably
estimate the threshold in the first block of the simulated
experiment because we didn’t obtain a sufficient

number of reversals in some cases, especially when the
learning is more rapid (e.g., Simulated Observer 1). We
dropped SC40 in subsequent analyses.

Estimated learning curves

The average estimated thresholds in the trial-by-trial
and post hoc segment-by-segment analyses from the
simulations of the qCD method, and the block-by-
block threshold estimates from the simulated staircase
method with the 0% starting level relative to the true
initial thresholds, are shown in Figure 3. Visual
inspection suggests that the estimated post hoc
segment-by-segment thresholds from the qCD methods
are very close to the true thresholds, and closer than the
block-by-block thresholds from the staircase method
(SC80 and SC160) and the estimated threshold from
the RSS method. In addition, the estimates from the
qCD method are more precise than those from the
staircase and RSS methods. We quantify these obser-
vations next. The estimated thresholds from sets of
simulations with starting levels 625% (above or below)
the true initial thresholds are shown in Supplementary
Figure S1 of Supplementary Appendix D.

Evaluation: Accuracy and precision

The biases of the estimated thresholds from the qCD
and staircase methods with the 0% starting level and
the RSS method are shown in Figure 4A. In the first
block of SC80 and SC160, there are obvious biases
(0.026 and 0.039 for Observer1; 0.018 and 0.042 for
Observer2; 0.009 and 0.024 for Observer3, all in log10
units). As the block number increased, the biases from
the staircase method significantly decreased and finally
reached around 0.007 log10 units. The estimated
thresholds from the staircase method with 80 trials/
block (SC80) were more accurate than those from
SC160, but only in the early phase of learning where
learned changes are most rapid; the two block sizes are
similar later during the saturated phase of learning.

In the qCD method, the biases of the estimated
thresholds from the post hoc segment-by-segment
analysis were much smaller than that of the trial-by-
trial estimates of thresholds in the early phase of
learning for the three observers. Because the post hoc
segment-by-segment qCD analysis used information
from all the trials, we are more interested in the
comparison between the post hoc segment-by-segment
qCD and the raw block estimates from the staircase
method. Across the learning curve, the RMSE of the
estimated post hoc segment-by-segment thresholds
from the simulated qCD method was 0.005 for
Observer 1, 0.003 for Observer 2, and 0.002 for
Observer 3, respectively (all in log10 units). In

Starting

levels

Observer 1 (%) Observer 2 (%) Observer 3 (%)

40 80 160 40 80 160 40 80 160

þ25% 60.7 100 100 88.0 100 100 93.7 100 100

0% 83.1 100 100 93.0 100 100 95.2 100 100

�25% 84.8 100 100 89.9 100 100 91.9 100 100

Table 2. Percentage of staircase with more than five reversals in
the first block of learning.
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comparison, the RMSE of the estimated block thresh-
olds (e.g., at the points of the empirical thresholds)
from SC80 and SC160 was 0.025 and 0.033 for
Observer 1, 0.026 and 0.033 for Observer 2, 0.024 and
0.039 for Observer 3 (all in log10 units). The RMSE of
the estimated threshold from the RSS method was
0.084, 0.084 and 0.084 log10 units for Observers 1, 2
and 3, respectively.

In summary, the accuracy of the estimated thresh-
olds from the qCD method was much higher than that
from both the staircase and RSS methods. The biases
of the estimated thresholds for simulations with
starting levels 625% (above or below) the true initial
thresholds are shown in Supplementary Figure S2 of
Supplementary Appendix D.

The SDs of the estimated thresholds from the qCD
and staircase methods from simulations with the 0%
starting level and the RSS method are shown in Figure
4B. The estimated thresholds in the staircase method
with larger block size (e.g., 160 trials) had smaller SDs
than those with smaller block size because there are
more reversals in larger blocks. In the RSS method, the
SDs started with a large number, then decreased with
training trials. In the qCD method, the SDs of the

estimated thresholds in the trial-by-trial and post hoc
segment-by-segment analyses also significantly de-
creased as the trial number increased, but the post hoc
segment-by-segment analysis provided smaller SDs.
Furthermore, the SDs of the estimated post hoc
segment-by-segment thresholds from the qCD method
were always considerably smaller than those from
SC80, SC160, and the RSS method for the three
simulated observers. Averaged across the whole learn-
ing curve, the SD of the estimated post hoc segment-by-
segment thresholds from the qCD method were 0.009,
0.010, and 0.011 for the three simulated observers; the
SDs of the estimated block thresholds in SC80 and
SC160 were 0.029 and 0.020 for Observer 1, 0.029 and
0.020 for Observer 2, and 0.028 and 0.020 for Observer
3; the SDs of the estimated thresholds from the RSS
method were 0.024, 0.025, and 0.026 for the three
simulated observers (all in log10 units, see Table 3). In
summary, the precision of the thresholds estimated
from the qCD method was much higher than those
estimated from the staircase and RSS methods, based
on these simulations. The SDs of the estimated
thresholds with starting levels 625% (above or below)

Figure 3. Estimated learning curves in the first 640 trials of simulated Observers 1 (A), 2 (B), and 3 (C) for starting stimulus levels at 0%

from the true thresholds in the first trial. Results from the qCD, staircase, and RSS methods are shown. Red and blue lines denote the

estimates in trial-by-trial and post hoc segment-by-segment analyses from qCD simulations. Green circles and brown inverted

triangles represent the block-by-block thresholds from the staircase method with block sizes of 80 and 160, respectively. Gold lines

denote the estimates from the RSS method. The light red and blue shaded areas denote the SD in the trial-by-trial and post hoc

segment-by-segment qCD analyses, respectively. The light gold shaded areas and error bars denote the SD in the RSS, and staircase

methods, respectively.
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the true initial thresholds are shown in Supplementary
Figure S3 of Supplementary Appendix D.

In Figure 4C, half widths of the 68.2% credible
interval (HWCIs) of the thresholds estimated from the
qCD method with the 0% starting level decreased across
trials. Averaged across the three simulated observers, the
68.2% HWCI of the estimated trial-by-trial thresholds
were 0.039, 0.019, and 0.008 log10 units after 160, 640,
and 1,920 trials, respectively. Similarly, there is also a
monotonic decrease in the 68.2% HWCI from the post
hoc segment-by-segment analysis of the estimated
learning curves (see the blue line in Figure 4C): The
68.2% HWCI averaged across the three simulated
observers was 0.019, 0.008, and 0.008 log10 units after
160, 640, and 1,920 trials, respectively. Detailed results
of the 68.2% HWCIs with the three starting levels are
summarized in Table 4 and Supplementary Figure S4 of
Supplementary Appendix D.

The biases and SDs of the estimated parameters of the
learning curves from the qCD and staircase methods
with the 0% starting level and RSS method are shown in

Figure 5. For the qCD method, the bias was computed
from the post hoc segment-by-segment analysis. For the
staircase method, we calculated the bias and SD of the
optimized parameters of the exponential model fit to the
threshold estimates. For the RSS method, trial-by-trial
data were fit with an exponential function with a
maximum likelihood method to obtain the estimated
parameters. The biases of the estimated parameters from
the qCD method were much smaller than those from the
staircase and RSS methods, especially for the simulated
Observer 1 with a faster learning parameter. For
example, when the time constant was 80 trials (Observer
2), the biases of the estimated k from the qCD, SC80,
SC160, and RSS methods were�0.016, 0.210, 0.490, and
�0.096 log10 units, respectively. Similarly, the SDs of the
parameter estimates from the post hoc segment-by-
segment qCD method were much lower than those
derived from fitting the exponential to the staircase
method thresholds and RSS method. For example, for
Observer 2 the SDs of the ks estimated from the qCD,
SC80, SC160, and RSS methods were 0.081, 0.648,

Figure 4. Comparisons of the accuracy and precision of the estimated thresholds from the simulations of the qCD, staircase and RSS

methods. The biases (A), SDs (B), and 68.2% HWCIs (C) of the three simulated observers for starting levels at 0% from the true

threshold in the first trial are shown in separate rows as functions of trial numbers. Red, blue, green, and brown colors denote results

from the trial-by-trial qCD analyses, the post hoc segment-by-segment qCD analyses, and the 80- and 160-trial block staircase

methods, respectively. The gold color denotes the results from the RSS method.
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0.884, and 0.259 log10 units, respectively. Note that 0.1,
0.5, and 1 log10 units denote about 25%, 300%, and
1,000% (ratio) deviation from the truth, respectively.
Based on the simulations, the qCD method yielded
higher accuracy and precision for estimated parameters
than the staircase and RSS methods. Furthermore, both
the staircase and RSS methods were less effective in
estimating the parameters when learning was rapid
(Observer 1), while the accuracy and precision on
estimated parameters from the qCD method yielded
good estimates in all cases (see Tables 5 and 6 for
details). Furthermore, the different starting levels were
more likely to affect the accuracy of the estimated
parameters in the staircase method, while the biases of
parameters estimated from the qCD method did not
vary much with the starting level. For example, the

biases of the estimated k from the qCD method with
þ25%, 0% and�25% starting levels were�0.057,�0.051,
and�0.054 log10 units, respectively, but were 0.221,
0.321, and 0.336 log10 units with the SC80 method (see
Tables 5 and 6, and Supplementary Figures S5 and S6 of
Supplementary Appendix D for details).

The average 68.2% HWCIs of the parameters
estimated from the qCD method are shown in Figure 6.
The 68.2% HWCIs decreased as the number of trials
increased. Averaged across the three simulated ob-
servers, the 68.2% HWCI of the estimated k was 0.114,
0.097, and 0.096 log10 units after 1, 640, and 1,920
trials, respectively. The 68.2% HWCI of the estimated c
was 0.237, 0.156, and 0.115 log10 units after 1, 640, and
1,920 trials, respectively. The 68.2% HWCI of the
estimated a was 0.088, 0.027, and 0.009 log10 units after

Trial 80 Trial 160 Average cross learning curve

qCDtrial qCDseg SC80 RSS qCDtrial qCDseg SC160 RSS qCDtrial qCDseg SC80 SC160 RSS

Observer 1

þ25% 0.046 0.027 0.042 0.034 0.015 0.025 0.016 0.009 0.030 0.020

0% 0.046 0.026 0.042 0.033 0.035 0.015 0.026 0.022 0.016 0.009 0.029 0.020 0.024

�25% 0.045 0.025 0.038 0.034 0.014 0.024 0.016 0.009 0.029 0.020

Observer 2

þ25% 0.039 0.025 0.038 0.035 0.021 0.026 0.017 0.010 0.029 0.020

0% 0.040 0.025 0.036 0.430 0.037 0.022 0.026 0.027 0.016 0.010 0.029 0.020 0.025

�25% 0.039 0.025 0.035 0.035 0.021 0.025 0.017 0.010 0.029 0.020

Observer 3

þ25% 0.035 0.021 0.032 0.031 0.018 0.023 0.019 0.011 0.029 0.020

0% 0.035 0.023 0.032 0.040 0.032 0.018 0.024 0.033 0.018 0.011 0.028 0.020 0.026

�25% 0.035 0.021 0.031 0.031 0.018 0.022 0.018 0.011 0.029 0.020

Table 3. The standard deviations of the estimated thresholds in the qCD, staircase and RSS methods. Notes: Standard deviations
estimated at two key points and across the learning curve for the different methods. qCDtrial and qCDseg denote the results from the
trial-by-trial and post hoc segment-by-segment qCD simulations, respectively. The 80 and 160 trial points correspond with the trial
placement (average trial number) of the first point estimated by the SC80 and SC160 methods. All results are in log10 units. Because
only odd number trials in the learning curve were simulated by the qCD method, the Trial 80 and 160 in the qCD method correspond
with Trials 79 and 159, which are labeled at 80 and 160 for convenience.

Trial 1 Trial 160 Trial 640 Trial 1,280 Trial 1920 Average

Observer 1

þ25% 0.110; 0.070 0.039; 0.017 0.016; 0.007 0.009; 0.007 0.007; 0.007 0.017; 0.009

0% 0.107; 0.068 0.039; 0.017 0.016; 0.007 0.009; 0.007 0.007; 0.007 0.017; 0.009

�25% 0.114; 0.069 0.039; 0.016 0.016; 0.007 0.009; 0.007 0.007; 0.007 0.017; 0.009

Observer 2

þ25% 0.110; 0.053 0.040; 0.022 0.019; 0.007 0.010; 0.007 0.007; 0.007 0.019; 0.010

0% 0.108; 0.053 0.040; 0.022 0.019; 0.007 0.010; 0.007 0.007; 0.007 0.019; 0.010

�25% 0.112; 0.054 0.040; 0.022 0.019; 0.007 0.010; 0.007 0.007; 0.007 0.019; 0.010

Observer 3

þ25% 0.109; 0.040 0.037; 0.018 0.023; 0.009 0.013; 0.008 0.008; 0.008 0.020; 0.011

0% 0.107; 0.040 0.037; 0.018 0.023; 0.009 0.013; 0.008 0.008; 0.008 0.020; 0.011

�25% 0.111; 0.040 0.037; 0.018 0.023; 0.009 0.013; 0.008 0.008; 0.008 0.020; 0.011

Table 4. The half widths of the 68.2% credible interval (HWCIs) of the estimated thresholds from the qCD method. Notes: The 68.2%
HWCI of the simulated thresholds estimated from the qCD method in the trial-by-trial (the first value in each cell) and post hoc
segment-by-segment (the second value in each cell) analyses. All values are in log10 units.
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1, 640, and 1,920 trials, respectively (see Table 7 and
Supplementary Figure S7 of Supplementary Appendix
D for details). The results indicate that the qCD
method can estimate the parameters of the learning
curve with relatively high precision.

The initial threshold (IT¼ k þ a) and percent of
improvements (PI¼ (kþ aÞ=a 3100%) are critical for
understanding characteristics of perceptual learning,
such as specificity, transfer, and retention. In Figure
7A, the histogram of the estimated IT from the qCD
method is distributed symmetrically and tightly around
the true IT (¼0.66). However, the distributions of the
estimated IT from SC80, SC160, and RSS have long

tails in one direction, indicating systematic and
sometime large biases, with the corresponding effect on
the SD. For example, when the time constant was 80
trials (simulated Observer 2), the estimated IT was
0.652 6 0.069 (M 6 SD) from the qCD method, 1.871
6 2.792 from SC80, 3.818 6 3.691 from SC160, and
0.674 6 0.749 from RSS. The distributions of the
estimated PI (Figure 7B) from the qCD method were
also much narrower and closer to the true PI (¼240%)
compared to those from SC80, SC160, and RSS. For
example, when the time constant was 80 trials
(Observer 2), the estimated PI was 237% 6 25% (M 6
SD) from the qCD method, 665% 6 986% from SC80,

Figure 5. The biases (A) and SDs (B) of the estimated parameters (k, c, and a) of the three simulated observers from the post hoc

segment-by-segment qCD (blue), the SC80 (green), and SC160 (brown) staircase measures, and the RSS method (gold).

Parameters

k c a

qCDseg SC80 SC160 RSS qCDseg SC80 SC160 RSS qCDseg SC80 SC160 RSS

Observer 1

þ25% �0.057 0.221 �0.062 0.131 0.197 0.579 �0.001 �0.107 �0.032
0% �0.051 0.312 0.038 �0.078 0.126 0.149 0.531 �0.001 �0.001 �0.002 �0.015 �0.113
�25% �0.054 0.336 0.025 0.122 0.131 0.526 �0.001 �0.002 �0.018

Observer 2

þ25% �0.022 0.017 0.469 0.057 �0.033 0.001 �0.001 0.006 0.001

0% �0.016 0.210 0.491 �0.096 0.047 �0.048 �0.007 0.028 �0.001 0.006 0.001 �0.094
�25% �0.024 0.206 0.446 0.057 �0.048 0.016 �0.001 0.006 0.001

Observer 3

þ25% �0.009 0.018 0.172 0.025 0.003 �0.042 �0.001 0.006 0.006

0% �0.003 0.016 0.172 �0.074 0.020 0.003 �0.040 �0.009 �0.001 0.006 0.005 �0.090
�25% �0.008 0.002 0.163 0.025 0.009 �0.039 �0.001 0.006 0.006

Table 5. Biases of the estimated parameters from the qCD, staircase, and RSS methods. Notes: Average biases of the estimated
parameters describing the three simulated observers with starting levels atþ25%, 0%, and�25% from the true threshold in the first
trial, for the qCD (post hoc segment-by-segment), staircase, and RSS methods. All values are in log10 units.
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1,367% 6 1,327% from SC160, and 335% 6 1424%
from RSS. The estimated PI from the staircase and
RSS methods had large SDs and deviated from the true
PI. These results demonstrate that the accuracy and
precision of the estimated IT and PI from the qCD
method were much higher than those from the staircase
and RSS method. The means and SDs of the estimated
IT and PI of the three observers with 3 starting levels
are summarized in Table 8 (see Supplementary Figure
S8 and S9 of Supplementary Appendix D for the
distributions with þ25% and �25% starting levels).

Psychophysical validation

A psychophysical experiment was conducted to
evaluate and compare the performance of the qCD and
staircase methods in measuring the learning curve in a
global motion direction identification task with a

relatively slow learning rate. As described in the
Introduction, we specifically chose the global motion
direction task because it usually exhibits slow learning.
The simulation study found that the staircase method
was less able to track the detailed time course of fast
perceptual learning, so the slow learning rate made it
possible for the staircase method to obtain a relatively
accurate learning curve and facilitated the comparison
between the two methods.

Method

Observers

Five observers (26.40 6 1.48 years) with normal or
corrected-to-normal vision participated in this study.
They were all naive to perceptual learning and
psychophysical studies. The study protocol was ap-
proved by the Institutional Review Board of The Ohio
State University. Written informed consent was ob-

Parameters

k c a

qCDseg SC80 SC160 RSS qCDseg SC80 SC160 RSS qCDseg SC80 SC160 RSS

Observer 1

þ25% 0.113 1.237 1.591 0.141 1.053 1.182 0.007 0.307 0.447

0% 0.108 1.086 1.447 0.519 0.137 0.981 1.150 0.920 0.008 0.054 0.086 0.240

�25% 0.110 1.084 1.595 0.136 0.921 1.141 0.007 0.058 0.087

Observer 2

þ25% 0.086 0.633 0.911 0.104 0.290 0.078 0.008 0.010 0.078

0% 0.081 0.648 0.884 0.259 0.102 0.290 0.025 0.389 0.008 0.009 0.025 0.115

�25% 0.086 0.682 0.912 0.105 0.310 0.079 0.008 0.010 0.079

Observer 3

þ25% 0.063 0.105 0.459 0.079 0.114 0.011 0.009 0.011 0.011

0% 0.068 0.108 0.473 0.149 0.079 0.113 0.010 0.222 0.010 0.011 0.010 0.080

�25% 0.062 0.108 0.492 0.075 0.120 0.011 0.009 0.011 0.011

Table 6. Standard deviations (SDs) of the estimated parameters from the qCD, staircase, and RSS methods. Notes: Average SDs of the
estimated parameters describing the three simulated observers with starting levels atþ25%, 0%, and�25% from the true threshold in
the first trial for the qCD (post hoc segment-by-segment), staircase, and RSS methods. All values are in log10 units.

Figure 6. The average 68.2% HWCIs of the k (A), c (B), and a (C) parameters estimated from the trial-by-trial qCD analysis of the three

simulated observers with starting levels at 0% from the true threshold in the first trial. The red, green, and blue dashed lines denote

Observers 1, 2, and 3, respectively.
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tained from each observer before the study. The work
was carried out in accordance with the Declaration of
Helsinki.

Apparatus

The study was conducted on a PC computer running
MATLAB (MathWorks, Natick, MA) programs with
PsychToolbox extensions (Brainard, 1997; Pelli, 1997).
Stimuli were displayed on a Dell CRT monitor with a
1280 3 1024 pixel resolution, 85 Hz frame rate, and a

background luminance of 40 cd/m2. Observers placed
their head on a chin rest and viewed the displays
binocularly. The display subtended 27.88 3 21.68 at a
viewing distance of 0.69 m.

Design

Each of the five observers performed 960 odd
numbered trials (e.g., 1, 3, 5, . . . and 1,919) with the
qCD method interleaved with 960 even numbered trials

Parameters

k c a

Trial 1 Trial 640 Trial 1,920 Trial 1 Trial 640 Trial 1,920 Trial 1 Trial 640 Trial 1,920

Observer 1

þ25% 0.188 0.133 0.130 0.277 0.207 0.163 0.101 0.018 0.009

0% 0.184 0.129 0.126 0.276 0.195 0.156 0.101 0.018 0.009

�25% 0.189 0.131 0.129 0.276 0.196 0.160 0.101 0.018 0.009

Observer 2

þ25% 0.189 0.094 0.094 0.277 0.145 0.110 0.101 0.023 0.009

0% 0.184 0.094 0.095 0.276 0.142 0.110 0.101 0.022 0.009

�25% 0.190 0.095 0.096 0.275 0.147 0.111 0.101 0.023 0.009

Observer 3

þ25% 0.188 0.067 0.069 0.277 0.134 0.082 0.101 0.041 0.010

0% 0.182 0.067 0.068 0.276 0.132 0.081 0.100 0.041 0.010

�25% 0.189 0.068 0.069 0.276 0.134 0.081 0.101 0.041 0.010

Table 7. The 68.2% HWCIs of the estimated parameters from the qCD method. Notes: Average 68.2% HWCIs of the estimated
thresholds of the three observers with starting levels atþ25%, 0%, and�25% from the true threshold in the first trial from trial-by-
trial qCD analysis. All values are in log10 units.

Figure 7. The distributions of the initial threshold (A) and percent of improvements (B) from the qCD, staircase, and RSS methods with

starting levels at 0% from the true threshold in the first trial. Blue, green, brown, and gold colors denote the results from the qCD

(post hoc segment-by-segment), staircase method with block sizes of 80 and 160, and RSS method, respectively. Black dashed lines

denote the true value.
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(e.g., 2, 4, 6, . . . and 1,920) from a three-down/one-up
staircase. The total of 1,920 trials of training were
evenly divided into three sessions on different days,
each of which consisted of four blocks of 160 trials.
(Note: observer N3 only finished the first 11 blocks [880
trials from the qCD method interleaved with 880 trials
from the staircase method]). The block estimates from
the staircase method were computed from every 80
trials (SC80; e.g., Trials 2, 4, 6. . . and 160 for Block 1).

Procedure

In each trial, a random dot kinematogram (RDK) of
400 moving dots (dot size: 0.188 30.188; speed: 108/s) in
an 88 diameter circular aperture (Figure 2) was
presented for 250 ms after a brief tone. The signal dots
in the RDK could move in one of four directions (458,
1358, 2258, or 3158), while the noise dots moved in
random directions. The proportion of motion coher-
ence was determined by the qCD or the staircase
method. A small dark fixation point (0.158) was always
displayed in the center of the display. Observers were
asked to judge the global direction of the RDK by
pressing buttons on a computer keyboard. Auditory
feedback was given on correct responses during
training.

Results

The estimated trial-by-trial and post hoc segment-
by-segment thresholds from the qCD method and the
estimated block-by-block thresholds from the staircase
method are shown in Figure 8. The estimated dynamic
range (k) from the qCD method was computed from

both trial-by-trial and post hoc segment-by-segment
analyses. In the trial-by-trial analysis of the qCD data,
the estimated thresholds across all the trials were first
fit by an exponential function, the estimated dynamic
range was obtained by the parameters of the best fitting
model. Averaged across five observers, the dynamic
range was 0.272 6 0.033 (M 6 SE). Similarly, the
averaged dynamic range across five observers in the
post hoc segment-by-segment analysis was 0.311 6
0.051 (M 6 SE). There was no significant difference
between the estimated dynamic ranges from the trial-
by-trial and post hoc segment-by-segment analyses of
the qCD data, t(4) ¼�1.823, p ¼ 0.142).

For the staircase method, block-by-block thresholds
from the SC80 procedure were obtained. Dynamic
range was calculated in two ways: (a) Using the
thresholds in the first and last blocks as the initial and
final thresholds, the average dynamic range across the
five observers was 0.308 6 0.057 (M 6 SE); (b) Based
on the estimated thresholds of the first and last trial
calculated from the best fitting exponential model to
the block-by-block thresholds, the averaged dynamic
range was 0.393 6 0.072 (M 6 SE). The estimated PIs
in this two different ways were significant different, t(4)
¼�3.28, p¼ 0.031).

Precision of the estimated thresholds from the qCD
method

Figure 9 shows that the 68.2% HWCI of the
estimated thresholds from the qCD method decreased
with the number of training trials in the trial-by-trial
analysis: Averaged across five observers, the 68.2%
HWCI of the estimated threshold was 0.030 6 0.001,
0.022 6 0.001, and 0.011 6 0.000 (M 6 SE) log10 units
after 160, 640, and 1,760 trials. Similarly, the 68.2%

Initial Threshold Percent of Improvements

qCDseg SC80 SC160 RSS qCDseg SC80 SC160 RSS

Observer 1

þ25% 0.623 (0.086) 3.359 (3.672) 2.600 (32.857) 0.963 (1.719) 227 (31) .9999 .9999 667 (2919)

0% 0.627 (0.084) 3.549 (3.756) 2.777 (3.004) 229 (31) 1272 (1339) 1007 (1075)

�25% 0.625 (0.083) 3.695 (3.789) 2.794 (2.968) 228 (30) 1326 (1353) 1011 (1058)

Observer 2

þ25% 0.648 (0.073) 1.715 (2.655) 3.790 (3.672) 0.674 (0.749) 236 (26) 612 (945) 1395 (1705) 335 (1424)

0% 0.652 (0.069) 1.871 (2.792) 3.818 (3.691) 237 (25) 665 (986) 1367 (1320)

�25% 0.646 (0.072) 1.949 (2.911) 3.696 (3.719) 236 (26) 695 (1035) 1354 (1628)

Observer 3

þ25% 0.655 (0.055) 0.692 (0.105) 1.345 (1.975) 0.637 (0.456) 239 (20) 248 (363) 479 (698) 292 (1112)

0% 0.662 (0.060) 0.691 (0.107) 1.372 (2.044) 241 (22) 248 (365) 489 (721)

�25% 0.656 (0.055) 0.678 (0.107) 1.396 (2.128) 239 (20) 243 (369) 496 (749)

Table 8. Mean and standard deviations of the estimated initial threshold (IT) and percent of improvements (PI) from the qCD and
staircase methods. Notes: Mean and standard deviation of the estimated IT and PI from the qCD (post hoc segment-by-segment),
staircase and RSS methods.

Journal of Vision (2019) 19(5):9, 1–19 Zhang, Zhao, Dosher, & Lu 12



HWCI of the estimated thresholds from the post hoc
segment-by-segment analysis also decreased monoton-
ically with trial number: The average 68.2% HWCI was
0.017 6 0.001, 0.012 6 0.001, and 0.013 6 0.001 log10
units (M 6 SE) after 160, 640, and 1,760 trials,
respectively. These results indicated that the qCD
method could precisely estimate the learning curve in
the global motion direction identification task.

The 68.2% HWCI of the estimated parameters of the
exponential learning curve for the five observers are
shown in Figure 10. Obviously, the precision of the
estimated parameters in the trial-by-trial analysis
increased with the number of training trials. Across the
five observers, the average 68.2% HWCI of k started at
0.197 in the first trial, and decreased to 0.130 after 320
trials, to 0.083 after 640 trials, and 0.052 after 1280
trials; the average 68.2% HWCI of c started at 0.277 in
the first trial, and decreased to 0.171 after 320 trials, to
0.121 after 640 trials, and 0.087 after 1,280 trials; the
average 68.2% HWCI of a started at 0.101 in first trial,
and decreased to 0.074 after 320 trials, to 0.063 after

640 trials, and 0.033 after 1,280 trials, all in log10 units.
These results indicated that the qCD method could
precisely estimate parameters of perceptual learning
with low speed.

Correlation between the qCD and staircase method

To compute the correlation of the thresholds
estimated by the qCD and staircase methods, we
carried out a special procedure across observers to
eliminate the dependency of estimated thresholds
across learning trials (Hou, Lesmes, Bex, Dorr, & Lu,
2015): (1) Estimated thresholds after 40, 120, 200, 280,
360, 440, 520, 600, 680, 760, 840, and 920
(blockth 3 80� 40) qCD trials were taken from the post
hoc segment-by-segment analysis. Note that since the
values from this analysis are based on fitting an
exponential function over all values, the thresholds are
not independent for values close in time. (2) The block-
by-block thresholds from the 80-trial staircase method
were estimated by averaging the reversals in each block.

Figure 8. Learning curves for individual observers from the psychophysical experiment. (A) Trial-by-trial estimated thresholds (red line)

with 68.2% HWCI (light red shade) from the trial-by-trial qCD method and block-by-block thresholds (green circles) from the staircase

method (SC80). (B) Estimated thresholds from the post hoc segment-by-segment qCD analysis (blue line) with 68.2% HWCI (light blue

shade).

Figure 9. The 68.2% HWCI of the estimated thresholds from the trial-by-trial (red) and post hoc segment-by-segment (blue) qCD

analysis as functions of trial numbers for individual subjects.
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(3) We randomly sampled one pair of the estimated
thresholds from the two methods in the same block for
Observer N1, and repeated this process for the other
four observers without sampling the same block
between any two observers. (4) The Pearson correlation
coefficient was calculated between the five pairs of
estimated thresholds from the two methods for the five
observers. (5) This procedure was repeated 1,000 times,
and the average Pearson correlation coefficient was
obtained. Because the five pairs of estimated thresholds
in Step 3 were from different observers, this procedure
ensures that the pairs that enter into the Pearson
correlation calculation (Step 4) were independent.
Figure 11 shows results from 1,000 runs of the
procedure. The average Pearson correlation coefficient
was 0.879 6 0.126 (M 6 SD). We also computed the
RMSE between the estimated thresholds from the two
methods. The RMSE was 0.086 6 0.024 log10 units.
Results from both the correlation analysis and RMSE

calculation suggest that the estimated thresholds from
the two methods matched quite well.

Discussion

In this study, we systematically examined the qCD,
staircase, and RSS methods in assessing the learning
curve in a 4AFC global motion direction identification
task in both simulations and a corresponding psycho-
physical validation experiment. In both cases, trials
from the qCD method were alternated with trials from
a staircase or RSS procedure (odd and even trials,
respectively). The simulations showed that the esti-
mated learning curves from both the trial-by-trial and
post hoc segment-by-segment analyses of the qCD
method were more accurate and precise than those
obtained from staircase methods using either 80 or 160
trial blocks and the RSS method. The differences were
largest for the dynamic range (k) and time constant (c)
of learning.

In the psychophysical experiment, we chose a global
motion direction identification task with a slow
learning rate so that the staircase method (80 trial
block) could yield reasonably accurate estimates of the
learning curve, which could then be compared to the
estimates from the qCD methods for the purposes of
validation. We found that the learning curves estimated
from the qCD and staircase methods matched quite
well for this relatively slow learning task. However, the
qCD method still provided a more precise assessment
of the learning curve.

During perceptual learning, the perceptual threshold
may in many cases change continuously (Lu et al.,
2011; Mazur & Hastie, 1978; Petrov et al., 2005),
potentially even within each measurement block and
especially in the early phase of learning (Badiru, 1992;
Dosher & Lu, 2007; Heathcote, Brown, & Mewhort,
2000). Our simulations showed that the staircase
method, providing block-by-block threshold estimates,
did not track the detailed time course of perceptual
learning as well as the qCD method, especially when

Figure 10. The 68.2% HWCI of the estimated parameters from the trial-by-trial qCD analysis as functions of trial numbers for individual

subjects. Red, green, and blue colors represent k, c, and a, respectively.

Figure 11. The relationship between thresholds estimated from

the post hoc segment-by-segment qCD method and the

staircase (post hoc SC80) method from decorrelated subsam-

ples of the data; see the text for explanations and reports of the

average correlation. Different colors denote sampled thresholds

from different runs of the procedure.
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the learning rate is fast. Furthermore, the typical data
analytical approach that fits a parametric function to
the estimated learning curve from the staircase method
sometimes yielded biased and imprecise estimates of the
initial threshold and the percent improvement in
perceptual learning. Similarly, the estimated learning
curves and learning parameters from the RSS method
were also quite inaccurate and imprecise.

In the qCD method, the learning curve is parame-
terized as an exponential function with joint probability
distributions of all three parameters. Optimizing the
expected information gain in the next trial in the
adaptive Bayesian framework (Kontsevich & Tyler,
1999; Lesmes et al., 2006; Lesmes et al., 2010; Watson
& Pelli, 1983), the method selects the optimal stimulus
in each trial—the stimulus that together with the
observer’s response will provide more new information
about the parameter distribution. Using the posterior
distribution of the parameters following each trial, the
qCD method provides a detailed trial-by-trial estimate
of perceptual sensitivity and therefore a detailed time
course of perceptual sensitivity change. Both the
simulations and psychophysical experiment showed
that the estimated learning curves and their parameters
from the qCD method were quite accurate and precise.

Like any adaptive procedure such as the often-used
staircase method, the stimulus sequences for individual
observers in the qCD procedure are different from one
another. What these methods control is the range of
performance levels (i.e., near threshold) throughout the
experiment and across observers. When we consider
keeping the learning experience the same across
observers, we can either match stimulus sequences (but
different performance levels) or performance levels (but
different stimulus sequences), but not both. In the
current study, we matched the performance levels but
used different stimulus sequences to keep the learning
experience the same in terms of performance level
across observers.

In the current implementation of the qCD method,
the same prior is used across observers. To investigate
the impact of the initial stimulus intensity, we have in
fact artificially ‘‘fixed’’ the stimulus intensity in the first
trial. It is true that with the same prior, all participants
will be tested with the same stimulus intensity in trial 1.
In the trial-by-trial analysis, the estimated threshold is
determined by both the stimulus intensity and the
participant’s response. The estimated threshold would
be the same if all the participants make the same
response. In the segment-by-segment analysis, the
estimated threshold on trial 1 is determined by all the
stimuli and responses in the whole segment. Unless the
responses of two participants were identical throughout
the entire segment, the probability of obtaining the
same estimated threshold on trial 1 is very small.

One potential future application of the qCD method
in perceptual learning is to improve the estimate of the
transfer/specificity index. Although specificity has been
taken as the trademark of perceptual learning (Ball &
Sekuler, 1982, 1987; Fahle, 2004; Fahle & Morgan,
1996; Fiorentini & Berardi, 1980; Karni & Sagi, 1991;
Maehara & Goryo, 2003; Saffell & Matthews, 2003),
many studies have found that the phenomenon is
graded (Ahissar & Hochstein, 1997; J. Huang, Liang,
Zhou, & Liu, 2017; Jeter et al., 2009; Z. Liu &
Weinshall, 2000; Xiao et al., 2008). To quantify the
degree of specificity or transfer, a transfer index is often
computed based on the initial and final thresholds in
the learning phase and the initial threshold in the
transfer phase (Ahissar & Hochstein, 1997; Dosher &
Lu, 2007; C.-B. Huang et al., 2012; Jeter, Dosher, Liu,
& Lu, 2010). On the other hand, except for boosting the
immediate performance of a new task, generalization
may reflect on a faster learning rate of a new task
(Kattner, Cochrane, Cox, Gorman, & Green, 2017; Z.
Liu & Weinshall, 2000). Our simulations showed that
the estimated initial threshold, percent of improve-
ments, and time constant from the staircase method
could produce substantial biases and larger SDs, and if
used, might yield more imprecise estimates of the
transfer index. On the other hand, the qCD method
might yield accurate and precise estimates of the initial
threshold, percent of improvements, and time constant,
and therefore much improved estimates of the transfer
index.

In perceptual learning studies, how to optimize
learning and generalization of learning are very
important questions (Dosher & Lu, 2017). Many
studies in perceptual learning have shown that includ-
ing easy trials could improve learning (Lin, Dosher, &
Lu, 2017; Liu, Lu, & Dosher, 2012; Rubin, Nakayama,
& Shapley, 1997). In developing the qCD method, our
focus has primarily been on measuring the time course
of perceptual sensitivity change. One possible applica-
tion of the qCD method in perceptual learning is to
separate measurement of the learning curve (which
often involve stimulus intensities near threshold) from
training itself (which could use high intensity stimuli for
example) because, with the more efficient measurement,
we don’t need to devote all the trials in a study into
measuring the learning curve. In this respect, the RSS
method, which produced a certain percentage of the
easy stimuli, may be more likely to improve perceptual
learning compared with setting all stimulus at the
threshold. The advantages and disadvantages of these
methods may depend on researchers’ specific needs and
questions.

An exponential functional form was used to model
the learning curve in the qCD method based on some
empirical evidence from the literature concerning the
form of learning curves for individual observers
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(Dosher & Lu, 2007). Others have suggested different
forms of learning curves, such as learning curves with
fast and slow phases (Fahle et al., 1995; Poggio et al.,
1992), cascade exponential functions (Ahissar &
Hochstein, 1997), or power functions (Anderson &
Tweney, 1997; Heathcote et al., 2000). (Note that
average learning curves generally follow the power
function even when the learning curves of individual
observes are exponential.)

We can address the functional form issue in several
different ways. First, in the trial-by-trial procedure of
the qCD method, the posterior distribution of the
exponential function changes from trial to trial. This
has allowed us, in another application, to estimate
perceptual sensitivity changes consisting of a cascade of
exponential functions (Zhao et al., 2019). Second, we
can also replace the exponential function in the qCD
method with other functional forms that are required
for a particular learning task. This requires a careful
examination of the empirical literature and/or collec-
tion of pilot data. Third, we have also been developing
a nonparametric version of the qCD method that does
not depend on the particular functional form.

As stated in Zhao et al. (2019), the applicability of
the qCD method depends on its rate of posterior
convergence relative to the rate of the to-be-estimated
perceptual sensitivity change. In order to obtain
accurate and precise estimates of the time course of
perceptual sensitivity change, the qCD should only be
used to measure the time course of perceptual
sensitivity changes that are slower or at most compat-
ible to the convergence rate of the joint posterior
distribution of the parameters of the time course
modeled in the qCD procedure. The convergence of the
posterior distribution depends on many factors, in-
cluding prior distribution, stimulus selection, model
complexity, and experimental design. Successful im-
plementation and optimization of the qCD would
require careful consideration of all these factors in each
application on a case-by-case basis, perhaps based on
pilot data and simulation. For example, in the qCD,
the prior distribution is constructed based on a priori
knowledge about the time course of perceptual
sensitivity change for the studied population. The more
informative the prior is—that is, the more we know
about the properties of the population under study—
the faster the posterior converges (Gu et al., 2016; Kim,
Pitt, Lu, Steyvers, & Myung, 2014).

In conclusion, we have implemented the qCD
method to assess the time course of perceptual
sensitivity change in perceptual learning. In both
simulations and a psychophysics experiment, we
demonstrated that the method can provide an accurate
and precise assessment of the learning curve in a 4AFC
global motion direction identification task.

Keywords: perceptual learning, qCD, staircase,
precision, accuracy
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