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Abstract: Dynamic lung imaging is a major application of Electrical Impedance Tomography (EIT)
due to EIT’s exceptional temporal resolution, low cost and absence of radiation. EIT however lacks
in spatial resolution and the image reconstruction is very sensitive to mismatches between the actual
object’s and the reconstruction domain’s geometries, as well as to the signal noise. The non-linear
nature of the reconstruction problem may also be a concern, since the lungs’ significant conductivity
changes due to inhalation and exhalation. In this paper, a recently introduced method of moment
is combined with a sparse Bayesian learning approach to address the non-linearity issue, provide
robustness to the reconstruction problem and reduce image artefacts. To evaluate the proposed
methodology, we construct three CT-based time-variant 3D thoracic structures including the basic
thoracic tissues and considering 5 different breath states from end-expiration to end-inspiration.
The Graz consensus reconstruction algorithm for EIT (GREIT), the correlation coefficient (CC),
the root mean square error (RMSE) and the full-reference (FR) metrics are applied for the image
quality assessment. Qualitative and quantitative comparison with traditional and more advanced
reconstruction techniques reveals that the proposed method shows improved performance in the
majority of cases and metrics. Finally, the approach is applied to single-breath online in-vivo data to
qualitatively verify its applicability.

Keywords: electrical impedance tomography; method of moment; sparse Bayesian learning; inverse
problem; lung imaging; image reconstruction

1. Introduction

Electrical impedance tomography (EIT) is a medical imaging technique which reveals
the conductivity or admittance distribution of a subject under test (SUT) [1]. In EIT, an alter-
nating, low-amplitude current usually up to 1MHz is induced into a cluster of electrodes,
while the measured electrode potentials are used as raw data for the image reconstruction.
Unlike other medical imaging modalities, EIT is characterized by the absence of ionizing
radiation, its low cost and its notable temporal resolution. This makes EIT a useful tool
for real-time lung function monitoring. Many studies have shown the importance of EIT
for revealing vital signs related to ventilation properties, such as tidal volume (TV) [2], or
pathological situations, such as acute respiratory distress syndrome (ARDS) [3].

Despite its potential advantages, EIT is lacking in spatial resolution, something that
still keeps its application in medical equipment limited. In addition, EIT images often
present artefacts that, in some cases, may degrade their clinical value and diagnostic
efficacy. Such artefacts are related to the highly ill-posed and ill-conditioned nature of
the EIT inverse reconstruction problem. This means that the image quality presents with
high sensitivity to voltage signal noise. In real-time EIT imaging, the signal-to-noise ratio
(SNR) is often limited, because higher frequency currents need to be injected in order to
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achieve a high temporal resolution [4,5]. Indeed, in practice, lower frame rate EIT hardware
systems [6,7] usually present better voltage SNR levels than higher frame rate systems [8,9].

Furthermore, EIT is susceptible to modeling errors. Particularly in dynamic thoracic
imaging, the lack of a homogeneous background, the patient’s unknown chest boundary
shape, as well as its changes over time due to the patient’s breathing cycles and the high
chance of the electrodes’ displacement during signal acquisition also introduce significant
modeling errors [10–12]. Despite the fact that a percentage of modeling errors can be
compensated when time-difference EIT is applied, their impact on image quality may be
still noticeable. Moreover, EIT is a highly non-linear problem, which means that highly
inhomogeneous admittance inclusions cannot be accurately estimated with simple linear
methods [12]. The variations in the lungs’ admittance due to the continuous change in air
volume is a typical case [13].

Over the years, many approaches have been proposed for EIT image reconstruction.
The most simple approaches assume small conductivity or admittance inclusions and
linearize the problem around a predefined homogeneous value. Then, the problem is
treated directly using either truncated singular value decomposition (TSVD) or standard
Tikhonov regularization (STR), where an identity matrix prior is considered. General-
ized Tikhonov regularization (GTR) schemes [14] such as the Laplace prior, the NOSER
prior [15] and the high-pass filter Gaussian prior [16] can be also applied, improving the
image reconstruction performance compared to TSVD and STR. To compensate boundary
movement effects, [17,18] introduced electrode movement priors, combining them with
the previous schemes. Another single-step approach which makes use of a figure-of-merit
(FoM) framework to optimize both parameters and performance is the Graz consensus
reconstruction algorithm for EIT (GREIT) [19]. GREIT uses dual-mesh schemes, i.e., a
coarse 2D domain for the admittance reconstruction and a fine 3D domain, extruded from
the coarse 2D one, for accurate forward calculations. This greatly improves accuracy, but at
the cost of additional time and complexity.

Despite the benefits of single-step approaches in dynamic EIT imaging speed, EIT
is a non-linear problem. Therefore, most linear approaches cannot accurately capture
significant conductivity changes. In such cases, iterative approaches have been developed
to deal with the non-linearity. A common iterative framework is based on the Gauss–
Newton (GN) algorithm, which makes use of the GTR schemes mentioned above (L2-norm
regularization) [20]. Another popular iterative approach is the total variation (TV) approach,
where L1-norm regularization priors are used [21–23]. A hybrid non-linear difference EIT
imaging approach was proposed in [12,24] in an effort to effectively deal with both the
models’ mismatches and the problem’s non-linearity. Another L1-norm approach uses the
Bregman distance scheme, showing improved performance in lung imaging compared to
the traditional TV scheme [25].

Sparse Bayesian learning (SBL) was firstly proposed as a mathematical formulation
in [26–28] but was only recently applied in EIT [29–32]. Instead of the traditional regular-
ization schemes, it treats the inverse problem as a log-likelihood optimization procedure,
assuming a sparse conductivity distribution. SBL approaches show robustness to signal
noise, while the non-trivial hyperparameter selection needed in regularization techniques
is avoided. Although some SBL methods, such as structure-aware SBL (SA-SBL) [30] and
time-sequence learning SBL [33] have been proposed for EIT, their evaluation is limited to
simple circular and cylindrical structures. Hence, SBL has not been applied in dynamic
thoracic imaging, where the structures have more complex geometries, usually unknown,
and are highly non-homogeneous.

The point-matching method of moment (PM-MoM) for EIT was also recently proposed
in [34]. It uses a global integral equation approach with Green’s functions. The logarithm
of conductivity is expressed as a linear combination of modified radial basis functions
(RBFs). Contrary to the traditional finite element (F.E.) approach, which treats the problem
as a weak form that does not hold for significant conductivity changes, the PM-MoM is
formulated globally, decreasing the problem’s non-linearity. The PM-MoM has therefore
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shown to converge faster than the traditional F.E. approaches both in L1 and L2-norm
inverse problem schemes. Despite the fact that PM-MoM has been tested on circular and
cylindrical structures, it has not been quantitatively evaluated in dynamic thoracic imaging.

Motivated by the benefits of the PM-MoM and the SBL optimization scheme, in this
work we introduce an approach that combines these two methods. In particular, the pro-
posed PM-MoM SBL approach undertakes the image reconstruction problem’s non-linearity,
offering robustness to noise and reduced susceptibility in modeling errors. To evaluate the
PM-MoM SBL approach, we apply it to 3D F.E. thoracic structures (cases) based on 3 male
subjects’ CT images, available online. For each case, five sub-structures are built, consid-
ering five corresponding breath-cycle states from expiration to the end-inspiration. Each
structure includes the lungs, heart, vertebrae, muscle and skin tissues to avoid the assump-
tion of a uniform background [11]. It is noted that most previous studies for EIT approaches
in dynamic thoracic imaging consider only the inspiration and expiration ends and only
the lung tissues in their models for quantitative evaluation. The proposed approach is
compared with traditional (GN, TV, difference of absolute images) and more advanced
(prior movement, hybrid non-linear imaging) F.E.-based regularization approahces, as
well as the regularized MoM approach, showing increased noise robustness and improved
performance both qualitatively and quantitatively. Finally, the proposed method is tested
in in vivo human breath data which is available online, verifying its proper applicability.

The rest of this paper is organized as follows. In Section 2, the EIT problem’s principle,
as well as state-of-the-art regularization-based methods, are outlined. In Section 3, the pro-
posed PM-MoM SBL approach is presented, while in Section 4, the 3D thoracic structures,
the evaluation FoM, the method adopted to extract the reference images and the in vivo
data are described. In Section 5, the image reconstruction results, as well as the quantitative
results, are demonstrated and discussed. Finally, Section 6 concludes this work.

2. Background

In this section, a brief review of the EIT mathematical formulation and the state-of-
the-art inverse reconstruction approaches used for the comparisons is performed.

2.1. EIT Principle

Assume a N-electrode EIT setup and a d-dimensional domain (d ∈ {2, 3}) Ω, where the
current is injected. The problem can be described according to the following Laplace equation:

∇
(
σ(r)∇u(r)

)
= 0, r ∈ Ω (1)

that implies the following boundary conditions, according to the complete electrode model
(CEM) [35]:

u(r) + zlσ(r)
∂u(r)

∂n
= Ul , r ∈ el , l = 1, ..., N (2)∫

el

σ(r)
∂u(r)

∂n
dS = Il , l = 1, ..., N (3)

σ(r)
∂u(r)

∂n
= 0, r ∈ ∂Ω\

N⋃
l=1

el (4)

where r ∈ Rd is the position vector, σ(r) is the conductivity, u(r) is the potential, n is
the normal outward-pointing vector, el is the electrodes’ positions set, zl is the electrodes’
contact impedances, Ul is the lth electrode voltage and Il is the current injected on the
lth electrode.
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2.2. Time-Difference EIT

In time-difference (dynamic) EIT imaging, we assume two consecutive states. The cor-
responding computed boundary voltages’ vectors can be written as follows:

U(1) = [U1
1 U1

2 ... U1
Nm] ∈ RNm×1 (5)

and
U(2) = [U2

1 U2
2 ... U2

Nm] ∈ RNm×1, (6)

where m is the total voltage measurements acquired for each current injection electrode
pair, according to the selected measurement pattern [36]. Accordingly, we assume that two
voltage data measurement frames V (1) ∈ RNm×1 and V (2) ∈ RNm×1 are acquired from the
EIT system. We then set the differential voltage frames

δU = U(2) −U(1) (7)

and
δV = V (2) − V (1). (8)

Considering Gaussian noise en ∈ RNm×1 between the simulated boundary voltages
and the measurements, we have

δV = δU + en. (9)

Furthermore, we assume σ(1)(r) and σ(2)(r) as the corresponding conductivity distri-
butions, setting the difference

δσ(r) = σ(2)(r)− σ(1)(r). (10)

If the finite element method (F.E.M.) discretization scheme is applied in Ω, we assume
a number of L elements and that each element i presents a constant conductivity σi.

Hence, we can write the following conductivity vectors:

σ(1) = [σ
(1)
i ]Li=1 ∈ RL×1 (11)

σ(2) = [σ
(2)
i ]Li=1 ∈ RL×1 (12)

δσ = [δσi]
L
i=1 ∈ RL×1. (13)

The general approach is to formulate the inverse problem as a weighted-least squares
(WLS) minimization problem between δV and δU, adding a regularization term P(δσ) to
stabilize the problem’s ill-conditioned nature, such that

F(δσ) = ‖δU − δV‖2
W + λ2P(δσ). (14)

δσ∗ = argmin
δσ∈RL

{
F(δσ)

}
, (15)

where W ∈ RNm×Nm is a diagonal, noise covariance matrix and λ is the regularization
hyperparameter. The problem is to find the optimal δσ that minimizes F(δσ) in (14). From
hereon, we assume that all the measurement channels have the same noise; hence, W = INm.

2.3. Single-Step Linear Reconstruction

As mentioned in the introduction, EIT image reconstruction is a non-linear problem,
i.e., the relation between U and σ(r) is non-linear. However, assuming relatively small
conductivity changes, and using Taylor approximation around a linearization point σo, we
can write

δU =
∂δU
∂δσ

∣∣∣
σo

δσ + O(‖δσ‖2) ' Jδσ, (16)



Bioengineering 2021, 8, 191 5 of 32

where J ∈ RNm×L is the Jacobian matrix around σo. In the simplest case (dimensionless
electrodes), J is computed according to the following formula [37]:

Ji
dm =

∂δUdm
∂δσ

= −
∫

Ωi

∇u(Id) · ∇u(Im)dA, (17)

where Ωi denotes the i-th element’s domain, d denotes the current injection differential
channel and m denotes the voltage measurement differential channel. The minimization
function is then written according to the following form:

F(δσ) = ‖Jδσ − δV‖2
W + λ2P(δσ). (18)

In this case, smooth L2 priors, such as the standard Tikhonov, the Laplace, the NOSER
or the Gaussian priors, are commonly utilized [14–16]. Hence, we can write

P(δσ) = ‖δσ‖2
Q, (19)

where Q ∈ RL×L is the prior matrix. The linearized problem has the following closed-form
solution:

δσ∗ =
(

JTW J + λ2Q
)−1

JTWδV . (20)

This is the most commonly used linear EIT scheme.

2.4. Regularized Reconstruction Approaches

In this section, we perform a brief review of the regularization-based linear and
non-linear approaches used for the comparisons.

(I) Non-Linear Gauss–Newton (GN): The traditional non-linear GN approach makes an
iterative estimation of conductivity change distribution to optimize

F(δσ) = ‖δU − δV‖2
W + λ2‖δσ‖2

Q. (21)

An initial solution is taken from (20). Then, J, as well as δσ, are re-estimated in each
iteration until convergence.

(II) Total Variation (TV): This non-linear, iterative approach assumes that intense con-
ductivity changes occur between neighbouring elements of Ω by applying L1-norm priors.
The functional to be minimized is written as follows:

F(δσ) = ‖δU − δV‖2
W + λ2

Ned

∑
i=1

√
‖Liδσ‖2 + β, (22)

where Ned is the total number of edges between the domain’s elements, and L ∈ RNed×L is
a sparse matrix which shows the relation between the elements and their edges. Li refers to
the ith row of the matrix L, and β > 0 is a parameter that prevents the non-differentiability
of the regularization term [22]. In terms of this paper, the primal-dual interior point
(PD-IPM) TV method is adopted [21–23].

(III) Movement Prior: This approach, which was firstly proposed by [17] and furtherly
developed in [18], performs linear difference-EIT reconstruction while considering the
electrodes’ movement effect. The electrode movement δx ∈ RdN×1 is also estimated along
with the conductivity change. To this end, Tikhonov and Laplace priors have been proposed
for the simultaneous estimation of δσ and δx, properly modifying the Jacobian matrix J
and the prior matrix Q [17,18]. Apart from λ, a µ > 0 regularization hyperparameter for
the electrode movement prior is needed. In terms of this paper, both δσ and δx estimations
are performed using the Laplace prior, in the way described in [18]. This approach has
proven to reduce the artefacts caused by the electrodes’ movement and boundary changes
and has been exclusively developed for applications in dynamic lung imaging.
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(IV) Difference of Absolute Images: In this approach, absolute, instead of difference, EIT
reconstruction is applied particularly for each measurement frame [38]. The problem’s
objective functions are the following:

F1(σ
(1)) =

∥∥∥U(1) − V (1)
∥∥∥2

W
+ λ2

∥∥∥σ(1)
∥∥∥2

Q
. (23)

and
F2(σ

(2)) =
∥∥∥U(2) − V (2)

∥∥∥2

W
+ λ2

∥∥∥σ(2)
∥∥∥2

Q
. (24)

Defining σ
(1)
∗ ∈ RL and σ

(2)
∗ ∈ RL as the obtained solutions from (23) and (24),

respectively, the final estimated conductivity change is simply obtained by

δσ∗ = σ
(2)
∗ − σ

(1)
∗ (25)

In this paper’s reconstructions, the minimization of F1 and F2 is performed by using
the absolute GN non-linear approach with a Laplace prior.

(V) Multiple Priors (Non-Linear Difference Imaging—N.L.D.): This approach, proposed
in [12,24], concatenates the voltage data measurement frames as follows:

V = [V (1)T
V (2)T

]T ∈ R2Nm×1, (26)

and the computed boundary voltages as follows:

U = [U(1)T
U(2)T

]T ∈ R2Nm×1, (27)

while it is assumed that conductivity changes occur in a particular region of interest
(ΩROI ⊆ Ω), which is discretized in LROI ≤ L elements, such that

σ(2) = σ(1) + MδσROI , (28)

where M is an operator that maps δσROI with the domain’s elements. The following
optimization problem is defined:

F(σ) =
∥∥U − V

∥∥2
W + λ2

1

∥∥∥σ(1)
∥∥∥2

Q1
+ λ2

2

Ned,ROI

∑
i=1

√
‖Li,ROIδσROI‖2 + β, (29)

where λ1 and λ2 are regularization hyperparameters, Ned,ROI is the total number of edges
between the ROI elements and Li,ROI ∈ RNed,ROI×LROI shows the relation between the ROI’s
elements and their edges. A smooth L2-norm prior (prior matrix Q1) is used to estimate
σ(1), while a L1-norm prior is used to estimate the local conductivity change δσROI . The
solution σ∗ that minimizes (29) is achieved via an iterational process. A linesearch to
perform the updates is essential due to the problem’s high non-linearity.

It is worthwhile to mention that apart from these methods, many other approaches
have been developed for difference-EIT imaging. For example, the TSVD, a traditional
linear approach, gives similar results to (20) by performing thresholding SVD instead of
regularization. Finally, a very well-known single-step approach is the D-Bar, which uses
a non-linear scattering transform and low-pass filtering [39–41]. A comparison between
D-Bar and regularized methods can be found in [42].

3. Method-of-Moment with Sparse Bayesian Learning (Pm-Mom SBL)

This section presents the proposed method as a combination of the PM-MoM system
matrix formulation and an SBL approach for the occurring inverse problem.

The PM-MoM formulates a global integral equation (holding in the whole Ω) instead
of using the weak form of (1). It expresses the voltages and fields as Green’s functions
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and their gradients, respectively. The conductivity is non-linearized in the integral equa-
tion, and, unlike the conventional F.E.M. formulation, is not assumed to be a piecewise
constant at each element. Instead, its logarithm is expressed as a summary of radial basis
functions (RBFs) [34].

The governing integral equation takes the following form:

u(r; r+, r−)=
∫

Ω
G(r, r′)∇

(
ln σ(r′)

)
·∇uo(r′; r+, r−)dA + uo(r; r+, r−), (30)

where G(r, r′) denotes the Green’s function set between an observation point r and a source
point r′, uo denotes the domain’s voltage distribution when the conductivity is constant
(homogeneous with a value σo) and r+, r− denote the electrode coordinates from where
the current is sourced and sinked, respectively. It is also found that

uo(r′; r+, r−) =
I

σo
[G(r, r+)− G(r, r−)]. (31)

We then express the logarithm of conductivity as follows:

ln σ(r′) = ln(σo) +
L

∑
j=1

cjθ(r′, rj), (32)

where rj is the jth pixel’s center point. The RBF θ is selected according to the following
generalized form:

θ(r′, rj) = exp

−∥∥r′ − rj
∥∥p1/p2

p1

2D2

, (33)

where p1 > 0 and p2 > 0 are integers (p1 even), and D is a parameter which adjusts the
RBF’s width. By discretizing (30), replacing the conductivity logarithm with (32) and taking
the electrodes voltages’ differences, according to the measurement pattern adopted and
the method described in [34], we are led to a linear system of equations

Moc = δU, (34)

where Mo ∈ RNm×L is the system matrix, c = [cj]
L
j=1 ∈ RL×1 is the weighting coefficients’

vector and δU ∈ RNm×1 denotes the numerically expected electrode potentials’ differences.
Adopting the measurement model described by (9), we treat the inverse problem as a
minimization of the following WLS objective function:

F(c) = ‖Moc− δV‖2
W + λ2P(c). (35)

The minimization of (35) can be performed with the traditional L2 or L1-norm regu-
larized approaches [34]. Unlike J, the matrix Mo occurs directly from the discretization
of (30) without the assumption of ln(σ(r′)) ' σ(r′)− 1 near σo. Hence, the expression of
the boundary voltages as a function of conductivity is more accurate, leading to a faster
convergence of the inverse solution. We note that the Green’s function G and its gradient
can be separately precomputed either analytically for canonical geometries or by using the
F.E.M. or the finite difference method (F.D.M.) (at the same discretization mesh as MoM)
to solve the Laplace equation for the potential and the field for non-canonical geometries.

In this particular work, we make use of an SBL formulation [30] to minimize (35). To
this point, we interpret the objective function in a Bayes log-likelihood context

FB(c) = ln p(δV |c) + λ ln p(c; Θ), (36)
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where Θ is a set of hyperparameters. Considering that c is a superposition of some clusters
overlapping each other with an equal size h, and g = L − h + 1 is the total number of
clusters, the following factorization is performed:

c = Ψx = [Ψ1, ..., Ψg ][x1
T , ..., xg

T ]T , (37)

where xi ∈ Rh×1 and Ψi =
[
0T
(i−1)×h Ih×h 0T

(L−i−h+1)×h

]T
∈ RL×h. The Gaussian noise

model (9) is approximated as

δV = Moc + en = MoΨx + en. (38)

We also define Φ = MoΨ ∈ RNm×gh. Furthermore, we assume that the weight vector
x ∈ Rgh×1 obeys the following Gaussian distribution:

p
(

x; {γi, Bi}
g
i=1

)
= N (0, Σ0) (39)

with zero mean value and Σ0 ∈ Rgh×gh covariance matrix.
Considering the hyperparameters Θ = {γo, {γi, Bi}

g
i=1} and adopting the expectation-

minimization (EM) method, as in [30], we get an a posteriori estimation of the weight
vector’s x mean values vector µx ∈ Rgh×1 and covariance matrix Σx ∈ Rgh×gh. Hence, we
get a maximum a posteriori (MAP) estimation of x. For clarity, we summarize the SBL
process in Algorithm 1.

The updating rule for γi is based on the majoration-minimization method [26,43]. In
addition, instead of the linearized Jacobian matrix, we use the PM-MoM Mo system matrix
as an input in order to limit the problem’s non-linearity effect and avoid the necessity of
recalculating J.

The SBL method shows increased robustness to noise and modeling errors, while
the reconstruction artefacts are minimized. Furthermore, unlike the traditional regular-
ized schemes, the choice of the hyperparameter h (number of clusters) slightly affects the
reconstruction quality [30]. Hence, the cumbersome and non-trivial process of hyperpa-
rameter selection is avoided. Moreover, the regular “moment” grids used in PM-MoM
are suitable for performing sparse-based reconstructions. However, despite recent devel-
opments, the SBL methods are overall characterized by high complexity. For instance,
the SBL approach applied presents a complexity ofO(N2m2gh) per iteration. Nevertheless,
avoiding the search process for optimal hyperparameters partially reduces the increased
complexity effects. A simplified flow chart of the whole PM-MoM SBL, as well as an
example of a domain’s clustering, are depicted in Figure 1. The SBL approach adopted in
this particular paper is in the form used in [30]. However, some modified SBL approaches
using approximate message passing (AMP) to accelerate the E-step of the algorithm have
been researched for 3D imaging [31], frequency-difference EIT [32] and multiple mea-
surement vector (MMV) time-sequence measurements [33]. Such techniques can also be
appropriately combined with the PM-MoM in a similar manner.
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Forward Solver
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Function 

    Domain 
Discretization   Pattern

Method of 
  Moment

   Matrix 
Formulation

   MRBF
Parameters

System Matrix (Mo)
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   Objective Function
     (Bayesian Form)

   EM Algorithm
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   (a)

   (b)
Figure 1. (a) Simplified demonstration of the PM-MoM SBL method process. (b) Illustrative example of a thoracic pixelized
domain’s clustering structure .
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Algorithm 1 Sparse Bayesian learning (SBL).
Inputs: Mo, δV , h, εmin, imax

Initialize: ε = 1, κ = 0, µx = 0gh×1, Σx = 0gh×gh, γ = diag(Ig×g) ∈ Rg×1,

γo = 0.01×

√√√√ 1
Nm− 1

Nm

∑
j=1
|δVj − δV |2, Bi = Toeplitz

([
1, ζ1, ..., ζh−1]), ζ = 0.9, Ψ,

Σ0 =

 γ1B1 ... 0h×h
... ... ...

0h×h ... γgBg

, Φ = MoΨ, Σu = γo INm×Nm + ΦΣoΦT , B̃i = Bi.

LOOP:
While ε > εmin and κ ≤ κmax do

1. µx := ΣoΦT Σu
−1

2. Σx := Σ0 − Σ0ΦT Σu
−1ΦΣ0

3. γo :=
1

Nm

(
‖δV −Φµx‖2

2 +
g

∑
i=1

tr
(

Σx
iΦT

i Φi

))

4. γi := γi ·

∥∥∥√BiΦ
T
i Σu

−1δV
∥∥∥

2√
tr
(

ΦT
i Σu

−1ΦiBi

) , for each cluster i ∈ {1, ..., g}.

5. B̃i := B̃i +
1
γi

(
Σx

i + µx
i
(

µx
i
)T
)

, for each cluster i ∈ {1, ..., g}.

6. r̃i :=
diag

(
B̃i, 1

)
diag

(
B̃i
) , for each cluster i ∈ {1, ..., g}.

7. ri := sign(r̃i) ·min{|r̃i|, 0.99}, for each cluster i ∈ {1, ..., g}.

8. Bi := Toeplitz
([

r0
i , ..., rh−1

i
])

, for each cluster i ∈ {1, ..., g}.

9. Update Σ0 and Σu.

10. ε =
‖µx

new − µx
prev‖2

‖µxnew‖2

11. κ := κ + 1
End

Output: c∗ = Ψµx

Estimate σ(r) using (32) and (33).

4. Evaluation Methods

In this section, the thoracic structures’ extraction and the corresponding tissues’ elec-
trical properties are demonstrated. In addition, the evaluation metrics, including GREIT
FoMs with minor modifications, the Pearson CC, the RMSE and the recently proposed FR
are briefly explained. Finally, an in vivo online available dataset demonstrating a subject’s
full-breath cycle is briefly described.

4.1. Thoracic Structures

To examine and compare the previously described algorithms’ performance in dy-
namic imaging, we have created 3 3D fine F.E. thoracic structures based on 3 CT-images of
3 corresponding different healthy adult male subjects. The CT images were taken between
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the third and the fourth intercostal levels and are included in a large medical database
which is available online in [44]. The 3D models have been created in MATLAB using the
EIDORS and the NETGEN software [45,46] and include the following tissues: left lung,
right lung, heart, vertebra and skin, while muscle is assumed to be the background.

For each structure, 5 breath-cycle states have been considered from end-expiration
(deflated) to end-inspiration (inflated). Hence, a total number of 15 F.E. models have been
created, demonstrating 3 subjects’ cases in 5 breath-cycle states. Each state presents chest
boundary changes (a total change of 5–8% of the chest’s width) and lung shape changes
(total expansion 10–15% of the lungs’ width at the inflated state) [12]. The lungs’ admittance
changes between the states have also been considered.

The tissues’ admittance values are loaded from an open-source database, demon-
strated in [47–49]. All admittance values depend on the selected current signal frequency f
in which the EIT measurements are performed, while the lungs’ admittances also depend
on the breathing state. For this particular work, we assume f = 100 kHz, which is in the
range of the current frequencies used for dynamic lung imaging. This is actually a common
frequency choice for such applications [7,50,51]. Nevertheless, higher frequencies, such
as those applied in high-performance modern EIT systems [7,9], can be also considered.
Furthermore, to take into account each tissue’s inhomogeneity, the following standard
deviations (std) of the admittance values assigned to each tissues’ elements have been
taken into account: 1% for the skin, 2% for the heart and the muscle background and 3%
for both lungs. These values fall within the range depicted in the mentioned database.

The conductivity and permittivity values assigned to each tissue at 100 kHz, as well as
their std are shown in Table 1. For the lungs, the deflated and inflated states’ values were
taken from [47–49]. To find the intermediate states’ values, we firstly assumed that the
lungs’ volumes increase linearly over time during the inhalation process [52]. A relative
(arbitrary unit—A.U.) volume has been defined as follows:

Fi =
3

P + 1
i +

3
P− 1

+ 4, for 1 ≤ i ≤ P, (40)

where P is the total number of states from end-expiration to the end-inspiration. In our
case, P = 5. In actuality, the lungs’ volume change is more complex and heavily depends
on each particular breath. The main changes in the lungs’ admittance occur due to the
air-flow. The lungs’ conductivity as a function of their volume can be expressed by [52,53]

σl = K1

(
0.85sb

w
+ 0.03si

)
32F + 4.5
(32F + 9)2 + K2, (41)

where sb, w and si are lung morphological parameters described in [53], with their values
selected to be sb = 0.5, w = 1.5 and si = 2. In addition, K1 and K2 are coefficients
used to scale the lungs’ conductivity between the known values and end-inspiration and
end-expiration. The permittivity of the lungs is correspondingly defined as [53]

εl = L1

(
0.85erb

w
+ 780F1/3erm

)
32F + 4.5
(32F + 9)2 + L2, (42)

where erb and erm are also lung morphological parameters described in [53], with their
values selected at erb = 104 and 10, respectively. Furthermore, L1 and L2 are scaling coeffi-
cients. We note that blood-cycle related changes have not been taken into consideration,
since the HR frequency is 3–6 times higher than the breath frequency.
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Table 1. Assigned conductivity and permittivity values to the thoracic models’ tissues for
f = 100 kHz, according to [47–49], and (41)–(42). The admittance is estimated as γ = σ + jωεεo.

Tissue σ at 100 kHz (S/m) ω·ε·εo at 100 kHz (F · Hz/m)

Heart 0.215± 0.004 0.0548± 0.001
Deflated Lung 0.272± 0.003 0.029± 0.001
Lung State 2 0.225± 0.003 0.019± 0.001
Lung State 3 0.179± 0.003 0.017± 0.000
Lung State 4 0.145± 0.002 0.029± 0.001

Inflated Lung 0.107± 0.002 0.014± 0.000
Bones 0.021± 0.000 0.001± 0.000

Skin & Fat 0.045± 0.000 0.043± 0.000
Muscle (Background) 0.380± 0.008 0.024± 0.001

In each case (1–3), the boundary extracted from the corresponding CT image is used
as a cross-section to create the 3D F.E. structure. For each structure, a height of h = 1 A.U.
has been considered, while the x-axis limits have been normalized between −1 and 1 A.U.
A number of N = 16 circular electrodes of radius Rel = 0.05 A.U. have been placed at the
z = 1/2 A.U. level. In addition, an electrode position error has been added: 5% height std
and 3% angle std, since this is a more realistic case.

The thoracic structures are demonstrated in Figures 2–4. Their boundary and lungs’
shape changes are demonstrated at the cross-section level in Figure 5. Finally, the numbers
of each model’s tetrahedral elements and nodes are shown in Table 2.

To simulate the measurements, the adjacent (skip-0) current and voltage measurement
pattern was considered [36,54], while a Gaussian noise of −50dB SNR was added to the
extracted raw signals. The EIDORS library tool in MATLAB was used to perform the
simulations [45].

End-Expiration 1/4 Fill 1/2 Fill

3/4 Fill End-Inspiration

|γ|

Figure 2. The 3D F.E. structure for the 1st subject case in 5 breath cycle states.
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End-Expiration 1/4 Fill 1/2 Fill

3/4 Fill End-Inspiration

|γ|

Figure 3. The 3D structure for the 2nd subject case in 5 breath cycle states.

End-Expiration 1/4 Fill 1/2 Fill

3/4 Fill End-Inspiration

|γ|

Figure 4. The 3D structure for the 3rd subject case in 5 breath cycle states.
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Lungs Expiration-End

Heart

Vertebrae

Lungs Inspiration-End

Lungs Median States

Boundary Expiration-End

Boundary Inspiration-End

Boundary Median States

CASE I CASE II

CASE III

Figure 5. Cross-sectional boundary and lung shape changes from the end-expiration to the end-
inspiration states. The extracted shapes were used to create extruded 3D models using NETGEN.

Table 2. Number of tetrahedral elements and nodes per each 3D thoracic F.E. model.

Model No of Elements (Le) No of Nodes (ne)

Case I, deflated state 133,529 27,328
Case I, state 2 139,486 28,374
Case I, state 3 139,798 28,433
Case I, state 4 142,070 28,814

Case I, inflated state 146,000 29,542
Case II, deflated state 144,329 29,125

Case II, state 2 147,838 29,815
Case II, state 3 146,871 29,688
Case II, state 4 149,887 30,219

Case II, inflated state 150,775 30,359
Case III, deflated state 158,855 31,791

Case III, state 2 158,392 31768
Case III, state 3 159,185 31,937
Case III, state 4 159,550 31,984

Case III, inflated state 160,349 32,159

4.2. Reconstruction Domain

When the EIT image reconstruction is performed using simulated models, we need
to avoid inverse crime. This occurs when the simulated model’s and the reconstruction
domain’s mesh or boundary is equal [55]. Instead, the reconstruction needs to be performed
on a significantly different mesh, usually coarser than the simulated model’s one.

In this work, all the image reconstructions are performed on a 2D coarse thoracic-
shaped domain, called Ω, which presents a different boundary than any of the original
model’s boundaries. For the FEM-based reconstruction approaches, the domain contains
L = 1024 triangular elements and ne = 545 nodes. The shunt electrode model has
been assumed to simulate the electrodes’ effects [35,56]. Furthermore, for the PM-MoM
reconstructions, a L = 1060 uniform pixel grid has been used, considering the electrodes as
points [57]. The reconstruction domain for the two discretizations is shown in Figure 6.
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Figure 6. Reconstruction domain Ω used for the EIT imaging. Left: F.E. mesh. Right: MoM mesh.

4.3. Reference Image Extraction

In order to perform a quantitative evaluation of EIT imaging, a corresponding “ground
truth” reference image has to be defined on the reconstruction domain Ω. However, the sim-
ulated models have completely different shapes and discretization meshes compared to Ω
in both the standard FEM and MoM reconstruction cases. In order to “match” the simulated
models with the reconstruction domain, the approach presented in [58] is adopted.

This approach considers that the simulated models’ shape in all three cases is not con-
stant, as well as that difference-EIT imaging is performed. Hence, we firstly get five absolute
reference images, each one representing a particular state. Then we take the differences
between the 2nd–5th images and the 1st “reference frame”, resulting in 4 reference images.

Each “true boundary” domain Ω̃k,l , k = {1, 2, 3}, l = {1, 2, ..., 5} is extracted from
the 3D models’ electrodes’ cross-section plane. Then, we scale Ω and each Ω̃i,j in the
x-axis by normalizing its limits between −1 and 1. We secondly define Ai as the Ω ith-
element’s/pixel’s area, with i = {1, 2, ..., L}. Then, the percentage of Ai which is within the
curves defined by the following six tissues, left lung, right lung, vertebra, heart, skin and
muscle, is expressed as a weight vector,

wi
k,l = [wi

j,k,l ]
6
j=1 ∈ R6×1

+ , (43)

for the kth case and lth state. At this point, we define the vector

γt,l = [γj,l ]
6
j=1 ∈ C1×6, (44)

which represents the mean admittances for each one of the 6 mentioned tissues at the lth
state. Then, the ith element’s or pixel’s reference admittance is estimated as follows:

γr,k,l,i = γt,l ·wi
k,l ∈ C. (45)

The kth case, lth state (absolute) reference admittance vector is then defined as

γr,k,l = [γr,k,l,i]
L
i=1 ∈ CL×1. (46)

For each image frame, we get the following difference reference admittance vector:

δγr,k,l+1 = γr,k,l+1 − γr,k,1, (47)

where δγr,k,l+1 ∈ CL×1 for l = {1, 2, 3, 4}, assuming the kth case.
A simple example of this process and the F.E.M. reference images for k = 1 are

demonstrated in Figure 7.
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Figure 7. Visual example of the reference images’ extraction for the 1st thoracic case (k = 1). Left: example of the absolute
admittance extraction of the i1th and i2th elements when in an inflated case (l = 5). Right: the difference image reference
frames for case k = 1 when F.E.M. is applied. Only the conductivity difference (real values) is expressed in the legend.

4.4. Figures of Merit

To quantitatively evaluate the EIT reconstructions, we use the following five GREIT
FoM: target amplitude—TA, position error—PE, shape deformation—SD, resolution—
RES and ringing—RNG [19]. These have been properly adapted to the examined thoracic
cases. Furthermore, the CC, the RMSE and the FR metrics are applied.

4.4.1. Target Amplitude—TA

Assume δσ∗ ∈ RL×1 isthe conductivity difference estimated from the EIT reconstruc-
tions. The TA can be defined as the normalized summary of elements’/pixels’ amplitudes
in the image,

TA =
∑L

i=1 δσ∗,i
max {|δσ∗,i|}

. (48)

TA is a FoM similar to the amplitude response—AR, which is considered to be the
most important GREIT FoM [19]. Its absolute value should be relatively low and stable
during the breath process. When admittance values are reconstructed, TA can be estimated
by taking only the real values.

4.4.2. Position Error—PE

The position error—PE—shows the precision of the reconstructed inclusions’ center
of gravity. In our case, we define the right and the left lung as the corresponding inclusions.
Then, we get two PE values:

PELL = |rtLL − riLL|, (49)

for the left lung, where rtLL is the true center of the left lung and riLL is the reconstucted
left lung’s center, and

PERL = |rtRL − riRL| (50)

for the right lung, where rtRL is the true center of the right lung, and riRL is the reconstucted
right lung’s center. The total PE is given by

PE = PELL + PERL. (51)
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To detect an inclusion as “lung”, we first filter the reconstructed image, setting all
the elements’/pixels’ absolute values that are below a selected threshold (−1/4 of the
maximum absolute value) to zero and all non-zero values to 1. We denote x f ∈ RL×1 as
the filtered image conductivity distribution, where

x fi
=

{
1 if δσ∗,i ≤ −1/4 max {|δσ∗|}
0 otherwise

(52)

Secondly, the left and right lung inclusions are separated in the reconstructed image
with a y-axis line, as shown in Figure 8.

Reconstructed Inclusions' Centers

True Lungs' Centers
True lungs' Boundaries

Reconstructed Image Filtered Image

y-axis separator

Figure 8. Reconstructed EIT image filtering and detection of PE. Left: raw reconstructed image
including the true lungs’ boundaries (for the corresponding 3D model’s cross-section). Right: filtered
image including true and reconstructed lungs’ centers.

4.4.3. Shape Deformation—SD

Shape deformation—SD—denotes the percentage of the reconstructed and filtered
inclusion which is not within the “true lung’s” boundary. Assume LL and RL are the
“true” left and right lungs’ domains, respectively. If x f is the filtered reconstructed image
conductivity distribution, we get

SDLL =
∑i/∈LL x fi,le f t

Ai

∑i∈LL x fi,le f t
Ai

(53)

for the left lung and for each element/pixel left from the y-axis with an area Ai (see
Figure 8). For the right lung we have

SDRL =
∑i/∈RL x fi,right

Ai

∑i∈RL x fi,right
Ai

(54)

for each element/pixel right from the y-axis with an area Ai.
The total SD is given by

SD =
∑i/∈LL x fi,le f t

Ai + ∑i/∈RL x fi,right
Ai

∑i∈LL x fi,le f t
Ai + ∑i∈RL x fi,right

Ai
. (55)

SD should also be low and stable.



Bioengineering 2021, 8, 191 18 of 32

4.4.4. Resolution—RES

If ALL represents the reconstructed left lung inclusion’s area, ARL is the reconstructed
right lung inclusion’s area and Ao is the Ω area, the resolution—RES—is given by

RES =

√
ALL + ARL

Ao
. (56)

We can estimate ALL and ARL from the following expressions

ALL = ∑
i∈LL

x fi,le f t
Ai (57)

and
ARL = ∑

i∈RL
x fi,right

Ai, (58)

RES should be low and uniform [19].

4.4.5. Ringing—RNG

Ringing—RNG—demonstrates whether the reconstructed inclusion causes areas of
opposite sign near the target inclusion. It is given by

RNG =
∑i/∈LL&i/∈RL&δσ∗,i<0 δσ∗,i

∑i∈LL δσi + ∑i∈RL δσ∗,i
. (59)

RNG is an important GREIT FoM, since in dynamic lung image reconstructions, conductive
areas often appear between the lungs that are sometimes wrongly recognized as “heart” [19].
It should also be low and as stable as possible.

Apart from the above GREIT parameters, we also apply the following FoM.

4.4.6. Pearson Correlation Coefficient—CC

The Pearson correlation coefficient—CC—is one of the most common metrics that
quantify an image’s quality. It indicates the similarity between a “ground truth” reference
image and the reconstructed image. It is given by

CC =
Cov(δσ∗, δσr)

std(δσ∗)std(δσr)
, (60)

where δσr = Re{δγr} for each particular case k and state l.

4.4.7. Root Mean Square Error—RMSE

An additional FoM used for the image evaluation is the well-known RMSE, which is
estimated according to the following formula:

RMSE =

√
∑L

i=1(δσr,i − δσ∗,i)
2

L
. (61)

4.4.8. Full Reference—FR

This metric was recently proposed as a universal FoM for EIT systems’ evaluation
on the reconstructed images [59]. It has been extensively presented and applied in phan-
tom experimental setups. However, this is the first time that FR is applied in dynamic
thoracic models.

To estimate FR, the normalization of the reference images δσr and the reconstructed
images δσ∗ (element/pixel) data between −1 and 1 needs to be performed. We define as
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EDre f ∈ RL×1 the normalized reference image data and EDtest ∈ RL×1 the normalized
reconstructed image data.The global FR (GFR) is defined as follows:

GFR = 0.5 ·
L

∑
i=1
|EDre fi − EDtesti|. (62)

We also define the local FRs for the left and the right lungs, respectively, as

FRLL = 0.5 · ∑
i∈LL
|EDre fi − EDtesti| (63)

and
FRRL = 0.5 · ∑

i∈RL
|EDre fi − EDtesti| (64)

Both local and global FR indicate a high-quality reconstruction when they take low values.

4.5. In Vivo Data

A qualitative comparison is attempted using online available in vivo EIT data [45].
This data consists of 34 data frames of a single breath cycle captured by the 16-electrode
serial-data EIT Scanner [60] using the adjacent current and voltage measurement pattern.
This system performs demodulation of the input signal with an AM signal of a higher
order of magnitude frequency than that of the electrode voltage signal. The injected current
frequency (carrier) signal was set at 65 kHz. Since difference-EIT imaging is performed,
the first frame is used as reference, resulting in 33 image reconstructions.

5. Results and Discussion

Image reconstructions were performed for the 3 structures presented in Section 4.1,
considering each one of the 5 mentioned breathing states and resulting 4 images per
structure. Reconstructions were also performed for the in vivo data described in Section 4.5,
resulting in 33 EIT images. The regularization scheme-based approaches described in
Section 2.4, the MoM-regularized approach, as well as the proposed MoM SBL approach
described in Section 3 were used. Particularly for the multiple priors difference non-linear
approach (N.L.D.), we consider that the ROI where δσROI occurs is equal to Ω, since the
“lungs” area covers a significant part of Ω [12].

For all cases, the reconstruction hyperparameter λ value, as well as the µ, β and
h parameters’ values (for the movement-prior, TV and PM-MoM SBL reconstructions,
respectively) were heuristically selected, as shown in Table 3. The selection of λ was
performed in such a way that CC is maximized. Although some methods for the λ selection,
such as the L-curve, the noise figure (NF) and the BestRes calibration methods [19,61], have
been proposed, this process is beyond this work’s scope. Finally, for the PM-MoM SBL, we
set the maximum number of iterations κmax to 5 and the minimum tolerance εmin to 10−5.

Table 3. Selection of reconstruction parameters per algorithm.

Algorithm λ µ β h

Movement Prior 8× 10−3 1.42 − −

Gauss–Newton (GN) 8× 10−3 − − −

Total Variation (TV) 10−6 − 10−3 −

Difference of Absolute Images 5× 10−2 − − −

Multiple Priors (N.L.D.) λ1 : 5× 10−5

λROI : 8× 10−5 − 10−3 −

PM-MoM Laplace 0.2 − − −

PM-MoM SBL − − − 4
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5.1. Simulation Results

The resulting image reconstructions and the FoM values demonstrating the simulated
cases are depicted in Figures 9–14. Specifically, the image reconstructions that represent
each one of the structures 1–3 are shown in Figures 9, 11 and 13, respectively. We define
the reference image extracted according to the process described in Section 4.3 as the
”true” image. Furthermore, the corresponding FoM values obtained are demonstrated in
Figures 10, 12 and 14, respectively.

A visual inspection of the images which resulted from the 1st structure (Figure 9)
shows that the air-filled lungs are successfully detected from all the approaches. However,
the lungs’ shape and area is deformed, while “pseudo-heart” and boundary artefacts often
appear. Such effects are less intense in the MoM Laplace and the MoM SBL cases. As we
proceed to the full-inhalation state, the conductivity contrast increases, resulting overall in
increased absolute TA, PE and sometimes RNG (Figure 10). At the same time, both local
and global FR decrease, while non-significant changes occur at the RES, SD and CC. The
RMSE value remains almost constant for all the approaches, except for the TV, where it
decreases. Comparing the metric values for each algorithm, better results are obtained
by the PM-MoM SBL approach, which shows the lowest and most uniform absolute TA,
the lowest PE, RES, SD, RMSE and GFR and the highest CC, followed by the PM-MoM
regularization approach.

The images obtained from the simulations of the second structure (Figure 11), which
is characterized by closer distance between the lungs, show almost all the artefacts near
the boundary instead of between the lungs. The PM-MoM SBL method also shows less
intense artefacts, while, along with the regularized PM-MoM and the multiple priors N.L.D.
approach, achieving the best CC and lower RMSE, local and GFR values (Figure 12). The
proposed method also achieves the lowest absolute and most constant TA, RES and SD.
However, the best local FR levels are extracted from the N.L.D, while the PM-MoM shows
an increased RNG metric.

The third case results in Figure 13 are characterized by overestimation of the air-related
conductivity change near the chest. This occurs due to the presence of lung tissue very close
to the chest boundary, as the EIT measurements are sensitive to conductivity changes near
the boundary [62]. A visual comparison of the images in Figure 13 indicates that the PM-
MoM SBL method has the best performance, an absence of “positive conductivity change”
artefacts and less lung deformation. Considering the quantitative results, the PM-MoM
SBL approach achieves the lowest PE, RES, SD and RMSE (Figure 14). Although the best
TA, RNG, CC and GFR are demonstrated by the GN, N.L.D, N.L.D. and the regularized
PM-MoM methods, respectively, the PM-MoM SBL shows the most constant TA, acceptable
levels of RNG, a CC which is close to the best one, and the second-lowest GFR.

5.2. In Vivo Results

The in vivo EIT reconstructed images that demonstrate a subject’s single breath,
as described in Section 4.5, are shown in Figures 15–18. In particular, Figure 15 shows the
reconstructed images using the GN and TV approaches, reviewed in Section 2.4. Figure 16
shows the reconstructed images using the movement prior linear approach, Figure 17
depicts the reconstructed images using the difference of absolute images and the multiple
priors non-linear difference imaging (N.L.D.) approaches and Figure 18 demonstrates the
regularized and SBL PM-MoM reconstructed images.
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Figure 9. Reconstructed EIT images (conductivity differences) for the first case.
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Figure 10. FoM results for the first case.
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Figure 11. Reconstructed EIT images (conductivity differences) for the second case.
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Figure 12. FoM results for the second case.
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Figure 13. Reconstructed EIT images (conductivity differences) for the third case.
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Figure 14. FoM results for the third case.

A qualitative observation of the images leads to the outcome that all the approaches,
except for GN, are able to detect the full-inspiration state. However, the presence of ringing
is significant near the centre (between the lungs) in the movement prior, GN and N.L.D.
approaches. This might lead to misleading conclusions about the presence of “heart” tissue
between the lungs, as mentioned above. In fact, the heart tissue is not directly detectable
in difference EIT imaging, since its conductivity does not significantly change during the
breath cycle. In addition, any blood-cycle-related conductivity changes are synchronized
with the heart rate HR, while the “pseudo-heart” inclusion is synchronized with the breath
cycle. Meanwhile, the TV, difference of absolute images and both PM-MoM approaches
demonstrate boundary “positive conductivity change” artefacts which are related to the
mismatch between the patients’ thoracic shape and ∂Ω. This effect is less intensive in
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the regularized PM-MoM, PM-MoM SBL, the difference of absolute images and the TV
methods, which overall perform better than GN, N.L.D. and movement prior. However,
the TV method appears to underestimate the lungs’ area in relation to the total thoracic area.
We also observe that the inequality between the lungs’ volumes is successfully detected
by most of the approaches (except for TV), but is more clear when enacting PM-MoM
(regularized or SBL), difference of absolute images and N.L.D.

GN TV

-0
.1

5

-0
.1

 

-0
.0

5

0
  

  

0
.0

5
 

0
.1

  

0
.1

5
 

Estimated Δσ (S/m)

-0
.1

5

-0
.1

 

-0
.0

5

0
  

  

0
.0

5
 

0
.1

  

0
.1

5
 

Estimated Δσ (S/m)

Figure 15. Single–breath in vivo results using the GN and TV approaches.
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Figure 16. Single–breath in-vivo results using the movement Laplace prior approach.



Bioengineering 2021, 8, 191 28 of 32

N.L.D.Diff. of Abs.
-0

.1
5

-0
.1

 

-0
.0

5

0
  

  

0
.0

5
 

0
.1

  

0
.1

5
 

Estimated Δσ (S/m)

-0
.1

5

-0
.1

 

-0
.0

5

0
  

  

0
.0

5
 

0
.1

  

0
.1

5
 

Estimated Δσ (S/m)

Figure 17. Single–breath in vivo results using the difference of absolute images and multiple priors non-linear difference
imaging approaches.
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Figure 18. Single–breath in vivo results using the PM-MoM with Laplace regularization prior and the PM-MoM SBL approaches.
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5.3. Discussion

In this work, a proposed EIT reconstruction method, which combines PM-MoM for
the system matrix formulation and SBL for the inverse problem solution, is applied to
dynamic thoracic imaging. A number of evaluation criteria is adopted, and an extensive
comparison is performed with numerous state-of-the art approaches. Qualitative and
quantitative studies have been performed on 3D time-variant non-homogeneous thoracic
models. In vivo imaging of a patient’s full-breath cycle has also been applied.

The qualitative results both in the simulation (Figures 9, 11 and 13) and the in vivo
studies (Figures 15–18) reveal that, overall, the proposed PM-MoM SBL approach shows
a better spatial resolution than both the traditional and some more advanced linear and
non-linear EIT reconstruction methods, as well as the regularized PM-MoM method. This
is confirmed quantitatively in Figures 10, 12 and 14 for the simulated cases. In all three
subject-cases, the PM-MoM SBL outperforms the other approaches in most of the FoMs.

It is worthwhile to mention that, of the other approaches, the regularized PM-MoM
appears to be the most efficient. In addition, the more recently proposed movement prior,
difference of absolute images and multiple priors N.L.D. apaproaches appear to outperform
the traditional GN and TV methods.

Considering the time needed for the reconstructions, the best performance (about
50 ms per frame) is achieved by the regularized PM-MoM when using the Laplace L2-norm
prior with a single step. The movement prior linear approach needs about the same amount
of time per reconstruction, while the non-linear GN and TV methods need significantly
more time (about 4 to 6 seconds, depending on the number of iterations needed). Due
to the relatively high complexity of SBL (O(N2m2gh) per iteration), the PM-MoM SBL
approach needs, on average, 5.6 s per image frame reconstruction, when h = 4, N = 16,
m = 13, g = 1055 and the number of iterations is 5. However, despite the time needed for
PM-MoM SBL, the hyperparameter selection process, which is usually time-consuming,
is avoided, contrary to the regularization approaches. Finally, the difference of absolute
images as well as the multiple priors N.L.D. approaches require significantly longer times
to reconstruct the images. The times mentioned above have been achieved using an AMD
Ryzen 5 3600 system.

In conclusion, the PM-MoM SBL approach outperforms the regularized MoM one
regarding the images’ quality and spatial resolution. Additionally, there is no need for
hyperparameter selection, which partially reduces the SBL process complexity effect on
execution time. The PM-MoM SBL can be directly applied either for offline imaging (after
collecting the measurements) or online on particular breath states where the lung conduc-
tivity change is significant. Another choice for faster online imaging is to reduce either the
maximum number of iterations κmax or tolerance εmin (see Algorithm 1). It is worthwhile
to mention that further research on optimizing the SBL approaches’ complexity, as well as
evolution in hardware, might improve the total time needed per image reconstruction.

6. Conclusions

An EIT reconstruction approach based on a method of moment which expresses the
conductivity logarithm with radial basis functions and an SBL method was applied to
dynamic EIT lung imaging. In this study, 3D CT-based F.E. thoracic cavities considering
5 breath cycle states and the basic thoracic tissues were developed to simulate the mea-
suring process. Quantitative evaluation was performed using a variety of metrics, and an
extensive comparison with other reconstruction approaches took place. In vivo imaging
using online available data was also carried out. The results show that the proposed
(PM-MoM SBL) approach appears to improve spatial resolution in the reconstructed EIT
images. Furthermore, despite the method’s high time complexity, the lack of necessity for
hyperparameter selection reduces the effects of this disadvantage. Future research must be
performed in the following directions: A) Optimization of the SBL algorithm in terms of
imaging quality and time complexity; and B) Application in 3D multi-layer EIT imaging.
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