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Abstract. Key genes in chronic lymphocytic leukemia (CLL) 
were investigated through systematically tracking the 
dysregulated modules from protein‑protein interaction (PPI) 
networks. Microarray data of normal subjects and CLL 
patients recruited from ArrayExpress database were applied 
to extract differentially expressed genes (DEGs). Additionally, 
we re‑weighted the PPI network of normal and CLL condi-
tions by means of Pearson's correlation coefficient  (PCC). 
Furthermore, clique‑merging method was applied to extract 
the modules and then the altered modules were screened out. 
The intersection genes were selected from miss and add genes 
in the altered modules. The common genes were screened 
from the intersection genes and DEGs in CLL. A total of 
734 DEGs were screened by statistical analysis. In this investi-
gation, there were 1,805 and 703 modules in normal as well as 
disease PPI network. In addition, 875 altered modules were 
obtained which included 145 miss genes, 353 add genes and 
85  intersection genes. Finally, in‑depth analysis revealed 
9 mutual genes between the intersection genes and DEGs in 
CLL. Our analysis revealed several key genes associated with 
CLL by systematically tracking the dysregulated modules, 
which might be candidate targets for diagnosis and manage-
ment of CLL.

Introduction

Fundamental units formed by interacting proteins have been 
demonstrated to be responsible for implementing important 
biological processes within cells  (1). The identification of 
protein complexes (modules or pathways) contributes to 
understanding the complex formation and the higher level orga-
nization of cells, and the dysregulation of protein complexes 

might be associated with the development of disease. With the 
advance of microarray techniques, a large number of physical 
interactions have been cataloged from organisms, fueling the 
development of computational algorithms for systematically 
mining protein complexes from the protein‑protein interac-
tion (PPI) network. Despite the significant progress in the 
aspect of extracting protein complexes from the PPI networks 
over the last few years, computational methods are seriously 
constrained by noise in current PPI data (2,3). Several compu-
tational methods have been developed to predict modules 
from networks relying on graph clustering, and clique finding, 
such as MCODE (4), CMC (5) and STM (6). In addition, the 
identification of dysregulated modules from condition‑specific 
networks will promote the process to reveal the pathogenesis 
of disease. Recently, a systematic method for uncovering 
dysregulated modules has been developed by integrating PPI 
information and condition‑specific gene expression profile (7).

Chronic lymphocytic leukemia (CLL) is the most common 
type of hematopoietic malignancies in adults (8). Nowadays, 
more and more patients are diagnosed at early‑stage, likely 
because of using routine blood tests as well as the widespread 
availability of flow cytometry (9‑11). However, the treatment 
of CLL remains a challenge (12). A previous study demon-
strated that TL1A could be considered as a negative regulator 
of leukemic cell proliferation, that may influence the physio-
pathology and clinical outcome of CLL at an early‑stage (13). 
Moreover, researchers indicated that the inhibition of JAK was 
a potentially useful new pharmacological approach to CLL 
treatment (14). However, the underlying mechanisms of CLL 
have yet to be fully elucidated. Systematic tracking dysregu-
lated module behavior across specific conditions is critical.

In this investigation, we proposed a straightforward but 
systematic method to identify and compare the modules across 
normal and CLLs through integrating PPI data and specific 
gene expression profile of CLL. The results of this study will 
be critical to reveal the molecular mechanism of this disease 
and develop promising therapies.

Materials and methods

Data recruitment and preprocessing. Here we selected the 
microarray expression profile of E‑GEOD‑2466 (15) CLL 
from ArrayExpress database to perform our analysis. The gene 
expression profile numbered E‑GEOD‑2466 which was based 
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on the platform of A‑AFFY‑1 ‑ Affymetrix GeneChip Human 
Genome U95Av2 [HG_U95Av2] and A‑AFFY‑9 ‑ Affymetrix 
GeneChip Human Genome U95A [HG_U95A] was down-
loaded. E‑GEOD‑2466 comprised a total of 111  samples, 
including 100 genetically well‑characterized B‑CLL samples 
and 11 normal control samples. Finally, we obtained the probe 
annotation data for subsequent analysis.

With the goal of eliminating the influence of non‑specific 
hybridization, the expresso function from the Affy package 
was used to obtain the probe data. Moreover, background 
correction was conducted by means of robust multiarray 
average (RMA) (16), quantiles (17) was employed to standardize 
the data, MAS was utilized to implement perfect match (PM) 
and mismatch (MM) correction (18), medianpolish (16) was 
performed to summarize the probe data, followed by the 
filtration of probe data by means of featureFilter function. 
Ultimately, we obtained 20,102 genes from the probe set.

Detection of differentially expressed genes  (DEGs). The 
DEGs between the two groups were extracted relying on 
limma package (19). Empirical Bayes (eBayes) (20) as well as 
a false discovery rate (FDR) (21) calibration of P‑values were 
implemented using ImFit function. The genes were extracted 
if these genes met the following conditions: |logFC| ≥2, P<0.01.

PPI network construction. In this study, we downloaded all 
PPI data with combine‑score from the STRING database (22). 
The protein ID and gene symbols were transformed and then 
the repeated ones were removed. We selected the interaction 
relations with combined‑score ≥0.65 to construct the PPI 
sub‑network.

Gene interactions re‑weighted using Pearson's correlation 
coefficient (PCC). Gene interactions of the PPI sub‑network 
of CLL and normal subjects were re‑weighted by PCC. PCC 
can evaluate the probability of two co‑expressed genes, where 
value ranged from ‑1 to +1 (23). Moreover, the absolute value 
of PCC of each edge was defined as the value of the interaction 
of the PPI sub‑network. In addition, we defined PCC of every 
gene pair as the weight value of the edge.

Uncovering modules from the sub‑network of PPI. Clique‑mer
ging, an approach used to identify the modules, is similar to 
the previous algorithms for detecting complexes from the PPI 
networks (2,5). Herein, we used the clique‑merging to extract 
the modules from PPI sub‑networks. In detail, we discovered 
all maximal cliques from the network of the normal and disease 
conditions using fast depth‑first approach. Subsequently, the 
maximal cliques having nodes ≥5 were selected. Last we 
arranged them in descending order according to the score of a 
clique. This score was its weighted interaction density (WID). 
According to the WID, we sorted these cliques.

A lot of maximal cliques may be overlapped. Hence, 
these lapped cliques should be abandoned to decrease size or 
merged into a bigger sub‑graphs. In this study, the weighted 
inter‑connectivity between two cliques was employed to deter-
mine whether these two lapped cliques were combined or not. 
Herein, t0 (a predefined overlap cut‑off criteria) = 0.5 and tm 
(a predefined m cut‑off criteria) = 0.25 were selected to be the 
threshold in the current study.

Identification of altered modules. The modules were respec-
tively extracted from the PPI networks of normal controls and 
CLL. For each module in the normal and disease conditions, 
we calculated the modules correlation density (MCD) based 
on the PCC of gene‑gene interactions in PPI network. MCD 
was measured as:

The pairs of the disrupted or dysregulated modules were evalu-
ated through determining the module as a maximum weight 
bipartite matching (24). A similarity graph M = (Vm, Em) was 
constructed, where Vm = {S∪T}, and Em = ∪{(Si, Tj):J(Si, Tj) ≥tJ, 
ΔCC(Si, Tj) ≥δ}, whereby J(Si, Tj) =  |Si∩Tj|/|Si∪Tj| was the 
Jaccard similarity (J) and ΔCC(Si, Tj) =  |dc(Si) ‑ dc(Ti)| was 
the differential correlation density  (ΔCC) between Si and 
Tj (7). In our study, the altered modules with tJ ≥2/3 as well as 
ΔCC ≥0.05 were considered as the disrupted modules.

Gene composition of altered modules. With the goal of better 
understanding the differences of the altered modules in the 
two groups, we screened out the missed and added genes. 
Significantly, the common part of the missed as well as added 
genes was also identified. Moreover, in order to obtain the 
relevant disease genes, we also took the intersection of the 
DEGs and the intersection genes.

Results

Detection of DEGs. In our study, a total of 8,630 genes were 
screened out for subsequent analysis. Using the threshold of 
|logFC| >2, and a FDR <0.01, a total of 734 genes were identi-
fied to be differentially expressed in CLL.

Disruptions in CLL PPI network. Under the combined‑score 
≥0.65, the PPI sub‑networks displayed equal numbers interac-
tions (40,576) and nodes (6,068). Their mean average scores 
were respectively 0.320 and 0.698 in the normal and disease 
network. The result of PCC distribution in the two networks is 
shown in Fig. 1. Differences were observed in the PCC score 
distribution (‑1 to 1) of the two networks. Moreover, the count 
of the interactions in the normal network was higher than that 

Figure 1. Interaction distribution in normal and CLL groups. CLL, chronic 
lymphocytic leukemia.
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in the CLL network when the weight distribution was ranging 
from ‑0.9 to ‑0.4.

Analysis of disruptions in CLL modules. On the basis of the 
threshold of nodes ≥5, there were 8,773  maximal cliques 
in the normal and CLL PPI sub‑networks, and then, these 
8,773 cliques were utilized to conduct module analysis. There 
were 1,805 and 703 modules from the PPI sub‑networks of 
normal and CLL, respectively (Table I). For the module of 
CLL, the average module size was higher than that of module 
of normal. Moreover, for CLL modules, it also showed an 
overall decrease in average correlation comparing with 
the normal modules. The connection between the counts of 
modules and weighted density of modules is shown in Fig. 2. 
The distribution of modules in normal was higher under 0‑0.2, 
while lower under 0.2‑0.8 relative to that in disease condition.

Moreover, there were 646 disrupted module pairs. Relative 
to the normal group, we found that all altered modules were 
higher in the disease group based on the module correlation 
density of the modules.

Gene composition of the altered modules. There were 
646 disrupted module pairs in total. Among these module 
pairs, there were 145 missed genes and 353 added genes in 
CLL modules relative to normal modules. Of note, 85 genes 
were the common ones between the added and missed genes. 
In this investigation, we obtained 9 common genes between 
the 85 intersection genes and the DEGs, of which were AKT1, 
UPF3A, SMG7, RPN2, HSPB1, SPCS2, CDC16, COPS5 and 
PSMB10. Hence, we treated the 9 genes as the key genes 
involved in CLL.

Discussion

CLL is a variety of chronic lymphoproliferative disorders (24). 
In our study, we investigated gene profile E‑GEOD‑2466 and 
extracted the key genes in CLL on the basis of systematically 
tracking the disrupted modules of re‑weighted PPI networks. 
In total, 9 key genes were identified through comparing inter-
section genes in the altered modules and DEGs.

In humans, RAC‑α serine/threonine‑protein kinase is 
coded by AKT1 gene. AKT1 has been demonstrated to regu-
late a large amount of biological processes, for example, cell 
proliferation, growth, metabolism, survival, and angiogenesis. 
The AKT1 isoform played a dominant role in the survival 
and chemoresistance of CLL cells (25). AKT1 gene has been 
inferred to be related to a variety of diseases. It was familiar 
in cancer (26,27), tumors (28,29) and insulin resistance (30). 
Another study has also implicated that the expression of AKT1 
was associated with CLL (31,32).

Dolichyl‑diphosphooligosaccharide‑protein glycosyltrans-
ferase subunit 2 is coded by RPN2 in humans. So far there 
has not been much research on the correlation of RPN2 and a 
disease, in addition to tumors. For example, it has been veri-
fied that RPN2 silencing made breast cells hypersensitive to 
docetaxel (33). Moreover, RPN2 has also displayed a higher 
genomic alteration frequency in colorectal cancer (34).

Heat‑shock protein 27  (Hsp27) in humans is encoded 
by HSPB1, which is a chaperone of the small heat‑shock 
protein group (35,36). As known, the common roles of small 
heat‑shock proteins are inhibition of apoptosis, thermotoler-
ance, and cell differentiation. HSPB1 was reported related 
to breast cancer, shock, Alexander's disease and many kinds 
of tumors  (37‑40). Dempsey et al  (41) have explored that 
CLL patients expressed significantly higher levels of Hsp27 
in lymphocytes than that expressed by lymphocytes from 
control subjects.

Taken together, we successfully identified a series of key 
genes for understanding the potential mechanism of gene 
expression of CLL on the basis of systematically uncovering 
the altered modules based on the re‑weighted PPI networks 
and DEGs. These results have implications for understanding 
the mechanisms of gene expression of CLL.
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Table I. Properties of normal and disease modules.

	 Correlation
	 ---------------------------------------------------------------------------------------------------
Module set	 No. of modules	 Average module size	 Max	 Avg	 Min

Normal	 1,805	 19.32798	 0.5186083	 0.06900261	 -0.1587027
Disease	    703	 43.46373	 0.573716	 0.0379185	 -0.1173073

Figure 2. Distribution of the correlation‑wise values of modules in normal 
and CLL group. CLL, chronic lymphocytic leukemia.
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