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Multiplexed quantitative proteomics provides
mechanistic cues for malaria severity
and complexity
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Management of severe malaria remains a critical global challenge. In this study, using a

multiplexed quantitative proteomics pipeline we systematically investigated the plasma

proteome alterations in non-severe and severe malaria patients. We identified a few parasite

proteins in severe malaria patients, which could be promising from a diagnostic perspective.

Further, from host proteome analysis we observed substantial modulations in many crucial

physiological pathways, including lipid metabolism, cytokine signaling, complement, and

coagulation cascades in severe malaria. We propose that severe manifestations of malaria

are possibly underpinned by modulations of the host physiology and defense machinery,

which is evidently reflected in the plasma proteome alterations. Importantly, we identified

multiple blood markers that can effectively define different complications of severe falci-

parum malaria, including cerebral syndromes and severe anemia. The ability of our identified

blood markers to distinguish different severe complications of malaria may aid in developing

new clinical tests for monitoring malaria severity.
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Malaria is a vector-borne infectious disease caused by the
protozoan parasites of the Plasmodium genus1, and the
vector involved is female Anopheles mosquito. It is the

most widespread tropical parasitic disease with a worldwide
occurrence of 228 million clinical cases and 0.4 million deaths in
2018 (ref. 2). India majorly contributes to the global malaria
burden and has the largest population in the world at risk of
malaria, with 85% of the total Indian population living in
malarious zones3. Worrisomely, the subsidiary burdens of
malaria, such as malnutrition and anemia, increase the risk of
complications and severity of the disease4,5. Among the five
parasites causing malaria in humans, Plasmodium falciparum and
Plasmodium vivax have the most extensive global distributions
and are capable of leading severe fatal clinical manifestations6.
Particularly, P. falciparum infections often turn severe and life-
threatening, specifically when managed inappropriately7,8. One of
the prime causes behind the progression of this parasitic infection
from mild through complicated to severe disease is missed or
delayed diagnosis9,10. Of note, neither parasite density nor
parasitemia can consistently define malaria severity11. Hyper-
parasitemia does not necessarily provide primary prognostic
significance in semi-immune individuals, as they often tolerate
high parasitemia burden without any physiological signs of dis-
ease or severe effects12.

There are several limitations for the existing diagnostic meth-
ods for malaria, which include microscopic examination of thick
and thin blood smears, polymerase chain reaction (PCR)-based
molecular diagnostics, and rapid diagnostic tests (RDTs)13–16.
Additionally, the RDT-based detection approaches target
PfHRPII for P. falciparum only, pLDH for all Plasmodium spe-
cies, and aldolase for P. falciparum and P. vivax. Importantly,
many population-based studies have shown partial or complete
deletion of pfhrpII and pfhrpIII genes, which may lead to false-
negative results in RDTs17–19. Overall, these issues amply high-
light the need for identification of additional parasite proteins and
host factors for better diagnosis of malaria. Moreover, the
establishment of predictive blood biomarkers for malaria severity
and complications would be highly promising for prognosis,
monitoring disease progression and responses to therapy, and
predicting outcomes.

In recent years, plasma/serum proteomics studies have con-
tributed substantially to elucidate the complex pathogenesis of
malaria and other infectious diseases17,18. Intriguingly, several
studies from our and other research groups have defined pro-
mising panels of plasma and serum markers in falciparum19–24

and vivax19,25,26 malaria. A considerable amount of further
research is required to understand the complex pathophysiology
of severe malaria27–29. In particular, the blood markers that can
effectively define different complications of severe malaria are not
clearly demarcated hitherto. Indeed, the precise mechanisms that
cause a transition from non-severe to severe fatal clinical mani-
festations in malaria, which often happens very rapidly, remains
largely obscure. These are the critical questions that remained to
be addressed to understand the molecular basis of severe malaria.

In this study, we performed comprehensive proteomics ana-
lysis of plasma samples from falciparum malaria patients with
different severity levels and clinical manifestations to understand
the mechanisms of malaria severity and its complications. We
further carried out a comparative analysis with differentially
abundant plasma proteins identified in vivax malaria (VM) and
dengue patients to specify the alterations observed in falciparum
malaria. Importantly, we identified several blood-based host
proteins marker for malaria severity and complexity, which can
aid in monitoring disease progression. Further, we have also
identified parasite proteins such as Serine Repeat Antigen 4 and
Fructose-Bisphosphate Aldolase in severe malaria patients’

plasma samples, which can help in the diagnosis of severe
malaria. To the best of our knowledge, this is one of the most
comprehensive blood-based proteomic studies on falciparum and
VM. Our findings provided insights regarding malaria patho-
genesis and molecular cues of severity and complicated disease
manifestations associated with this parasitic infection.

Results
Analysis of clinicopathological parameters of malaria and
dengue patients. A total of 98 subjects were analyzed in the
discovery-phase quantitative proteomics, while 111 subjects were
included in the targeted validation study. The following cohorts
were included in the present study—Healthy control (HC), Non-
severe falciparum malaria (NSFM), Severe falciparum malaria
(SFM), Cerebral malaria (CB), Severe anemia (SA), Control for
severe anemia (CSA), Control for cerebral malaria (CCB), Non-
severe dengue fever (NSD), Severe dengue (SD), Non-severe vivax
malaria (NSVM), and Severe vivax malaria (SVM). The subjects
were recruited from different malaria epidemic regions in India.
The number of samples analyzed for each group is provided in
Supplementary Data 1. Dengue patients were incorporated in this
study as non-malaria febrile infectious disease control. In falci-
parum malaria patients, platelet counts and Hb levels were found
to be significantly lower (p < 0.05) (in both NSFM and SFM) as
compared to HC. The magnitude of alterations (decrease) in
platelet counts and hemoglobin (Hb) levels were found to be
more prominent in severe malaria. Liver function parameters
including total bilirubin, serum glutamic-oxaloacetic transami-
nase (SGOT), serum glutamic-pyruvic transaminase (SGPT), and
alkaline phosphatase (ALP) were found to be higher in SFM
patients as compared to NSFM and HC (Supplementary Fig. 1).
Of note, Hb was significantly lower (p < 0.05) in SA as compared
to CB and other different types of complications of SFM, while
the other parameters were almost comparable. These liver func-
tion parameters were slightly higher in non-severe malaria as
compared to HC, but the level of alteration was minimal (Sup-
plementary Fig. 2). Lower blood levels of Hb were observed in
malaria patients [both falciparum malaria (FM) and VM], but no
significant alteration was observed in dengue fever (DF) as
compared to HC. Platelet count was found to be extremely low in
DF as compared to malaria and HC, while SGOT and SGPT levels
were found to be higher in DF as compared to HC and malaria
(FM and VM). ALP and total bilirubin levels were very high in
FM patients compared to all the other study cohorts (HC, VM,
and DF) (Supplementary Fig. 3).

Workflow for comprehensive plasma proteomic analysis of
malaria and dengue patients. Malaria and dengue samples were
confirmed using different diagnostic techniques, and the positive
cases were incorporated in the quantitative proteomic analysis.
Such multiplexing using stable isotope labeling provides increased
throughput, higher precision, better reproducibility, reduced
technical variations, and lower number of missing values30–32.
TMT-based multiplexed quantitative proteomics was used to map
the plasma proteome (host) alterations, while we used a label-free
quantitation (LFQ) approach for detection and quantification of
the parasite (P. falciparum) proteins in host plasma. Quality
control check (QC) of the datasets was performed by plotting the
density plots for FM, VM, and DF using raw and normalized
abundances at a proteome scale (Supplementary Fig. 4a–c). The
significantly (p < 0.05) altered proteins were considered for
machine learning, and the elastic net regularized logistic regres-
sion method was applied to predict the best panel of proteins.
Some selected targets were validated using mass spectrometry
(MS)-based multiple reaction monitoring (MRM) assays.
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Eventually, we investigated the physiological pathways over-
expressed in falciparum and VM (Fig. 1).

Differential plasma proteomic analysis of non-severe and
severe FM. A comprehensive proteomic analysis was performed
for FM patients. Overall, 239,034 peptide spectral matches
(PSMs) and 11,530 peptides were identified corresponding to
1495 proteins identified combining all the samples, among which
296 proteins were present in more than 60% of the clinical
samples used for the label-based FM study (Fig. 2a). The proteins
that were quantified with ≥1 unique peptide and detected in at
least 60% of the samples were selected for the subsequent dif-
ferential analysis. Importantly, 91% of these proteins (271 out of
296) were quantified with ≥2 unique peptides. Twenty-five
plasma proteins were found to be significantly (p < 0.05) altered
in SFM as compared to NSFM, and their abundance profiles
enabled us to differentiate SFM and NSFM (Fig. 2b, Supple-
mentary Fig. 5a, and Supplementary Data 2). Partial least-squares
discriminant analysis (PLS-DA) was performed on the differen-
tially abundant proteins (p < 0.05), and it distinguished between
the three study populations: HC, NSFM, and SFM (Fig. 2c and
Supplementary Table 1). Supervised hierarchical clustering of the
proteome profiles stratifies the different groups of malaria
patients (Fig. 2d). Significantly altered proteins from this study
and other published literature20,21 were considered for protein
network analysis (Fig. 2e and Supplementary Data 2) using
NetworkAnalyst.

The platelet degranulation process was found to be highly
active in FM. Plasminogen (PLG), Platelet factor 4 (PF4),
Profilin-1 (PFN1), Kininogen-1 (KNG1), and Pro-platelet basic
protein (PPBP) were found to be down-regulated in NSFM as
compared to SFM, while Alpha1-antitrypsin (SERPINA1) and
Alpha2-antiplasmin (SERPINF2) were dysregulated in SFM as
compared to NSFM (Fig. 2e). Proteins involved in binding and
uptake of ligand scavenging functions such as haptoglobin (HP),
hemopexin (HPX), haptoglobin-related proteins (HPR), and
protein AMBP (AMBP) were down-regulated in SFM as
compared to NSFM. However, plasma levels of several proteins
such as hemoglobin subunit delta (HBD), hemoglobin subunit
beta (HBB), hemoglobin subunit alpha (HBA1), and carbonic
anhydrase 1 (CA1) were almost similar in SFM and NSFM
(Fig. 2e). Gene Ontology (GO) analysis revealed that several vital
biological processes such as immune system activation and
response to stimulus involved more entities (altered proteins) in
NSFM as compared to SFM. Biological adhesion and multicellular
organismal processes were over-expressed in SFM as compared to
NSFM (Supplementary Fig. 6a). Molecular functions associated
with the altered proteins in NSFM are mainly regulatory and
catalytic activity, while binding, molecular transducer, and
transcription activities were enriched in SFM (Supplementary
Fig. 6b). The cellular component analysis revealed overexpression
of the extracellular region and cell in NSFM as compared to SFM.
At the same time, protein-containing complex and membrane
were over-expressed in SFM (Supplementary Fig. 6c).

Differential plasma proteomic analysis of multiple complica-
tions of severe FM. Plasma proteomics of different complications
of SFM such as severe anemia (n= 6) and cerebral malaria (CB;
n= 6) exhibited 28 and 35 differentially abundant proteins (p <
0.05), respectively, in comparison to HC and 17 proteins in SA as
compared to CB (Fig. 3a, Supplementary Table 2 and Data 2), and
heat map profiles were able to distinguish the individual samples
of CB and SA (Supplementary Fig. 5b). Five proteins in CB, 8
proteins in SA, and 15 proteins in other severe malaria cases were
found to be specifically altered in various complications of FM

(Fig. 3b). 3D-PLS-DA plot of the differentially abundant proteins
was able to segregate CB, SA, and SFM with other complications
(Fig. 3c). Expectedly, the significantly altered proteins (p < 0.05)
can effectively distinguish CB or SA as compared to HC (Fig. 3d,
e). Supervised clustering indicated that a group of proteins could
differentiate among the different complications of SFM. Cluster 1
and 2 showed differentially altered proteins in severe falciparum
malaria (SFM_Others+ CB+ SA) as compared to the disease
controls (CSA and CCB). Cluster 3 showed down-regulated
proteins in CB, while cluster 4 showed down-regulated proteins
in SA as compared to others (Fig. 3f). Hemostasis, ligand
scavenging, and complement cascades were found to be asso-
ciated with the differentially abundant plasma proteins identified
in SFM_Others, CB, and SA (Fig. 3g).

Quantitative proteomics analysis of CB patients showed 12
proteins significantly altered (p < 0.05) as compared to NSFM.
Most of these proteins were found to be down-regulated in CB.
Out of these 12 altered proteins, 3 candidates—HGFA33,
SERPINA3, and ALX1 protein—were found to be up-regulated,
while the other 9 proteins were down-regulated as compared to
NSFM. Five proteins were significantly altered, specifically in CB
as compared to NSFM. Of note, these proteins were unaltered in
meningitis patients [a control used for cerebral malaria (CCB)
(Supplementary Data 2)].

Quantitative proteomics analysis of SA patients showed
12 significantly altered proteins as compared to NSFM (p <
0.05). Most of these proteins were found to be down-regulated in
SA. Eight proteins, including C1QB, TF, SAA1, IGFBP3, C3,
APOE, CYST3, and B2M were significantly altered in SA only.
Importantly, plasma levels of these proteins were not altered in
anemic subjects [CSA] (Supplementary Data 2).

Differential plasma proteome landscape of non-severe and
severe VM. Further, we performed comparative proteomic ana-
lysis on another form of malaria caused by P. vivax. The abun-
dance profile of each sample of HC, NSVM, and SVM showed
uniform distribution across all the TMT 10-plex reactions (Sup-
plementary Fig. 4b). We found 23 and 37 differentially abundant
proteins (p < 0.05) in NSVM and SVM as comparison to HC and
45 differentially abundant proteins (p < 0.05) in SVM as com-
pared to NSVM, respectively (Fig. 4a). Heat map profiles of these
altered proteins were able to distinguish individual samples of
NSVM and SVM (Supplementary Fig. 7). Altered proteins iden-
tified in P. vivax patients segregated into three groups of clinical
conditions, as shown in the PLS-DA plot (Fig. 4b). Correlation
analysis of the altered proteins (p < 0.05) in NSVM, SVM, and DF
also showed three distinct clusters (Fig. 4c).

Based on the abundance profiles of the altered proteins, we
were also able to effectively define SVM, NSVM, and DF (Fig. 4d).
A comparison of these three groups generated three distinct
clusters. Cluster 1, 2, and 3 are representing the up-regulated
proteins in SVM, NSVM, and DF, respectively (Fig. 4d). The
differentially abundant proteins were enriched to four major
pathways contributing towards VM, viz. complement cascade,
and platelet degranulation along with platelet activation, lipid
metabolism, and hemostasis. In complement pathways, Comple-
ment C1q subcomponent subunit A (C1QA) was found to be up-
regulated significantly in NSVM, whereas Complement C3 (C3)
was significantly down-regulated in both NSVM and SVM
patients. In the platelet degradation pathway, fructose-
bisphosphate aldolase (ALDOA), Clusterin (CLU), and PLG
were significantly down-regulated in both NSVM and SVM,
whereas Serotransferrin (TF) exhibited significant up-regulation
in all the VM patients. Furthermore, Alpha2-macroglobulin
(A2M) exhibited up-regulation in NSVM, while its down-
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regulation was observed in SVM. Additionally, components of the
lipid metabolism pathways, such as Apolipoprotein A-I (APOA1)
and Apolipoprotein B-100 (APOB) were significantly down-
regulated in both NSVM and SVM (Fig. 4e and Supplementary
Data 3). The altered plasma proteins identified in NSVM were
involved in the immune system process, metabolic process, and

localization, while the proteins altered in SVM were associated
with response to stimulus and diverse cellular processes
(Supplementary Fig. 8a). Prime molecular functions for the
majority of the altered proteins were catalytic activity and binding
in SVM and NSVM, respectively (Supplementary Fig. 8b). GO
analysis indicated almost similar cellular localizations for the
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altered proteins in NSVM and SVM, except the extracellular
region, which was more prominent in NSVM (Supplementary
Fig. 8c).

We identified eight proteins as commonly altered candidates in
NSFM and NSVM. Of note, several vital physiological pathways/
biological processes such as platelet degranulation, response to
elevated platelet cytosolic Ca2+, and platelet activation, signaling
and aggregation pathways are associated with these eight
commonly altered plasma proteins identified in NSFM and
NSVM (Supplementary Table 3).

Identification of P. falciparum proteins in host plasma sam-
ples. We identified 23 parasite proteins in the plasma samples of
SFM patients (n= 21) using an LFQ approach. (Supplementary
Data 4). We further selected 10 proteins that were identified with
≥2 unique peptides for validation using the MRM approach
(Table 1). Six out of these 10 proteins—heat-shock protein (HSP)
70 and HSP 90, enolase, actin I, fructose-bisphosphate aldolase
(FBA), and serine repeat antigen 4 (SERA4) were detected con-
sistently (>80%) in the malaria patients. These parasite proteins
have catalytic activity and may play a vital role in the survival and
virulence of the pathogen in the host system.

HSP 70 and HSP 90 were reported as up-regulated at
temperature 38 °C and above, which helps the survival of the
parasite in the erythrocytic stage of its life cycle in the
hyperthermic condition of the host34. Enolase along with HSP
70 and iron superoxide dismutase forms the DegP complex which
protects the parasite from heat and oxidative stress in the host
system35. FBA and actin have been reported to interact with
TRAP and TRAP like protein (TLP) for sporozoites gliding and
invasion36. SERA4, along with the other SERA member proteins,
helps in maintaining the blood stage of the pathogen’s life cycle.
However, their clear physiological functions still remain
unknown37, and need to be investigated further.

Elastic net regularized logistic regression model for feature
selection to predict malaria and its complications. Machine
learning was performed on the significantly altered (p < 0.05)
plasma proteins identified in malaria and dengue. Of note, we are
able to separate VM, FM, dengue, and HC samples based on the
abundance profiles of the altered plasma proteins (Supplementary
Fig. 9a). The elastic net regularized logistic regression method was
used to classify: dengue vs. malaria, FM vs. VM, and cerebral vs.
severe malaria anemia (Fig. 5a).

The elastic net regularized logistic regression model hyper-
parameters (alpha and lambda) and performance metrics
(balanced accuracy, F1-score and Kappa) for the three models
were as follows: (i) dengue vs. malaria: 0.1, 0.26, 0.975, 0.967, and
0.96; (ii) FM vs. VM: 0, 80.2, 1, 1, and 1; and (iii) CB vs. SA: 0.04,
41.73, 1, 1, and 1, respectively. It is evident from the model
performance metrics that the resulting elastic net regularized
logistic regression model can predict and classify dengue vs.
malaria, FM vs. VM, and cerebral vs. severe malaria anemia cases

almost perfectly. These results are quite fairly stable across all
(outer) k-fold iterations (Supplementary Data 5).

A total of 44 proteins were selected out of 66 proteins, which
could differentiate malaria (including FM and VM) from dengue
patients. The three-dimensional PLS-DA plot for all altered
proteins and heat map profiles of the top 20 significantly altered
proteins (p < 0.05) across malaria and Dengue effectively
differentiated between these two infections (Fig. 5b, e). We found
49 proteins, which can distinguish FM from VM; importantly,
unsupervised clustering of the top 20 significantly altered proteins
effectively separated the individual subjects in the respective
groups (Fig. 5c, f). Intriguingly, 19 proteins were able to
differentiate between cerebral and severe malaria anemia (Fig. 5d).
However, these two different complications of SFM were not
easily separable based on the clinicopathological parameters
(Supplementary Fig. 2). The receiver operating characteristic
(ROC) curves of six selected biomarkers indicate that the model
performs very well with area under the ROC curve (AUC) > 0.8,
even for a small number of proteins. There was no further
improvement in AUC after including a larger number of proteins.
Keeping parsimony in mind and using this as a criterion to decide
the panel size, we defined the final panel of two biomarkers for
each model using MRM-based mass spectrometric assays
(Supplementary Data 5).

Validation of potential protein biomarkers of malaria using
MRM assays. Finally, we validated the differential abundance of a
few selected human (host) proteins and parasite proteins in
plasma samples using MRM-based mass spectrometric assays. We
have considered 7048 transitions corresponding to 86 human
plasma proteins (403 unique peptides), which were identified as
the best classifier in our machine learning analysis for the opti-
mization of MRM assays. Initially, we started with 40 different
method files having a maximum of ~200 transitions, then we
refined our methods and finalized 847 transition corresponding
to 128 peptides and 46 proteins (Fig. 6a). MRM assays involved
HC (n= 24 × 3), FM (n= 30 × 3), VM (n= 30 × 3), and DF (n=
27 × 3) along with 15 synthetic heavy peptides. The measure-
ments obtained in MRM correlated well with the TMT-based
discovery-phase proteomics (Supplementary Data 6).

Similarly, we validated the detection and quantification of the
parasite proteins in human plasma samples. Ninety-five transi-
tions corresponding to eight parasite proteins were optimized,
and we were able to quantify those in the plasma samples using
MRM assays (Supplementary Data 6). We monitored the system
suitability using a heavy synthetic peptide. The area of a few
representative heavy synthetic peptides is shown in the
Supplementary Information (Supplementary Fig. 10a–c). Top-
ranked proteins were validated using the MRM approach. We
analyzed ROC curves and determined AUC for all the proteins
that were common in both machine learning model and MRM,
and were able to differentiate between malaria vs. dengue
(Fig. 6b), FM vs. VM (Fig. 6c) and cerebral vs. severe malaria
anemia (Fig. 6d and Supplementary Fig. 9b–d). Differential

Fig. 3 Comparative proteomic analysis of different complications of severe falciparum malaria. a Differentially abundant proteins (p < 0.05) in severe
malaria anemia (SA) as compared to cerebral malaria (CB). b Three-dimensional PLS-DA plot showing effective segregation among the different
complications of SFM (CB, SA, and SFM with other complications). c Common and specific differentially altered proteins in CB, SA, and SFM with other
complications. d Correlation analysis of differentially altered proteins in CB as compared to HC. e Correlation analysis of differentially altered proteins in SA
as compared to HC. f Heat map representing discrimination of plasma protein abundances in CB, SA, and SFM with other complications, and their negative
controls (CCB+CSA). Different clusters were identified as 1 and 2 in severe malaria (CB+SA+SFM), 3 in CB, and 4 in SA on the basis of proteins
abundance. g Physiological pathways associated with the differentially abundant plasma proteins identified in severe falciparum, cerebral, and severe
anemia malaria. Sequential numbering for the networks is provided on the basis of the statistical significance (high to low significance, FDR < 0.05).
SFM_Others: severe falciparum malaria, except CB and SA.
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abundance of LRG1 and CP was observed between dengue and
malaria using MRM assays as well as in TMT-based quantitation
(Fig. 6e). Similarly, AZGP1 and HRG were able to distinguish
between FM and VM (Fig. 6f), and SERPINA3 and AHSG were
able to differentiate among the different complications of SFM
(Fig. 6g). The elastic net regularized logistic regression model
equations for the final biomarker models identified from MRM
data are provided in Supplementary Methods.

Discussion
In this study, using a multiplexed quantitative approach for
plasma proteomics, we have provided insights into the progres-
sion of malaria from non-severe to severe infection and its dif-
ferent complications. Apart from the identification of potential
disease monitoring and prognostic protein biomarkers for
malaria, the differentially abundant plasma proteins mapped in
the pathways provided mechanistic cues for various aspects of the
pathogenesis of severe malaria and the host immune responses
against the parasites. In this study, we identified the landscape of
differentially abundant plasma proteins associated with diverse
biological functions in malaria patients.

P. falciparum expresses var genes, which encodes erythrocytes
membrane protein 1 (PfEMP1). The variants of PfEMP1 are
involved in cytoadherence and mediate binding of the infected
erythrocytes to endothelial vasculature6. Some of the parasite
proteins that were identified in the plasma samples of SFM
patients, such as FBA, HSP 70, HSP 90, enolase, and SRA4 can
generate antibody responses, as we have shown previously in
VM38. Similarly, Moussa et al.24 reported the presence of FBA,
SRA protein, and histone H3 in plasma samples of children with
CB. Most of these proteins play a very important role in catalytic
activity and protein binding (Table 1). However, P. vivax does not
express var genes, and hence binding to the erythrocytes is very
less as compared to P. falciparum6. We observed that the major
complications associated with SFM are CB, SA, acidosis, and
multiple organ failure. However, most of the complications
observed in the SFM patients were similar to those observed in
SVM, except renal failure, splenic rupture, and hepatic dysfunc-
tion along with gastrointestinal symptoms39. Of note, earlier we
identified five unique parasite proteins in plasma and parasite
isolates from VM patients38.

Several altered plasma or serum proteins identified in SFM
patients as described here and in our previous studies20,26 were
mapped to biological adhesion and extracellular matrix (Supple-
mentary Fig. 6). It indicates the roles of cell-to-cell adhesion-
related host proteins such as von Willebrand factor (vWF),
ICAM-1, VCAM-1, VTN, and LGALS3BP in P. falciparum
infection. We observed the up-regulation of these proteins in
SFM, which may help in erythrocyte invasion and adherence to
endothelial cells. Surprisingly, these proteins were not found to be
altered in SVM, indicating some clear differences between these
two plasmodial infections (Fig. 7). Similarly, we mapped the
proteome of SVM and observed dysregulation of biological
functions such as catalytic activity and cellular process along with
the classical complement system being more active in SVM as
compared to SFM (Supplementary Fig. 11).

Additionally, we investigated plasma proteome from various
complications of SFM. Platelet degranulation acts as exocytosis
cells and secretes a plethora of effector molecules at sites of
vascular injury40. In our study, most of the proteins related to
platelet degranulation were found to be down-regulated in FM. It
indicates that this could be due to the highly active state of the
immune system in the initial stage of FM (NSFM) possibly due to
alterations in the levels of proteins such as PF4, PPBP, PFN1,
KNG1, CLU, and PLG in NSFM (Fig. 2e). PF4 (CXCL4) acts as a

chemokine and initiates a killing of the infected erythrocytes in
malaria41–43. Pro-platelet basic protein (PPBP), a platelet-secreted
chemokine, and platelet activation marker that takes part in the
process of clearing the parasites by inducing macrophage che-
motaxis and mediating neutrophil accumulation44 (Fig. 8a). This
protein was found to be significantly dysregulated in malaria
patients in our study. PFN1 is a cytoskeleton protein, and it is
involved in actin-polymerization during the parasite invasion45.
Clusterin, involved in innate immune response, has been reported
to be down-regulated in malaria23. Many of the dysregulated
plasma proteins identified in NSFM were strongly associated with
immune responses (Supplementary Fig. 6a). Along with the
findings obtained from plasma proteome profiling, hematological
(Hb, platelets) and liver function (SGOT, SGPT, ALP, total
bilirubin) parameters were found to be significantly altered in
NSFM and SFM. It reflects the commencement of inflammatory
responses in NSFM, which in turn proceeds towards the severity
of the disease.

We observed up-regulation of the proteins related to intrinsic
pathways such as vWF, F10, and F2 in SFM. Infected RBCs
induce the expression of tissue factors on endothelial cells and
monocytes, which results in the expression of cytokines via sig-
naling pathways, ultimately leading to endothelial cell activation.
vWF is a secondary marker for endothelial cell activation46, and
we observed a high plasma level of this protein in SFM. It binds to
the activated platelets and the infected erythrocytes and promotes
in sequestration of the infected erythrocytes. This causes activa-
tion of the coagulation system driving towards disease severity
(Fig. 8b)47. Importantly, proteins related to cell-to-cell adhesion
such as ICAM-1, VCAM-1, and VTN were found to be dysre-
gulated in severe FM. Host proteins such as ICAM-1 and VCAM-
1 are expressed on the endothelium of leukocytes48–54 and are
involved in sequestration of the infected erythrocytes in micro-
vasculature with the assistance of a parasite-derived protein
PfEMP1 (refs. 55,56). This leads to the activation of endothelium,
disruption of blood flow, and ultimately causes tissue hypoxia.
These events lead to an increase of endothelial receptors, and
therefore shedding of soluble endothelial receptors, eventually
leading to endothelial damage57. We anticipate that this could be
one of the possible mechanisms associated with the progression
of NSFM to CB (Fig. 8c). Some of the up-regulated proteins in CB
identified in our study were previously reported in the murine
malaria model48,58, which substantially enhances the strength of
our findings. For instance, Bauer et al. reported the up-regulation
of ICAM-1, P-selectin, and VCAM-1 on brain vascular endo-
thelium in P. berghei ANKA infection. Up-regulated ICAM-1
levels may help the parasite sequestration on the epithelial cells
causing brain injury and creating hypoxia conditions49. Blocking
of the ICAM-1 receptor can cause a more than 150% increase of
schizonts in the peripheral blood in mice. Importantly, VCAM-1
plays an important role in the resetting of the parasite to the
blood vessels. However, it is limited to large blood vessels, unlike
ICAM-1 (ref. 59).

Severe anemia in malaria results mainly due to hemolysis and
phagocytosis of the parasitized and the non-parasitized RBCs,
and also to a large extent, by suppression of erythropoiesis that is
driven by parasite hemozoin generated from the infected ery-
throcytes60. We observed increased levels of C3 which is an active
component of the complement system. Complement C5, C6, and
C7 form a complex c5c6c7 (ref. 61), and bind to the cell mem-
brane and membrane attack complex with the help of C8 and C9
(refs. 62,63). In our study, we observed all of these three proteins
forming the complex (C5, C6, and C7) were down-regulated
while the free monomers (C8 and C9) were up-regulated in
NSFM (Fig. 8d). This may indicate a higher involvement of
complement cascade during the initial stage of malaria61, leading
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to hemolysis of infected erythrocytes. Such destruction of a high
number of erythrocytes results in increased systemic concentra-
tions of free Hb, heme, and reactive oxygen species (ROS) in
circulation39,64,65. We observed a significant elevation in blood
levels of Hb subunit alpha and beta in FM patients, as also
described previously by Kassa et al.23. The free Hb is oxidized by
free radicals, thereby releasing free heme. Of note, free heme is
very toxic to the cells and induces inflammation, macrophage
activation, and oxidative stress. However, the down-regulation of
these proteins (HP, HPX, HPR, and AMBP) indicate their
involvement in scavenging of free heme and ROS in FM. RBC
lysis and highly activated complement system may have direct
effects on the destruction of erythrocytes and cytokines indirectly
affect the inhibition of erythropoiesis. This clearly indicates an
increased removal of the infected and uninfected erythrocytes
that plays an essential role in severe anemia during malaria
(Fig. 8d).

In summary, we provide here a comprehensive landscape of
plasma proteome alterations in different severity levels of malaria.
Our findings indicated the association of the dysregulated pro-
teins with a few vital physiological pathways such as platelet

degranulation and integrin cell surface interaction, which in term
explain the mechanisms of fatal complications in SFM. We
observed that proteins related to the inflammatory system are
highly dysregulated in NSFM, which may eventually cause the
severity of infection leading to either cerebral syndrome or severe
anemia. We also observed the alterations in the plasma levels of
PF4 and PPBP, which help to destroy the infected erythrocytes
and cytokines along with other mediators (hemozoin) and reduce
the process of erythropoiesis41,44. This may eventually lead to
severe anemia in malaria patients. Importantly, dysregulation of
the hemostasis-related proteins was observed in severe anemia,
while alterations in the blood levels of the proteins associated
with endothelial cell activation strongly correlated with CB.

Parasite proteins that were consistently detected in almost all
the severe malaria patients could be promising for developing
different diagnostic approaches. Of note, those could be an
indicator of severe infection as they are specifically detected in
severe malaria patients. However, it remains to be seen whether
these blood-based protein markers for malaria severity and
complexity identified in our study are validated in bigger het-
erogeneous clinical cohorts. One potential caveat to this study is

Fig. 7 Landscape of physiological pathways altered in severe falciparum and vivax malaria. Physiological pathways associated with the differentially
abundant plasma proteins identified in severe falciparum malaria (SFM) and severe vivax malaria (SVM). The proteins written in black are identified in our
study, while the red ones represent unaltered associated proteins within the pathways.
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the possibility for asymptomatic infection in the control cohorts,
although these were entirely devoid of any clinical symptoms of
malaria. Moreover, genetic analysis of human plasma samples for
glucose 6 phosphate dehydrogenase (G6PD) deficiency and
hemoglobinopathies was outside the scope of this study. This
leaves a lack of information on certain key host responses during
the regulation of host proteins in the response of malaria. These

could be an effective future continuation of the present investi-
gation, especially as the findings continue to move towards
translational research. Collectively, our findings provided some
novel mechanistic insights into malaria severity, and we antici-
pate that this will accelerate the opportunities for developing
clinical tests integrating these host and parasite proteins for
monitoring malaria severity and complexity.
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Methods
Subject recruitment and blood collection. This study was conducted involving
malaria and DF patients, and control subjects from two different malaria-endemic
regions of India. Subjects were enrolled in Calcutta medical college (CMC),
Kolkata, India, and Sardar Patel medical college (SPMC), Bikaner, India. More
precisely, this comprehensive proteomics study was accomplished involving HC
subjects, and patients suffering from NSFM, SFM, and different complications
(severe malaria anemia (SA) and CB and their corresponding control subjects,
anemic [CSA], and meningitis patients [CCB], NSD; SD, NSVM, and SVM. This
study was approved by the institutional review boards and ethics committee of the
Indian Institute of Technology Bombay (IITB-IEC/2016/026). Prior to the sample
collection process, written informed consent was received from each participant
after giving detailed explanations about the experimental procedure in the language
best understood by the potential participants.

The clinicopathological details of all the subjects enrolled in this study were
thoroughly documented (Supplementary Table 4). The diagnosis of malaria-
positive samples was carried out primarily by microscopic examination of thin
peripheral blood smears followed by RDTs (FalciVax, Zephyr Biomedicals). The
parasitemia count in individual samples was not reordered (in particular, due to the
scarcity of time in handling the extreme burden of malaria patients in the tertiary
care hospitals in a highly populated country like India). Additionally, samples were
confirmed using PCR-based molecular diagnosis66. The brief workflow is depicted
in Supplementary Materials and Methods, and schematic representation is
provided in Supplementary Fig. 12 and Supplementary Tables 5 and 6. Patients
with any other infectious diseases such as leptospirosis, chronic liver diseases, and
mixed infections (infected with both P. falciparum and P. vivax) were excluded
from this study. The case definitions of severe malaria67 were adopted from
standard WHO guidelines (Supplementary Table 7). The negative CSA (anemic
patients without malaria) patients were defined by hemoglobin <7 g/dl and
negative CCB (meningitis patients without malaria) were defined as clinically
altered sensorium, neck rigidity, meningeal enhancement on MRI brain, and
abnormal CSF study.

According to the recent WHO guideline68, we classified the dengue patients
into two categories—(1) NSD and (2) SD based on clinical features (blood pressure,
bleeding manifestation, etc.) and hematological parameters (hematocrit, platelet
counts, organ failure, etc.). In our study, IgM was used as the confirmatory marker
for dengue infection. If NS1 was found to be positive, we retested for IgM during
the 5–7 days of fever to confirm the diagnosis.

Blood samples were collected into ethylenediaminetetraacetic acid (EDTA), BD
vacutainer, tube, and gently mixed by inverting 8–10 times. EDTA-anticoagulated
blood (3 ml) was centrifuged at 1000g for 10 min, and plasma samples were stored
at −80 °C until further processing69.

Species confirmation using nested PCR. Blood samples of malaria-infected
patients were collected from the different endemic regions of India. The collected
samples were microscopy and RDT-positive samples. Further confirmation of the
malaria parasite, nested PCR was performed using dried blood spots of the
obtained samples. Only PCR-positive singly infected patient samples were taken
forward for multi-omic study. For nested PCR from dried blood spots, Whatman
filter paper 1 was taken, and 20 µl of RBC pellet was spotted on the Whatman
paper. For each sample, 3–5 spots were made as per the availability of the RBC
pellet. Two dried spots were punched in a 1.5 ml eppendorf tube. Added 200 µl of
0.5% freshly prepared saponin in PBS (or up to the volume required to submerge
the punched spots). A short spin was given to settle down the droplets on the brim.
Samples were incubated for 10 min at RT. Six hundred microliters of PBS was
added to the blood spots for wash and supernatant was discarded. Washing was
done for 2–3 times, and then the PCR reaction was set.

Depletion of high-abundance proteins from plasma. Removal of high abundant
proteins is crucial for the detection of the low-abundant proteins, many of which
frequently act as potential biomarkers. Therefore, before processing the plasma
samples for proteomic analyses, the top 12 highly abundant proteins (albumin,
IgG, Alpha1-acid glycoprotein, alpha1-antitrypsin, alpha2-macroglobulin, apoli-
poprotein A-I, apolipoprotein A-II, fibrinogen, HP, IgA, IgM, and transferrin) were
removed by using PierceTM Top 12 abundant depletion column following the
manufacturer’s instructions (Thermo Scientific, Catalog no. 85164). Briefly, 15 µl of
crude plasma was directly added to the resin slurry in the columns, and the mixture
was incubated for 60 min at room temperature with gentle vortexing in between.
The filtrate was collected in 2 ml Eppendorf tubes by centrifuging at 1000g for 2
min. The depleted plasma samples were concentrated using a vacuum centrifuge.

Protein extracted from the plasma samples of HCs and infected patients were
quantified using Bradford Assay kit (Bio-Rad) following the manufacturer’s
instructions. The depleted plasma samples were loaded onto one-dimensional
sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels
(12.5% acrylamide-bisacrylamide) for the quality check control (Supplementary
Fig. 13a–c). The gels were stained with SDS-staining solution (methanol—40%,
acetic acid—7%, D/W—53%, Coomassie blue—1 tablet) for 4 h and destained in
SDS destaining solution (methanol—40%, acetic acid—7%, D/W—53%) for 5 h.
The gels were scanned using a Image scanner III (GE Healthcare).

Sample preparation for TMT-based quantitative proteomics analysis. Prior to
the enzymatic digestion, protein quantification was performed using Bradford
assay (Bio-Rad) following the manufacturer’s instructions. One hundred micro-
grams of depleted protein sample from each group (HC, CSA, CCB, SA, CB, SFM,
and NSFM) were denatured using 15 µl of 6 M urea. The denatured proteins were
reduced by adding tris (2-carboxyethyl) phosphine (TCEP) (Sigma Aldrich) to a
final concentration of 20 mM and were incubated at 37 °C for 60 min. The reduced
samples were alkylated by adding iodoacetamide [(IAA), Sigma Aldrich] to a final
concentration of 40 mM and were incubated at room temperature in dark for 30
min. The samples were then diluted eight times with 50 mM ammonium bicar-
bonate buffer, and trypsin (Pierce Trypsin) was added to a 1:30 ratio (trypsin:
protein) for performing in-solution digestion. Samples were incubated at 37 °C for
18 h for efficient digestion. The digestion was quenched by adding formic acid to a
final concentration of 1%70. Subsequently, sample cleaning was performed using
C18 Ziptip. Activation of the C18 ziptip was done by using 50% ACN in 0.1% FA,
40 µl, 1 min, 1500g thrice, followed by 99% ACN in 0.1% FA 40 µl, 1 min, 1500g
thrice. Equilibration of ziptip by using 0.1% FA 40 µl, 1 min, 1500g was done thrice.
Sample addition in ziptip up to 80 µl volume max, 1 min, 1000g five times. Clean-
up using 0.1% FA 40 µl, 1 min, 1500g thrice. Elution by using 50% ACN in 0.1% FA
60 µl, 1 min, 1000g twice and 50% ACN in 0.1% FA 60 µl, 3 min, 4000g.

TMT six-plex isobaric tags (TMTsixplex™ Isobaric Label Reagent Set, 1 × 0.8
mg, Thermo Fisher Scientific, Catalog number: 9006) were used for FM and
Dengue (FC) samples and TMT 10-plex isobaric tags (TMT 10plex™ Isobaric Label
Reagent Set, 1 × 0.8 mg, Thermo Fisher Scientific, Catalog number: 90110) were
used for VM samples for labeling of the digested peptides as per the manufacturer’s
instructions. In brief, digested peptides were reconstituted in dissolution buffer and
were vortexed to mix well. A pooled sample was prepared from each individual
patient sample and was considered as a reference for performing normalization of
the different mass spectrometric datasets. TMT reagents were reconstituted in 40 µl
of anhydrous acetonitrile (ACN) and the reagents were added to the corresponding
aliquot of digested plasma protein sample following the labeling strategy
(Supplementary Fig. 13d–f); 15 µg of each digested peptide sample was labeled at
~1:13 ratio (digested peptides: TMT reagents) for performing efficient labeling. The
solution was mixed well and incubated at room temperature (RT) for 1 h. The
reactions were quenched by adding 2 µl of 5% hydroxylamine and were incubated
for 15 min at RT. All the respective samples were pooled and were dried completely

Fig. 8 Possible molecular mechanisms driving the different complications of severe falciparum malaria. a Disease progression from non-severe to
different complications of severe falciparum malaria, the infected erythrocytes bind to platelets with aid of host proteins (PFN1) and leads to secretion of
chemokines (PF4, PPBP) into blood circulation from platelets. The activated platelets start degranulation and release a plethora of cytokines and produce
pro-inflammatory signals, which aggravate the inflammatory system, b once the coagulation system gets activated, prothrombin converted into thrombin
and then it helps in secretion of cytokines, which enhance the severity of this parasitic infection. vWF strings attach to the infected erythrocytes, and
together form a cluster. c Pro-inflammatory signals activate the macrophages, which engulf the infected erythrocytes and destroy those with the help of
activated complement system. Infected erythrocytes get recognized by the spleen and are destroyed rapidly. Some infected erythrocytes burst in
circulation and release diverse types of free radicals, which are subsequently scavenged by the host proteins such as HP and HPX. Cytokines and other
mediators (hemozoin) slow down the process of erythropoiesis, which leads to an inadequate number of erythrocytes, and consequently, the patients
suffer from an anemic condition. d The changes in and around the cerebral vessel, which causes the breakdown of the blood–brain barrier. The increased
level of thrombin and production of cytokines via activated platelets leads to the expression of endothelial receptors such as ICAM-1 and VCAM-1. These
receptors play a key role in cytoadherence of the parasitized erythrocytes on endothelial cell line and obstruct the blood flow. The release of toxins from the
sequestered parasites leads to the recruitment of leukocytes and platelets. These mediators lead to endothelial cell activation, increase junctional
permeability, and eventually the breakdown of the blood–brain barrier followed by secondary neuropathological events that can lead to cerebral edema or
coma. The schematic diagram is structured using the information obtained from our quantitative plasma proteomics analyses.
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in a vacuum centrifuge. Samples were then fractionated into nine fractions using
high-pH reverse-phase chromatography following the manufacturer’s instructions
(Pierce™ High pH Reversed-Phase Peptide Fractionation Kit, Thermo Fisher
Scientific, Catalog number: 84868).

Liquid chromatography–mass spectrometry/mass spectrometry (LC-MS/MS)
analysis. Multiplexed TMT-labeled samples (6/10-plex) were analyzed as biolo-
gical replicates using an Orbitrap Fusion Tribrid mass spectrometer interfaced with
an Easy-nLC 1200 system (Thermo Fisher Scientific). The mobile phase consisted
of milli-Q water with 0.1% formic acid as solvent A and 0.1% formic acid/80%
acetonitrile as solvent B. Each fraction was reconstituted in 15 µl of solvent A and 1
µg of digested peptides were loaded on to a pre-analytical column (100 µm × 2 cm,
nanoViper C18, 5 µm, 100 A; Thermo Fisher Scientific). Isocratic gradient of
10–35% B in 103 min, 35–95% B in 2 min and holds at 95% B for 15 min at 300 nl/
min flow rate were used on an analytical column (75 μm× 50 cm, 3 μm particle,
and 100 Å pore size; Thermo Fisher Scientific). A single Orbitrap MS scan from
375 to 1700m/z at a resolution of 60,000 with automatic gain control (AGC) set at
5e (ref. 4) was followed by up to 20 ms/ms scans at a resolution of 30,000 with AGC
set at 4e (ref. 5). MS/MS spectra were collected with a normalized collision energy
of 35% and an isolation width of 1.2m/z. Dynamic exclusion was set to 40 s, and the
peptide match was set to on. Surveys scans were performed in the Orbitrap mass
analyzer and data-dependent MS2 scans were performed in Orbitrap mass analyzer
trap using higher-energy collisional dissociation (HCD) following isolation with
the instrument’s quadrupole. The intensity threshold of the peptide was set 5e
(ref. 3). Internal calibration was carried out using a lock mass option (m/z
445.1200025) from ambient air. The same parameters were used for LFQ (n= 21),
except collision energy, which was set 30%.

Database search for peptide and protein identification. TMT 6-plex- and TMT
10-plex-based quantitative proteomic analysis were carried out using individual
samples of malaria and dengue patients. Raw instrument files were processed using
Proteome Discoverer (PD) version 2.2 (Thermo Fisher Scientific). In each TMT
experiment, .raw files for all fractions were merged and MS2 spectra were searched
using the Sequest HT and Mascot (v2.6.0) search engine against Homo sapiens fasta
(71,523 sequence entries, dated: 24/06/2018) from Uniprot database (Proteome ID:
UP000005640, Organism ID: 9606). All searches were configured with dynamic
modifications for the TMT reagents (+229.163 Da) on lysine and N-termini,
oxidation of methionine residues (+15.9949 Da) and static modification as car-
bamidomethyl (+57.021 Da) on cysteines, monoisotopic masses, and trypsin
cleavage (max 2 missed cleavages). The peptide precursor mass tolerance was 10
ppm, and MS/MS tolerance was 0.05 Da. The false discovery rate (FDR) for pro-
teins and peptides was kept 1%71. TMT signals were corrected for isotope impu-
rities based on the manufacturer’s instructions.

In LFQ, the .raw files from the label-free method were searched against the
database of Plasmodium falciparum 3D7 (Plasmo
TaxID=36329_and_subtaxonomies) (v2017-08-25). The parasite data were
downloaded from PlasmoDB (https://plasmodb.org/plasmo/) on 28/06/2018. The
search parameters were kept the same as above mentioned for the TMT 6-plex
method except for dynamic modifications for the TMT reagents (+229.163 Da) on
lysine and N-termini of the peptide.

Machine learning and feature selection. The PSMs values were processed using
MSstatsTMT72,73, where run-to-run normalization using a reference pool and
quantile normalization were performed. Sixty-six proteins were selected based on
adjusted p value (p < 0.05) in malaria and p value (p < 0.05) in DF (Supplementary
Data 7). Since missing values are associated with the proteins with low levels of
expression, we imputed the missing values by drawing samples from a normal
distribution with a mean that is down-shifted from the sample mean and a stan-
dard deviation that is a fraction of the standard deviation of the sample
distribution.

The elastic net regularized logistic regression method was used to classify: (1)
dengue vs. malaria: HC vs. Dengue, HC vs. malaria, dengue vs. malaria; (2) type of
malaria: HC vs. FM, HC vs. VM, FM vs. VM; (3) severity of FM: HC vs. NSFM, HC
vs. SFM, NSFM vs. SFM; (4) severity of VM: HC vs. NSVM, HC vs. SVM, NSVM
vs. SVM; (5) severity of dengue: HC vs. NSD, HC vs. SD, NSD vs. SD. Of note, the
elastic net regularized logistic regression model offers more flexibility in two ways
—(i) the l1 norm helps attain parsimony in the sense that it optimally chooses the
number of covariates (in the context of present dataset the covariates are proteins)
by driving coefficients of unimportant covariates to zero and (ii) l2 norm helps
address the issue of multicollinearity74–82. k-fold nested cross-validation (k= 10
for malaria vs. dengue, k= 10 for falciparum vs. vivax, and k= 5 for cerebral vs.
severe malaria anemia) was used as it provides robust and almost unbiased
parameter estimates and model performance evaluation even for small sample
sizes83,84.

The nested cross-validation approach involves using—(i) k-fold inner cross-
validation loop for hyperparameter tuning and model selection and (ii) k-fold outer
cross-validation loop for evaluating the model selected by the inner cross-
validation. The entire dataset was randomly split into k-folds, out of which the kth
fold was used as a test set and the remaining k−1 folds were used for training

purpose. For each split, a model was trained and validated on the training set using
(inner) k-fold cross-validation and tested on the held-out test set. The
hyperparameters alpha and lambda were tuned by inner k-fold cross-validation
over a grid of values ranging from 0 to 1 with a step-size of 0.1 for alpha and
another grid of 100 values ranging from 10−2 to 102 for lambda, respectively. To
evaluate model performance, ROC–AUC, balanced accuracy, F1-score, and Kappa
metrics were computed. These metrics were chosen because we had imbalanced
classes. The average variable importance of a protein was measured as the weighted
average of variable importance of that protein in all k predictive models in the
outer k-fold cross-validation with weights being the balanced accuracy of each
model. This implicates that the importance of a protein in the classification of
samples is directly proportional to its occurrence in the predictive models, which
can classify the samples better. A schematic diagram of the method used here is
shown in Figs. 1d and 5a. The proteins with non-zero variable importance from an
elastic net regularized logistic regression model were considered for further
analysis.

For validation of the selected proteins as good classifiers for dengue vs. malaria,
FM vs. VM, and CB vs. SA models, we created (i) heat map and (ii) three-
dimensional PLS-DA plot (Fig. 5b–f and Supplementary Data 5). To arrive at the
best panel of biomarkers, six different biomarker models were created from
different numbers of proteins selected out of all the important covariates identified
in the machine learning model. The ROC curves for these biomarker models
shown in Supplementary Fig. 9b–d enabled comparison of different models based
on their corresponding AUC values and confidence intervals. We have provided a
detailed discussion on the justification and performance of the net regularized
logistic regression model under the Supplementary Information (Supplementary
Methods and Supplementary Data 5).

The elastic net regularized logistic regression model equations for the final
biomarker models identified from MRM were as follows:

dengue vs. malaria:

loge
pdengue

1� pdengue

 !
¼ �0:4269þ 2:23 ´ LRG1� 1:7374 ´CP: ð1Þ

Falciparum vs. vivax malaria:

logb
pVM

1� pVM

� �
¼ 0:0893þ 0:169 ´AZGP1þ 0:1425 ´HRG: ð2Þ

Cerebral vs. severe malaria anemia:

logb
pCB

1� pCB

� �
¼ �0:2118� 0:2365 ´ SERPINA3þ 0:4309 ´AHSG; ð3Þ

where pPositive Class is the probablility of event that Y=Postitive Class. For these
three models, the hyperparameters (alpha and lambda) and model performance
evaluation metrics (balanced accuracy, F1-score, Kappa, ROC–AUC, ROC–AUC
confidence interval) were as follows: (i) dengue vs. malaria: 0.22, 0.02, 0.72, 0.89,
0.46, 0.807 (0.666–0.947); (ii) FM vs. VM: 0.25, 4.47, 0.8, 0.77, 0.6, 0.865
(0.772–0.958); and (iii) CB vs. SA: 0.02, 41.10, 0.8, 0.83, 0.56, 0.944 (0.816–1),
respectively. These models serve two purposes, and they are as follows:

They help assess the impact of a particular protein on the estimated log odds or
the estimated odds of an individual, for example, being a dengue patient as opposed
to being a malaria patient.

For illustration sake, let us consider the model Eq. (1). Note that this model
equation yields:

p̂dengue
1� p̂dengue

¼ expð�0:4269þ 2:23 ´ LRG1� 1:7374 ´CPÞ

¼ exp �0:4269ð Þ ´ exp 2:23ð ÞLRG1 ´ exp �1:7374ð ÞCP
¼ 0:6525 ´ 9:2999LRG1 ´ 0:176CP:

This can be interpreted by observing that the estimated odds of an individual
being a dengue patient as opposed to s(he) being a malaria patient increase
multiplicatively (decrease multiplicatively) by 9.2999 (0.176) for every unit increase
in the value of the protein LRG1 (CP).

Note that the equation involving the estimated odds
p̂dengue

1�p̂dengue
given in I further

leads to

p̂dengue ¼ exp �0:4269þ 2:23 ´ LRG1�1:7374 ´CPð Þ
1þ exp �0:4269þ2:23 ´ LRG1�1:7374 ´CPð Þ

¼ 0:6525 ´ 9:2999LRG1*0:176CP
1þ 0:6525 ´ 9:2999LRG1 ´ 0:176CP :

and this, in turn, enables one to classify a new patient as a dengue or a malaria
patient depending upon whether p̂dengue is ≥0.5 or not for specified values of LRG1
and CP for the patient under consideration.

The other two logistic regression models corresponding to falciparum vs. vivax
malaria or cerebral vs. severe malaria anemia could be interpreted analogously.

Interaction network and bioinformatics analysis. In order to investigate the
complex interactions among the candidate marker proteins and for prediction of
the pathways associated with the differentially altered proteins identified in FM,
VM, and DF patients, diverse bioinformatic analyses were carried out. The pathway
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enrichment was performed using Protein Analysis THrough Evolutionary Rela-
tionships (PANTHER) classification system, version 12.0 (www. pantherdb.org)85,
and Reactome pathway Knowledgebase, version 62 (www.reactome.org)86. A
multi-functional online software NetworkAnalyst (http://www.networkanalyst.ca/)
was applied for constructing and visualizing the PPI networks. The batch selection
option of NetworkAnalyst was used to narrow down the network nodes, and the
clusters were specified by highlighting with different colors.

Validation using MRM. Plasma proteins showing a prominent differential abun-
dance in malaria patients were further validated using MRM assays on a triple
quadrupole mass spectrometer Altis (Thermo Fisher Scientific) equipped with an
Easy-Spray electrospray ionization ion source (Thermo Fisher Scientific). Peptides
separations were performed using a C18 column (Hypersil GOLD, 150mm, 2.1mm,
1.9 µm, Thermo Fisher Scientific). The mobile phase consists of Milli-Q water with
0.1% formic acid as solvent A and 0.1% formic acid/80% acetonitrile as solvent B.
Following chromatographic conditions were used: 20-min gradient at a flow rate of
300 nl/min starting with 100% A (water), stepping up to 2% B (ACN) in 0min,
followed by 45% B at 16min, followed by a steep increase to 95% B at 17min and
static for 1min at 95%. The steep decrease to equilibrate the column 5% of B at 19 and
then static for another 1min at 5% of B. The suitability of the system was evaluated
using iRT peptide and digested BSA (Supplementary Fig. 10a). To assess the suitability
of the selected peptides for MRM, 4.8 nmol/peptide (n= 17) of each heavy synthetic
peptide was spiked into 10 µg of the digested samples, with 142 peptides having 901
transitions over a 20-min chromatographic gradient with a scheduling method. The
total 40 methods were used to accommodate all the transitions (approx. 176 transition/
method) for host and parasite proteins. During the first phase of optimization, six
proteins were not detected and hence removed those from the list. The refinement of
the transitions performed by running different plasma pool samples and some indi-
vidual samples on different days to check the inter-day variation and stability of the
peptides (Supplementary Fig. 10b). The 46 proteins finalized, which has good dotp
value for the peptides (dotp > 0.85) (Supplementary Fig. 10c). The scheduling of
peptides was performed, and the run was carried out as a single method to quantify the
proteins from FM, VM, dengue, and HC samples. Targeted acquisition of the eluting
ions was performed by the mass spectrometer operated in SRM-MS mode with Q1
and Q3 set to 0.7m/z full-width at half-maximum resolution and a cycle time of 2 s. A
single scheduled method was utilized with a 2-min elution window for all MRM-MS
runs. Data analysis was performed using Skyline daily87.

Statistics and reproducibility. The proteins that were quantified with ≥1 unique
peptide and detected in at least 60% of the samples were selected for the subsequent
differential analysis. The PSMs values were exported from Proteome Discoverer 2.2
(PD) for combined analysis for FM, VM, and DF (FM: n= 10 experimental sets (TMT
6-plex), 90 fractions; VM: n= 4 experimental sets (TMT 10-plex), 25 fractions, and DF:
n= 4 experimental sets (TMT 6-plex), 24 fractions). The protein-level summarization
and significance analysis of the proteins was performed in R using the MSstatsTMT
package72,73. In brief, The PSMs were preprocessed in PD and were converted into the
required input format for MSstatsTMT using an in-house R-code. The protein abun-
dance was calculated based on the peptide quantification using the “protein summar-
ization” script (MSstatsTMT). It includes normalization between the MS runs using
reference pool channels and the imputation of missing values before summarizing
peptide level data into protein-level data. In the protein summarization method,
MSstats assumes missing values are censored and then imputes the missing values using
the accelerated failure model. Missing value imputation was performed for only of those
proteins, which were quantified in ≥60% of the samples. Then, a moderated t-test was
performed on quantile normalized values using “Group-Comparison-TMT” script in R
and p value <0.05 were considered as statistically significant72,73. Proteins passing p
value <0.05 threshold of moderated t-test was used for data visualization and pathway
analysis. However, adjusted p value Benjamini–Hochberg (BH) was also calculated for
multiple comparisons using the MSstatsTMT package in R. BH-corrected p value [p
value (adjusted) <0.05] was considered in the selection of proteins for machine learning
analysis (except for dengue).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All processed data associated with this study are present in the manuscript or in the
Supplementary Materials. Raw MS data and search output files for TMT-based
quantitative proteomics analyses described in this article are deposited to the
ProteomeXchange Consortium via the PRIDE88 partner repository with the dataset
identifier PXD014991. Targeted proteomic data are deposited in the Peptide Atlas89 and
can be accessed through Dataset Identifier: PASS01467. All raw and processed data are
made available as Supplementary Datasets 1–7.

Code availability
The custom code for MS data analysis (TMT 6/10plex) and machine learning have been
deposited at https://github.com/vipin786/R-code-for-MS-data as well as publicly
available via Zenodo (https://doi.org/10.5281/zenodo.4022347)90.
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