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Purpose: Although mutational analysis of pancreatic cancer has provided valuable clinical
information, it has not significantly changed treatment prospects. The purpose of this study is
to further investigate molecular alterations in locally advanced pancreatic cancer and identify
predictors of the efficacy of nab-paclitaxel plus gemcitabine (AG) chemotherapy.

Experimental design: Tumor samples from 118 pancreatic cancer patients who
received AG chemotherapy as first-line treatment were sequenced and genomic profile
was generated. Molecular alterations and the involved signaling pathways were analyzed.
Genes with a significant difference in mutation frequency between primary and metastatic
tumors were identified, and prognostic-related mutant genes were screened using SPSS
version 22.0.

Results: The most common altered genes in the patients were KRAS (94.9%), TP53
(81.4%), CDKN2A (36.4%), and SMAD4 (22.9%). The mutational frequencies of CDKN2B
(14.8% vs. 0%, p = 0.001), FAT3 (7.4% vs. 0%, p = 0.041), MTAP (13% vs. 1.6%, p =
0.023), and SMAD4 (31.4% vs. 15.6%, p = 0.049) in metastatic tumors were significantly
higher than that in primary tumors. TP35 and KRAS mutations were significantly
correlated with objective response rate, while EPHA7, RNF43, and HMGA2 mutations
were significantly correlated with disease control rate. Additionally, patients with TGFR2B,
FGF23, EPHA7, SMARCA4, CARD11, ADGRA2, CCNE1, and ACVR2A alterations had a
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worse overall survival. Further, EPHA7, CARD11, NOTCH1, GATA6, ACVR2A, and
HMGA2 mutations indicated undesirable progression-free survival.

Conclusions: CDKN2B, FAT3, MTAP, and SMAD4 may be biomarkers that distinguish
primary tumors from metastases. EPHA7mutation may serve as a prognostic biomarker to
predict the treatment efficacy of AG chemotherapy in locally advanced pancreatic cancer.
Keywords: mutational analysis, advanced pancreatic cancer, metastasis, prognostic biomarker, AG chemotherapy
INTRODUCTION

Pancreatic cancer is a highly invasive malignant tumor and has
the worst prognosis of all human cancers, with a 5 year survival
rate of 11% (1). Despite great advances in treatments like
radiotherapy and chemotherapy and improvements in surgical
techniques, pancreatic cancer will likely become the second
leading cause of cancer-related deaths by 2030 (2). So far,
surgical resection is the only curative treatment. Unfortunately,
only approximately 15–20% of pancreatic cancer patients have
resectable disease at diagnosis (3). Even worse, among these
patients the median survival is about 8.5 to 11.1 months
owing to early metastasis (4, 5). Indeed, aggressive and
cytotoxic chemotherapy is still the standard treatment for
pancreatic cancer. The National Comprehensive Cancer
Network (NCCN) lists nab-paclitaxel plus gemcitabine (AG
chemotherapy) as the preferred first-line therapy for the
treatment of locally advanced pancreatic cancer and metastatic
pancreatic cancer. However, the median progression-free
survival of metastatic pancreatic cancer treated with AG
chemotherapy was only 5.5 months, and the median overall
survival of metastatic pancreatic cancer was 8.5 months (6).
Moreover, due to the absence of effective prognostic and
predictive biomarkers and the limited clinical success of
preferred therapies, the successful treatment of pancreatic
cancer is still elusive (7). Hence, to improve existing treatments
and develop novel therapeutic strategies, a better understanding
of the molecular pathology of pancreatic cancer is vital.

Next-generation sequencing (NGS) is now widely available
for examination of tumor samples in commercial laboratories,
and advances in NGS-based genomics have greatly increased our
understanding of the molecular basis of pancreatic cancer. Based
on comprehensive integrated genomic and transcriptomic
analysis, a study in 2016 classified pancreatic cancer into four
subtypes (stable, locally rearranged, scattered, and unstable) that
are associated with specific histopathological characteristics (3).
Genomic analyses revealed four commonly mutated genes
(KRAS, TP53, SMAD4, and CDKN2A) in pancreatic cancer.
These mutations cluster in core molecular pathways, including
DNA damage repair, cell cycle regulation, TGF-b signaling,
chromatin regulation, and axonal guidance (8, 9). Further,
several molecular profiling studies revealed that up to 48% of
pancreatic cancers harbor therapeutically relevant genomic
alterations, such as ERBB2, MET, FGFR1, CDK6, PIK3R3, and
PIK3CA at low individual patient prevalence (3, 8, 10). In
addition, a recent study showed that tumor fraction was
2

remarkably higher in metastatic than localized tumors, and
genetic heterogeneity was found between distinct metastatic
tumors, especially in different organs (11). However, our
knowledge of the genomic landscape of metastatic pancreatic
cancer remains limited.

In this study we performed genomic analysis of 118
pancreatic cancer patients using NGS. Primary tumors were
obtained from 64 patients and metastatic tumors from 54
patients, and the mutational landscapes and mutated-gene
related pathways of the primary and metastatic tumors were
mapped and compared. Furthermore, mutated genes associated
with prognosis were screened for the potential prediction of
treatment response and development of new targeted treatments.
MATERIALS AND METHODS

Patients
A total of 118 pancreatic cancer patients from the Nanjing Drum
Tower Hospital, the Affiliated Hospital of Nanjing University
Medical School, were enrolled for this study from 2018 to 2020.
Tumor samples or biopsy tissues were collected from these
patients for the detection of genomic alterations. Pancreatic
cancer patients with locally advanced tumors or metastases
were included. Relevant basic information, family history,
clinical and pathological features, and treatment history were
collected. All of the patients received AG chemotherapy as a first-
line treatment, and some received second-line (and third-line
therapy) according their own will. Treatment response was
assessed with abdominal enhanced computed tomography and
magnetic resonance imaging following the criteria of Response
Evaluation Criteria in Solid Tumors (RECIST). Treatment
response was quantitatively classified into four categories:
complete response (CR), partial response (PR), stable disease
(SD), and progressive disease (PD). The information for the 118
patients has not been previously published.

Ethics
The project was approved by the Ethics Committee of Nanjing
Drum Tower Hospital (approval number: EXPLORE-PC101).
Informed consent was provided by all patients or their
immediate families. This work was conducted in accordance
with the guidelines of the Declaration of Helsinki. All methods
used in this protocol were carried out in accordance with the
relevant guidelines and regulations.
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Identification of Genomic Alterations and
Tumor Mutational Burden
The genomic alterations were identified using the NGS-based
YuanSuTM450 gene panel (OrigiMed, Shanghai, China), which
covers all the coding exons of 450 cancer-related genes that are
frequently rearranged in solid tumors. The genes were captured
and sequenced with a mean depth of 800× using Illumina
NextSeq 500. The procedures followed those described by
Frampton et al. (12). GAs) were identified as previously
described methods (13): single nucleotide variants (SNV) were
identified using MuTect (v1.7). Insertion-deletions (indels) were
identified using PINDEL (V0.2.5). The functional impacts of
GAs were annotated using SnpEff3.0. Copy number variation
(CNV) regions were identified using Control-FREEC (v9.7) with
the following parameters: window = 50,000 and step = 10,000.
Gene fusions were detected through an in-house developed
pipeline. Gene rearrangements were assessed using Integrative
Genomics Viewer (IGV). TMB was estimated by counting the
coding somatic mutations, including SNV and indels, per
megabase of the sequence examined in each patient. The TMB
value was further divided into two groups: high TMB (TMB-H),
defined as ≥10 mutations/Mb, and low TMB (TMB-L), defined
as <10 mutations/Mb.

Statistical Analysis
Statistical analyses were performed using SPSS version 22.0
(SPSS Inc., Chicago, IL, USA). Overall survival (OS) was
defined as the time from the start of AG therapy to death from
any cause. Progression-free survival (PFS) was defined as the
time from the start of AG therapy to disease progression. The
objective response rate (ORR) was defined as the percentage of
patients that achieved PR and SD. The disease control rate
(DCR) was defined as the percentage of patients that achieved
PR. Fisher’s exact test was used to analyze associations between
categorical variables. The Student’s t−test and the Wilcoxon rank
test were used to analyze associations between normally
distributed data and non-normally distributed data,
respectively. The Kruskal test was used to analyze associations
between multiple groups of nonparametric data. A value of
p < 0.05 was considered statistically significant.
RESULTS

Patient Characteristics
A total of 118 pancreatic cancer patients were enrolled in this
study. The median age of these patients was 61 years old (range =
33−85 years old); 67 of them were male (56.8%) and 51 were
female (43.2%). The tumor tissues were divided into primary
tumors (n = 64, 54.2%) and metastatic tumors (n = 54, 45.8%).
Based on tumor stage, there were 36 patients at stage III (30.5%)
and 82 patients at stage IV (69.5%). The median TMB of the 118
patients was 3.1 Mut/Mb (range = 0.0−69.5). In the cohort, 4
patients were identified as TMB-H (3.4%) while 114 patients
were identified as TMB-L (96.6%). Microsatellite stability (MSS)
status was also measured in all patients; 1 patient had high
Frontiers in Oncology | www.frontiersin.org 3
microsatellite instability (MSI-H), and 117 patients had MSS.
Detailed clinical characteristics of each patient are listed
in Table 1.

Significant Genomic Alterations in
Pancreatic Cancer
A total of 792 variations in 267 genes, including 447 (56.4%)
substitution/indels, 157 (19.8%) gene amplification, 135 (17.0%)
truncation, 18 (2.3%) fusions/rearrangements, 35 (4.4%) gene
homozygous deletions, and 23 (2.9%) gene homozygous
deletions, were detected in the 118 pancreatic cancer patients.
The most common gene alterations in the study group were
KRAS (94.9%), TP53 (81.4%), CDKN2A (36.4%), and SMAD4
(22.9%) (Figure 1A). Notably, the most common KRAS and
TP53 variants observed were substitution/indels (Figure 1). The
most frequent mutations were in codon 12 of KRAS (84%),
including KRAS G12D (50%) and G12V (34%) (Figures 1B, C).

Mutated Gene-Related Pathways in
Pancreatic Cancer
In order to identify the functions of the mutated genes and
understand how these mutations contribute to selective
advantages during tumorigenesis, their involved regulatory
pathways were analyzed. All the mutated genes were mainly
involved in the following signaling pathways: RTK.RAS (94.9%),
TP53 (83.9%), cell cycle (41.5%), TGF-b (35.6%), DDR (16.9%),
WNT (13.6%), HIPPO (11.9%), NOTCH (11.9%), PI3K (11%),
HR (9.3%), MYC (5.9%), and NFR2 (0.8%) (Figures 2A, B).
RTK.RAS pathway alterations were present in most patients,
predominantly due to KRAS mutations (94%). In patients
lacking KRAS mutations, other RTK.RAS genes were often
mutated, including BRAF, EGFR, ERBB2/3/4, FGFR1/3/4, and
ROS1 (Figure 2A). There was no significant difference in the
involved regulatory pathways between primary and metastatic
tumors (Figure 2C).
TABLE 1 | Clinical characteristics of patients.

Characteristics n=118

Age, years (median, IQR) 61 (33-85)
Gender, n (%)
Male 67 (56.8%)
Female 51 (43.2%)

Source of samples, n (%)
Primary 64 (54.2%)
Metastasis 54 (45.8%)

Stage
III 36 (30.5%)
IV 82 (69.5%)

TMB (median, IQR) 3.1 (0.0-69.5)
TMB status, n (%)
TMB≥10 4 (3.4%)
TMB<10 114 (96.6%)
MSI status, n (%)
MSS 117 (99.0%)
MSI-H 1 (1.0%)
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Significant Genomic Alterations in Primary
and Metastatic Pancreatic Cancer
Tumor metastasis of pancreatic cancers is an important
prognostic factor. To explore the molecular mechanisms
involved, we performed genomic analysis of the primary and
metastatic tumors in this study and analyzed their mutational
characteristics individually. The most common gene alterations
in the 64 primary pancreatic cancer were KRAS (96.9%), TP53
(81.2%), CDKN2A (35.9%), and SMAD4 (15.6%) (Figure 3A).
The most common gene alterations in the 54 metastatic
pancreatic cancer were KRAS (92.6%), TP53 (81.5%), CDKN2A
(37%), SMAD4 (31.5%), CDKN2B (14.8%), and MTAP (13%)
(Figure 3B). Similarly, the most common changes in KRAS and
TP53 were substitution/indels in primary and metastatic tumors
(Figures 3A, B). KRAS G12D and G12V showed the highest
variation frequency (43% and 22% in primary tumors, and 47%
and 45% in metastatic tumors, respectively) (Figures 3C–F). To
further explore the association and compare the molecular
differences between primary and metastatic tumors, the
frequencies of the most common mutations were compared.
As shown in Figure 3G, the mutational frequencies (metastatic
vs. primary) of CDKN2B (14.8% vs. 0%, p = 0.001), FAT3 (7.4%
vs. 0%, p = 0.041), MTAP (13% vs. 1.6%, p = 0.023), and SMAD4
Frontiers in Oncology | www.frontiersin.org 4
(31.4% vs. 15.6%, p = 0.049) in metastatic tumors were
significantly higher than in primary tumors. Detailed numbers
and mutational frequencies are listed in Table 2. Notably,
CDKN2B and FAT3 alterations occurred only in patients with
metastatic tumors.

Potential Prognostic Biomarker and
Predictor of Treatment Efficacy of AG
Chemotherapy Analysis
Of the 118 patients, 89 had a complete follow-up with the best
objective response assessment and PFS andOS evaluations. Hence,
the mutational and follow-up information of these 89 patients was
used to analyze the influence of mutated genes on clinical response
rate and prognosis. The results revealed that the ORR of TP53
mutated patients (46.3%) was significantly higher than that of
TP53 wild type patients (18.2%) and that the ORR of KRAS
mutated patients (43.8%) was significantly higher than that of
KRAS wild type patients (0%), demonstrating that TP35 (p = 0.02)
and KRAS (p = 0.01) mutations were significantly correlated to
better ORR (Figures 4A, B). At the same time, the DCR of EPHA7
mutated patients (0%), ERNF43 mutated patients (20%), and
HMGA2 mutation patients (25%) was dramatically lower than
that of EPHA7 wild type patients (79.1%), ERNF43 wild type
A

B C

FIGURE 1 | Gene alterations of 118 pancreatic cancer patients. (A) The mutation profiles. The panel shows the matrix of mutations with each type of mutation in a different
color. Each column denotes an individual tumor and each row represents a gene. The right panel shows the name of mutations and the left panel shows the proportion of
mutations. Green; Substitution/Indel, Red; Gene amplification, Blue; Gene homozygous deletion, Yellow; Fusion/Rearrangement, Purple; Truncation. (B) Ratio of different
mutation types in KRAS gene. (C) The distribution map of KRAS gene mutation sites showing the distribution of mutation sites.
May 2022 | Volume 12 | Article 844527
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patients (79.8%), and HMGA2 wild type patients (78.8%)
(Figures 4C, D), verifying that EPHA7 (p = 0.01), RNF43 (p =
0.01), and HMGA2 (p = 0.04) mutations were significantly
correlated to worse DCR. In addition, patients with TGFR2B,
FGF23, EPHA7, SMARCA4, CARD11, ADGRA2, CCNE1, and
ACVR2A alterations had a worse OS (Figures 5A–H), and
EPHA7, CARD11, NOTCH1, GATA6, ACVR2A, and HMGA2
mutations indicated undesirable PFS (Figures 5I–N).
DISCUSSION

Pancreatic cancer remains one of the most fatal malignancies
with a very poor prognosis. In fact, the primary clinical treatment
for advanced and/or metastatic pancreatic cancer remains
conventional chemotherapy, such as AG chemotherapy (5, 6)
and the FOLFIRINOX regimen, but the treatment results are
unsatisfactory. Currently, the NCCN guidelines for pancreatic
cancer have no guidance for individualized chemotherapy, save
for a recommendation that patients with germline BRCA1/2 gene
mutations choose platinum chemotherapy. Hence, it is essential
Frontiers in Oncology | www.frontiersin.org 5
to be able to select populations that aremore likely to respond
to existing treatments, such as AG chemotherapy, and to
develop novel targeted therapeutic strategies for pancreatic
cancer patients.

In recent years, many researchers have examined the
pancreatic cancer genome using NGS to lay down the
molecular foundation for targeted therapy. Waddell et al.
revealed that KRAS and CDKN2A were mutated in over 90%
of pancreatic cancers, while the TP53 and SMAD4 genes were
mutated in 75% and 55% of the patients, respectively (8). In
addition, Kamisawa et al. showed that pancreatic cancer cells
were characterized by a hypermutated landscape, with the KRAS
oncogene, TP53, CDKN2A, and SMAD4 tumor suppressor genes
the four most commonly mutated genes (14). Similarly, our
results showed that the most common gene alterations in the 118
pancreatic cancer patients studied were in KRAS (94.9%), TP53
(81.4%), CDKN2A (36.4%), and SMAD4 (22.9%). In addition,
KRAS mutations in codon 12 were the most common (84%),
with KRAS G12D and G12V the highest variation frequency
(50% and 34%, respectively). These results are in agreement with
the study done by Shinichi et al., which showed activating
A

B C

FIGURE 2 | The signaling pathway involved in the mutant genes. (A) The map of mutant genes and the involved signal pathways. Light blue represents the primary
tumors and orange represents the metastatic tumors. The upper panel shows the mutant genes and the lower panel shows the signal pathways. Green; Substitution/
Indel, Red; Gene amplification, Blue; Gene homozygous deletion, Yellow; Fusion/Rearrangement, Purple; Truncation. (B) The mutation frequency of the signaling
pathways involved in the mutant genes. (C) The comparison of mutation frequency of the signaling pathways between primary and metastatic tumors.
May 2022 | Volume 12 | Article 844527
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mutations in KRAS in 92% of pancreatic cancer patients, with
mutations in codon 12 being the most common (90%) (15).

Metastasis is a vital risk factor for poor prognosis in pancreatic
cancer patients because patients with metastases are usually not
suitable candidates for operative treatment. However, the specific
molecular mechanism of pancreatic cancer metastasis is not clear
and may involve the abnormal expression of cancer-related genes
and the disorder of related signaling pathways. A study of 2552
pancreatic ductal adenocarcinoma (PDAC) patients found that the
most common gene alterations were mutations in KRAS and PTEN
Frontiers in Oncology | www.frontiersin.org 6
(59% and 62%, respectively), with differences in prevalence by site of
metastasis (p = 0.042 and p = 0.037, respectively). KRASmutations
were more commonly found in metastases in the lung (72%) than
other sites (59%, p = 0.042). Low expression of ERCC1was found in
49% of lung metastases from PDAC but only 15% in PDAC in the
pancreas (p < 0.001) (16). In another study, 109 differentially
expressed genes related with pancreatic cancer metastasis were
screened by analyzing the pancreatic cancer metastasis-related
gene chip data in the GEO database. Of these, 49 were
upregulated and 60 were downregulated (17).
TABLE 2 | Detailed patient number and the mutational frequency.

primary (n=64) metastasis (n=54) Total P-value

SMAD4 10 (15.6%) 17 (31.5%) 27 (22.9%) 0.049
MTAP 1 (1.6%) 7 (13.0%) 8 (6.8%) 0.023
CDKN2B 0 (0%) 8 (14.8%) 8 (6.8%) 0.001
FAT3 0 (0%) 4 (7.4%) 4 (3.4%) 0.041
May 2022 | Volume 12 | Article
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FIGURE 3 | Gene alterations of 64 primary and 54 metastatic tumors. (A, B) The mutation profiles. The panel shows the matrix of mutations with each type of mutation
in a different color. Each column denotes an individual tumor and each row represents a gene. The right panel shows the name of mutations and the left panel shows the
proportion of mutations. Green; Substitution/Indel, Red; Gene amplification, Blue; Gene homozygous deletion, Yellow; Fusion/Rearrangement, Purple; Truncation. (C, D)
Ratio of different mutation types in KRAS gene. (E, F) The distribution map of KRAS gene mutation sites showed the distribution of mutation sites. (G) Genes with a
significant difference in mutation frequency between primary and metastatic tumors.
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FIGURE 5 | Analysis of mutated genes associated with prognosis. (A–H) Survival analysis showed that patients with TGFR2B, FGF23, EPHA7, SMARCA4, CARD11,
ADGRA2, CCNE1, and ACVR2A alterations had a worse OS. (I–N) EPHA7, CARD11, NOTCH1, GATA6, ACVR2A, and HMGA2 S mutations indicated undesirable PFS.
A

B D

C

FIGURE 4 | Analysis of mutated genes associated with prognosis. (A, B) TP35 and KRAS mutations were significantly correlated to ORR of AG chemotherapy. The
ORR of TP53 mutant patients is 46.3%, while the ORR of TP53 wild type patients is 18.2%.The ORR of KRAS mutant patients is 43.8%, while the ORR of KRAS
wild type patients is 0%. (C, D) EPHA7, RNF43, and HMGA2 mutations were significantly correlated to the DCR of AG chemotherapy. The DCR of EPHA7 mutant
patients is 0%, while the DCR of EPHA7 wild type patients is 79.1%.
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In our study, the most common gene alterations in the 66
primary pancreatic cancers were KRAS (96.9%), TP53 (81.2%),
CDKN2A (35.9%), and SMAD4 (15.6%) (Figure 2A). Further,
the most common gene alterations in the 54 metastatic
pancreatic cancers were KRAS (92.6%), TP53 (81.5%),
CDKN2A (37%), SMAD4 (31.5%), CDKN2B (14.8%), and
MTAP (13%) (Figure 2B). Importantly, the mutational
frequency of CDKN2B (14.8% vs. 0%, p = 0.001), FAT3 (7.4%
vs. 0%, p = 0.041),MTAP (13% vs. 1.6%, p = 0.023), and SMAD4
(31.4% vs. 15.6%, p = 0.049) in metastatic tumors were
significantly higher than those in primary tumors. Notably,
CDKN2B and FAT3 alterations occurred only in metastatic
tumors. Other studies have shown that loss of SMAD4
expression is associated with metastasis in pancreatic cancer
(18–20). Evidently, the relationship between metastatic
pancreatic cancer and other significantly mutated genes, such
as CDKN2B, FAT3, and MTAP, remains obscure.

All detected mutations are involved in the dysregulation of core
signaling pathways that affect not only the specific features of tumor
cells, such as proliferation and migration, but also the tumor
microenvironment (14). Approximately 32 recurrently mutated
genes in pancreatic cancer that aggregate into 10 core pathways
have been reported: KRAS, TGF-b, WNT, NOTCH, ROBO/SLIT
signaling, G1/S transition, SWI-SNF, chromatin modification, DNA
repair, and RNA processing (3). Another study revealed that MAPK
(87%), PI3K/AKT/mTOR (19%), DNA repair (15%), cell cycle
(11%), and AKT/mTOR (19%) pathway alterations were present
in pancreatic cancer patients (21). In this study, all the mutated
genes were mainly involved in the following signaling pathways:
RTK.RAS, TP53, cell cycle, TGF-b, DDR, WNT, HIPPO, NOTCH,
PI3K, HR, MYC, and NFR2. We found RTK.RAS (94.9%) pathway
alterations in most pancreatic cancer patients. These were
predominantly due to KRAS mutations, but in patients lacking
KRASmutations, other RTK.RAS genes were oftenmutated, such as
BRAF, EGFR, ERBB2/3/4, FGFR1/3/4, and ROS1. This RTK.RAS
signaling pathways dysregulation is consistent with previous studies
(3, 8, 9). Additionally, 11.9% of patients had some molecular defect
in the PI3K pathway, including mutations in STK11, PIK3CA,
TSC2, and AKT2. These frequencies were comparable to those
from other published studies (21, 22). Furthermore, in a
retrospective analysis, 13.9% (94/677) of patients with actionable
mutations had mutations in the DDR pathway (23–26). Similarly,
our data showed that 16.9% of pancreatic cancer patients had DDR
pathway alterations, with actionable mutations such as BRCA2, and
POLE. However, our study showed no significant difference in the
regulatory pathways affected in primary and metastatic tumors.

Up to 85% of pancreatic cancer patients are diagnosed with
already locally advanced and/or metastatic tumors because of a lack
of specific symptoms and early biomarkers for this highly aggressive
disease (14). Therefore, it is particularly important to explore
molecular biomarkers for early prediction and prognosis. An
activating point mutation of the KRAS oncogene in codon 12
(exon 2) is the initiating event in the majority of PDAC patients
(27, 28). The point mutation ofKRAS damages the intrinsic GTPase
activity of RAS and prevents GAPs from promoting the conversion
of GTP (active) to GDP (inactive). Thus, KRAS is permanently
Frontiers in Oncology | www.frontiersin.org 8
bound to GTP and activates downstream signaling pathways,
increasing cellular proliferation and survival (28, 29). Several
studies have investigated whether KRAS mutations influence the
prognosis of PDAC, and the results showed that theKRASmutation
has a negative influence on the prognosis of PDAC patients,
especially G12D, G12R, or a combination of the two mutants
(30, 31). Our study results are consistent with these findings,
where 94.9% of our study population had KRAS mutations, most
frequently in codon 12 (84%), predominantly KRAS G12D and
G12V (50% and 34%, respectively). Additionally, patients with
KRAS mutations had a shorter ORR. In addition, our data also
revealed that EPHA7 mutations were significantly correlated to
DCR, and patients with EPHA7 alterations had a worse OS and
undesirable PFS. Combined with a recent study suggesting that
EPHA7 mutations could serve as a potential predictive biomarker
for immune checkpoint inhibitors in multiple cancers (32), our
results suggest that EPHA7mutation indicate a poor prognosis, and
the use of immune checkpoint inhibitors in EPHA7-mutated
pancreatic cancer patients may result in better clinical outcomes.
HMGA2 acts as an independent prognostic marker associated with
lymph node metastasis (33) and a significantly shorter OS in PDAC
(34). Consistently, our results revealed thatHMGA2mutations were
significantly correlated to DCR, and patients with HMGA2
alterations had an undesirable PFS. Studies have classified PDAC
into classical, quasimesenchymal, and exocrine-like subtypes.
Classical PDAC showed that higher GATA6 mRNA expression is
associated with a better prognosis (35, 36). Additionally, low
GATA6 expression is associated with shorter OS (37). Our data
showed that GATA6mutations were associated with a shorter PFS.
Other prognostic factors detected in this study, such as TP53,
RNF43, FGFBR2, FGF23, SMARCA4, CARD11, ADGRA2,
CCNE1, ACVR2A, NOTCH1, and TGFR2, have not been
associated with the prognosis of pancreatic cancer in other
studies. A larger sample size is needed for further analysis.

In conclusion, this study used NGS to comprehensively
analyze the mutation landscape of pancreatic cancer patients,
including primary tumors and metastatic tumors, and the
involved signaling pathways. The most commonly mutated
genes were KRAS, TP53, CDKN2A and SMAD4. In addition,
CDKN2B, FAT3,MTAP, and SMAD4may be molecular markers
that distinguish primary tumors from metastases. Furthermore,
KRAS, EPHA7, TP53, HMGA2, GATA6, RNF43, FGFBR2,
FGF23, SMARCA4, CARD11, ACVR2A, NOTCH1, and TGFR2
may serve as potential prognostic biomarkers for pancreatic
cancer patients who received AG chemotherapy for first-line
treatment. Particularly, KRAS and EPHA7 are highly likely to
serve as prognostic factors and therapeutic targets in the
management of locally advanced pancreatic cancer.
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