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Abstract

Background

High altitude exposure induces overload of right-sided heart and may further predispose to

supraventricular arrhythmia. It has been reported that atrial mechanical dyssynchrony is

associated with atrial arrhythmia. Whether high altitude exposure causes higher right atrial

(RA) dyssynchrony is still unknown. The aim of study was to investigate the effect of high

altitude exposure on right atrial mechanical synchrony.

Methods

In this study, 98 healthy young men underwent clinical examination and echocardiography

at sea level (400 m) and high altitude (4100 m) after an ascent within 7 days. RA dyssyn-

chrony was defined as inhomogeneous timing to peak strain and strain rate using 2D

speckle-tracking echocardiography.

Results

Following high altitude exposure, standard deviation of the time to peak strain (SD-TPS)

[36.2 (24.5, 48.6) ms vs. 21.7 (12.9, 32.1) ms, p<0.001] and SD-TPS as percentage of R–R’

interval (4.6 ± 2.1% vs. 2.5 ± 1.8%, p<0.001) significantly increased. Additionally, subjects

with higher SD-TPS (%) at high altitude presented decreased right ventricular global longitu-

dinal strain and RA active emptying fraction, but increased RA minimal volume index, which

were not observed in lower group. Multivariable analysis showed that mean pulmonary arte-

rial pressure and tricuspid E/A were independently associated with SD-TPS (%) at high

altitude.
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Conclusion

Our data for the first time demonstrated that high altitude exposure causes RA dyssyn-

chrony in healthy young men, which may be secondary to increased pulmonary arterial

pressure. In addition, subjects with higher RA dyssynchrony presented worse RA contractile

function and right ventricular performance.

Introduction

High altitude is defined as locations higher than 2500 m above sea level [1], which has been

recognized as a physiological challenge to cardiovascular system [2]. Short-term high altitude

exposure of lowlanders is characterized by decreased oxygen saturation, sympathetic activa-

tion, enhanced ventilation, pulmonary vasoconstriction, and subsequently hypoxic pulmonary

hypertension, which increase the work of right-sided heart and may further predispose to

arrhythmia at high altitude [1,3–6]. Boos, Holdsworth [4] recorded significant supraventricu-

lar arrhythmias in healthy adult men after exposure to over 4100 m above sea level. However,

the myocardial mechanical substrate for proarrhythmia at high altitude is unknown. Recent

studies have presented a definition of mechanical dyssynchrony as inhomogeneous timing of

cardiac mechanical behavior assessed by speckle-tracking echocardiography, which was associ-

ated with arrhythmia [7–9]. Thus, it may provide a novel insight to explore the atrial mecha-

nism underlying high altitude-induced arrhythmia.

Cardiac response to high altitude has been regarded as slightly decreased right ventricular

(RV) systolic function, even right heart failure, however preserved left ventricular systolic

function [10]. Due to the unique arrangement of myofibres, regional myocardial motion and

global function are intrinsically linked. Indeed, it has been validated that myocardial mechani-

cal dyssynchrony correlates cardiac mechanics with function as well [11,12]. Our previous

study has revealed that high altitude exposure induced RV dyssynchrony, which was related to

decreased RV performance [12]. High altitude-induced RV overload directly conducts to right

atrium (RA), consequently leading to increased RA pressure. Much like a recent study, Deng,

Guo [13] observed pronounced left atrial dyssynchrony in patients with mitral stenosis, which

might be through increasing left atrial afterload. Nevertheless, whether high altitude exposure

induces RA mechanical dyssynchrony remains unclear.

The atrium plays an indispensable role in modulating cardiac performance as reservoir,

conduit and pump [14]. Recent studies demonstrated that atrial dysfunction was sensitive to

detect the subclinical abnormality in several diseases [15–21]. With the advent of the speckle-

tracking echocardiography technology, we are able to quantitatively assess atrial mechanical

function with better reproducibility and less angle-dependence than conventional methods

[22]. In this study, we aimed to investigate the characteristics of RA mechanical synchrony

after high altitude exposure to 4100 m using 2D speckle-tracking echocardiography and fur-

ther find its potential determinants.

Methods

Study population and procedure

In June 2013, a total of 98 healthy young men, who were permanently living below 500 m,

were enrolled the study. The exclusion criteria were any known cardiovascular and pulmonary

diseases, previous history of exposure to altitudes above 2500 m above sea level in the past 6

months, and suboptimal quality images. All subjects provided written informed content to
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participate. The study was performed according to Declaration of Helsinki and received

approval by the Clinical Research Ethics Committee of the Third Military Medical University

(Army Medical University) (No: 2012015), The experimental protocol was registered under

the Chinese Clinical Trial Registration (No: ChiCTR-RCS-12002232, http://www.chictr.org.

cn). Authors had no access to information that could identify individual participants during or

after data collection. The subjects enrolled our study were transported by bus from Yanggong-

qiao (Chongqing, China, 400m) to Litang (Sichuan, China, 4100 m) in 7 days.

Clinical examination, transthoracic echocardiography and symptom questionnaire were

conducted both at sea level (400 m) and within 5 ± 2 h after arrival at 4100 m. Clinical exami-

nation included the measurement of arterial pulse oxygen saturation (Nonin ONYX OR9500,

USA). Blood pressure was measured using automatic sphygmomanometer (Omron HEM-

6200, Japan) in supine position after resting for 5 minutes. Heart rate (HR) was monitored by

the electrocardiogram connected to the ultrasound system during the examination. Acute

mountain sickness was defined as Lake Louise score� 3, in the presence of a headache [23].

Besides headache, the symptoms of Lake Louise score included gastrointestinal symptoms,

fatigue and dizziness.

Echocardiographic image acquisition and analysis

Transthoracic echocardiography was performed in the left lateral decubitus position by experi-

enced cardiac sonographer using a commercially available CX50 ultrasound machine (Philips

Ultrasound System, Andover, MA, USA) according to the recommendation of the American

Society of Echocardiography [24]. The data were saved digitally and analyzed offline using

QLAB workstation (version 10.5, Philips Healthcare, Andover, MA, USA).

Ventricular volumes and areas were measured at end-systole and end-diastole to obtain left

ventricular ejection fraction and RV fractional area change, respectively [25,26]. RA volumes

were automatically calculated by the software using Simpson’s method. RA maximal volume

(Vmax) was obtained in ventricular end-systole at the onset of tricuspid valve opening, pre-

systolic volume (Vpre) was obtained preceding the P wave and minimal volume (Vmin) was

obtained at the onset of tricuspid valve closure [26]. RA volumes were indexed to body surface

area. RA total emptying fraction (EFtot) was calculated by (Vmax–Vmin)/Vmax, passive emp-

tying fraction (EFpass) was (Vmax–Vpre)/Vmax, and active emptying fraction (EFact) was

(Vpre–Vmin)/Vpre [27].

Peak early diastolic E-wave velocity, peak late diastolic A-wave velocity, peak tricuspid

regurgitant velocity and pulmonary artery systolic wave acceleration time were obtained by

pulsed-wave Doppler echocardiography. Due to the availability and feasibility of pulmonary

artery systolic wave acceleration time in all subjects [28], mean pulmonary arterial pressure

(mPAP) was assessed by pulmonary artery systolic wave acceleration time [29]. Systolic pul-

monary arterial pressure was assessed using simplified Bernoulli equation: 4×peak tricuspid

regurgitant velocity2 + 5 mmHg (an estimated central venous pressure) [29].

RV-focused apical four-chamber greyscale images were obtained using 2D speckle-tracking

echocardiography with 70–90 frames per second. For evaluating RV longitudinal systolic func-

tion, tricuspid annular motion was calculated from average of tricuspid lateral and septal

annular displacement using 2D speckle-tracking echocardiography [30], and RV global longi-

tudinal strain (GLS) was assessed automatically in RV six segments by the software [31].

RA dyssynchrony quantitation

RA strain and mechanical dyssynchrony were obtained by 2D speckle-tracking echocardiogra-

phy. RA endocardial-epicardial borders were automatically traced in four-chamber view and
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manually adjusted by the operator for optimal quantitation. The frame at QRS wave onset was

used as the first reference frame. RA myocardium was automatically divided into seven seg-

ments, and strain and strain rate curves were generated for each segment. RA strain during

RV systole (represent RA reservoir function) was measured as difference of the strain value at

tricuspid valve opening minus RV end-diastole [31]. Based on strain and strain rate curves, the

indexes of RA dyssynchrony were assessed as follows (Fig 1) [7].

Standard deviation-time-to-peak strain (SD-TPS, ms): standard deviation of the time to the

peak strain in seven segments.

Standard deviation-time-to-peak systolic strain rate (SD-TPSRs, ms): standard deviation of

the time to the peak strain rate during RV systole in seven segments.

Standard deviation-time-to-peak early diastolic strain rate (SD-TPSRe, ms): standard devia-

tion of the time to the peak strain rate during RV early diastole in seven segments.

Standard deviation-time-to-peak late diastolic strain rate (SD-TPSRa, ms): standard devia-

tion of the time to the peak strain rate during RV late diastole in seven segments.

Interatrial dyssynchrony was defined as the difference between the time to peak strain rate

during ventricular late diastole at left atrial free wall and at RA free wall [32,33].

Higher value was defined as greater degree of mechanical dyssynchrony. We also presented

the indexes of dyssynchrony as percentage of R–R’ interval (%).

Statistical analysis

Continuous variables were expressed as the mean ± standard deviation or median (interquar-

tile range), and categorical variables were expressed as the number with proportions. The com-

parisons of continuous variables were assessed using the paired t-test or nonparametric test

between two groups, and one-way ANOVA with a post hoc test or Kruskal-Wallis test between

more than two groups. The comparisons of categorical variables were assessed using chi-

square test or Fisher’s exact test. Subjects were graded according to tertiles of RA SD-TPS (%)

and interatrial dyssynchrony at high altitude, respectively (grade 1:<33rd, grade 2: 33rd-66th,

grade 3:�66th). Linear trend in continuous variables according to RA SD-TPS (%) grade was

tested by the liner regression analysis in Table 2. Univariable linear regression analysis was

performed to assess the related variables for RA dyssynchrony, and variables with p<0.1 were

entered to the stepwise multivariable linear regression. Statistical analysis was performed using

SPSS 22.0 (IBM Corp., Armonk, NY, USA) and Graphpad Prism 7.0 (Inc., La Jolla, USA).

Intra- and inter-observer variabilities for RA function and dyssynchrony were assessed in

10 randomly selected subjects at sea level and high altitude by the same observer and by two

independent observers, respectively, using the intra-class correlation coefficient by Cronbach’s

α. The value below 0.05 was defined significant for all hypothesis tests.

Results

The effect of high altitude exposure on RA mechanical dyssynchrony

A total of 98 young men aged 20.0 (19.0, 22.0) years with body mass index of 21.1 (19.7, 22.4)

kg/m2 were enrolled the study. The quality of images was sufficient to analyze RA mechanical

dyssynchrony at sea level and high altitude. Both SD-TPS [36.2 (24.5, 48.6) ms vs. 21.7 (12.9,

32.1) ms, p<0.001] and SD-TPS as percentage of R–R’ interval (4.6 ± 2.1% vs. 2.5 ± 1.8%,

p<0.001) were significantly higher at high altitude than at sea level (Fig 2). Additionally,

higher SD-TPSRs (%) (7.3 ± 3.5% vs. 5.9 ± 2.1%, p<0.001) was observed after high altitude

exposure (Table 1). However, there were no significant differences in neither interatrial dys-

synchrony (18.3 ± 14.0 ms vs. 17.1 ± 12.5 ms, p = 0.449) nor interatrial dyssynchrony as per-

centage (1.98 ± 1.54% vs. 2.11 ± 1.59%, p = 0.784) after high altitude exposure (S1 Fig).
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Fig 1. The assessment of right atrial dyssynchrony. (A) Representative 2D speckle-tracking image of RA. RA

myocardium is divided into seven segments, and strain (B) and strain rate (C) curves are generated automatically for

each segment. RA dyssynchrony is defined as standard deviation of the time to the peak strain or strain rate. RA, right

atrium; SD, standard deviation; TPS, time to peak strain; TPSRs, time to peak systolic strain rate; TPSRe, time to peak

early diastolic strain rate; TPSRa, time to peak late diastolic strain rate.

https://doi.org/10.1371/journal.pone.0247107.g001
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Characteristics of subjects according to grade of RA dyssynchrony

Clinical and echocardiographic characteristics of subjects according to tertiles of SD-TPS (%)

value at high altitude were presented in Table 2. Arterial pulse oxygen saturation significantly

decreased, and blood pressure increased after high altitude exposure in all groups. Neverthe-

less, HR and left ventricular ejection fraction increased in Grade 3, but not in other groups.

For RV parameters, fractional area change and tricuspid annular motion significantly

decreased in all groups. RVGLS decreased in Grade 2 and Grade 3. In addition, tricuspid E/A

decreased in Grade 3, but not in other groups. In test for trend among groups, decreasing

trends of body mass index and tricuspid E/A was observed with the increase of RA SD-TPS

(%) (p for trend = 0.037 and p for trend = 0.042, respectively). However, rising trends of HR

and mPAP was observed with the increase of RA SD-TPS (%) (p for trend = 0.046 and p for

trend<0.001, respectively) (Fig 3E and 3F). For RA parameters, EFtot and strain significantly

decreased in all groups. RAEFact decreased in Grade 2 and Grade 3, but not in Grade 1.

Table 1. Right atrial dyssynchrony at sea level and high altitude.

Variables Sea level (n = 98) High altitude (n = 98) P-value

SD-TPS, ms 21.7 (12.9, 32.1) 36.2 (24.5, 48.6) < 0.001

SD-TPS, % 2.5 ± 1.8 4.6 ± 2.1 < 0.001

SD-TPSRs, ms 53.6 ± 18.5 58.8 ± 26.5 0.085

SD-TPSRs, % 5.9 ± 2.1 7.3 ± 3.5 < 0.001

SD-TPSRe, ms 40.1 (28.3, 54.2) 35.5 (18.6, 47.1) 0.092

SD-TPSRe, % 4.3 ± 2.2 4.3 ± 2.8 0.989

SD-TPSRa, ms 23.2 (16.8, 28.6) 20.0 (13.9, 29.2) 0.156

SD-TPSRa, % 2.4 (1.5, 3.8) 2.4 (1.7, 3.3) 0.423

Data are expressed as mean ± SD or median (25th to 75th quartile). Bold values indicate statistically significant. RA, right atrium; SD, standard deviation; TPS, time to

peak strain; TPSRs, time to peak systolic strain rate; TPSRe, time to peak early diastolic strain rate; TPSRa, time to peak late diastolic strain rate.

https://doi.org/10.1371/journal.pone.0247107.t001

Fig 2. Comparison of right atrial dyssynchrony between at sea level and high altitude. �p<0.05; ��p<0.01. Abbreviations as in Fig 1.

https://doi.org/10.1371/journal.pone.0247107.g002
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Moreover, RAVmin increased in Grade 3, but not in other groups. However, no significant

difference of RAVmax and RAVpre was observed in all groups.

Univariable and multivariable analyses

In univariable analysis, body mass index, tricuspid E/A and mPAP at high altitude were signif-

icantly associated with SD-TPS (%). Variables with p<0.1 were entered to the stepwise multi-

variable linear regression. After multivariable adjustment for body mass index, HR and

RVGLS at high altitude, tricuspid E/A and mPAP at high altitude were independently

Table 2. Clinical and echocardiographic characteristics of subjects according to grade of right atrial dyssynchrony at high altitude.

Variables Grade 1 (n = 32) Grade 2 (n = 33) Grade 3 (n = 33)

Sea level High altitude P-value Sea level High altitude P-value Sea level High altitude P-value

Clinical parameters

Age, yrs 21.0 (19.0, 23.0) — 20.5 (19.0, 22.0) — 20.0 (19.0, 20.8) —

BMI, kg/m2 21.5 ± 1.4� — 21.1 ± 1.9 — 20.6 ± 1.8 —

SpO2, % 98.0 (96.0, 98.0) 89.0 (88.0, 90.0) <0.001 98.0 (97.0, 98.0) 90.0 (88.0, 91.0) <0.001 98.0 (97.0, 98.0) 89.0 (87.0, 91.0) <0.001

SBP, mmHg 113.6 ± 7.4 119.8 ± 11.6 0.002 111.9 ± 11.3 122.0 ± 10.1 0.002 112.5 ± 10.7 117.7 ± 12.0 0.034

DBP, mmHg 67.2 ± 6.7 77.7 ± 10.0 <0.001 67.9 ± 9.6 80.1 ± 9.5 <

0.001

66.8 ± 8.1 78.0 ± 10.3 <0.001

HR, bpm 64.3 ± 11.1 69.0 ± 11.9� 0.060 67.8 ± 11.2 71.1 ± 10.8 0.099 68.2 ± 10.1 74.6 ± 10.7 0.007

Echocardiographic parameters

LVEF, % 62.0 (56.1, 65.0) 63.9 (57.6, 67.9) 0.347 61.5 (50.8, 68.6) 65.0 (60.4, 69.9) 0.120 63.7 (54.4, 68.6) 66.8 (60.3, 71.9) 0.031

Mitral E/A 1.98 (1.52, 2.30) 1.61 (1.35, 1.82) 0.001 1.79 (1.49, 2.15) 1.55 (1.35, 1.90) 0.066 1.74 (1.46, 2.16) 1.53 (1.33, 1.85) 0.010

RV FAC,% 45.2 (43.1, 48.5) 39.6 (37.2, 43.6) <0.001 42.9 (41.7, 46.3) 42.0 (41.7, 46.3) 0.021 46.2 (42.7, 48.2) 42.2 (37.9, 45.1) <0.001

Tricuspid TAM,

mm

18.4 (16.7, 19.5) 15.9 (14.6, 16.5) <0.001 17.7 (16.8, 19.6) 16.2 (15.3, 17.5) <0.001 18.1 (17.2, 18.9) 16.2 (14.5, 17.0) <0.001

RVGLS, % 20.8 ± 1.7 19.5 ± 3.0 0.087 21.0 ± 2.0 19.2 ± 2.5 0.018 20.8 ± 2.1 18.5 ± 2.6 <

0.001

Tricuspid E/A 2.22 (1.67, 2.46) 2.00 (1.42, 2.71)� 0.335 1.83 (1.52, 2.55) 1.71 (1.35, 2.25) 0.241 1.89 (1.67, 2.15) 1.68 (1.42, 1.97) 0.035

TRV, m/s 2.10 (1.90, 2.37) 2.34 (2.18, 2.52) 0.005 2.08 (1.87, 2.34) 2.48 (2.24, 2.76) <0.001 2.18 (2.02, 2.34) 2.43 (2.31, 2.97) 0.001

sPAP, mmHg 27.7 (24.5, 32.5) 32.0 (28.9, 35.3) 0.030 27.2 (24.0, 31.9) 34.5 (29.9, 40.4) <

0.001

29.1 (26.4, 31.9) 33.7 (31.3, 45.2) 0.016

PAAT, ms 128.5 (122.5,

143.4)

112.0 (102.6,

123.7)

<0.001 130.7 (115.4,

144.2)

106.1 (99.9,

123.0)

<

0.001

134.2 (119.9,

140.6)

92.64 (86.8,

111.3)

<

0.001

mPAP, mmHg 19.9 (14.5, 22.6) 23.0 (20.1, 26.3)� 0.001 16.9 (14.1, 22.3) 24.2 (19.9, 28.1) 0.001 18.6 (15.7, 21.0) 32.6 (23.4, 36.2) <

0.001

RA parameters

RAVmax, ml/m2 19.0 (15.3, 21.4) 17.0 (13.7, 22.9) 0.639 19.2 (14.7, 22.5) 16.6 (13.2, 20.3) 0.062 17.2 (14.6, 21.1) 16.5 (14.5, 18.8) 0.626

RAVpre-A, ml/m2 13.4 ± 4.6 13.37 ± 5.6 0.966 13.4 ± 4.3 11.9 ± 4.6 0.193 12.3 ± 5.0 12.6 ± 4.9 0.741

RAVmin, ml/m2 8.0 (5.9, 9.3) 8.7 (6.3, 11.0) 0.351 7.1 (5.3, 8.7) 7.3 (5.1, 9.8) 0.779 6.7 (4.3, 9.5) 7.7 (5.8, 10.5) 0.025

RAEFtot, % 58.0 ± 9.9 53.4 ± 11.5 0.037 60.6 ± 11.1 54.3 ± 12.3 0.021 59.8 ± 13.7 53.7 ± 13.8 0.018

RAEFpass, % 30.0 ± 11.9 28.1 ± 11.7 0.431 30.1 ± 13.7 30.0 ± 13.7 0.721 30.4 ± 14.0 28.2 ± 14.8 0.511

RAEFact, % 40.2 (27.2, 48.2) 36.4 (24.7, 43.8) 0.276 41.4 (31.4, 52.0) 34.3 (28.0, 43.2) 0.036 42.9 (30.6, 54.9) 36.2 (25.5, 41.8) 0.033

RAS, % 43.2 ± 11.0 35.5 ± 11.4 0.010 44.4 ± 10.9 35.5 ± 11.4 <0.001 44.0 ± 9.7 35.6 ± 9.2 <0.001

Data are expressed as mean ± standard deviation or median (25th to 75th quartile). Bold values indicate statistically significant. �p for trend <0.05. RA, right atrium;

BMI, body mass index; HR, heart rate; SpO2, arterial pulse oxygen saturation; SBP, systolic blood pressure; DBP, diastolic blood pressure; LVEF, left ventricle ejection

fraction; E/A, ratio of peak early to late diastolic annular inflow velocity; RV, right ventricle; FAC, fractional area change; TAM, tricuspid annular motion; GLS, global

longitudinal strain; PAAT, pulmonary artery systolic wave acceleration time; mPAP, mean pulmonary arterial pressure; TRV, tricuspid regurgitation velocity; sPAP,

systolic pulmonary arterial pressure; Vmax, maximal volume index; Vpre-A, pre-systolic volume index; Vmin, minimal volume index; EFtot, total emptying fraction;

EFpass, passive emptying fraction; EFact, active emptying fraction; RAS, right atrial strain during the reservoir phase.

https://doi.org/10.1371/journal.pone.0247107.t002
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associated with SD-TPS (%) (β = -0.73 and β = 0.12, respectively) (Table 3). Fig 4 illustrates the

regressions of RA SD-TPS (%) with mPAP (r = 0.37, p<0.001) and tricuspid E/A (r = -0.21,

p = 0.038).

Association between acute mountain sickness and atrial dyssynchrony. The incidence

of acute mountain sickness in subjects according to tertiles of RA SD-TPS (%) and interatrial

dyssynchrony were presented in S1 and S2 Tables, respectively. There were no significant dif-

ferences in Lake Louise score and the incidences of acute mountain sickness and its related

symptoms (headache, gastrointestinal symptoms, fatigue and dizziness) among all groups

according to RA SD-TPS (%) or interatrial dyssynchrony Grade.

Reproducibility

The intra-class correlation coefficients of indexes of RA function and dyssynchrony for the

intra- and inter-observer variations are presented in Table 4. All measurements showed excel-

lent or good reproducibility.

Fig 3. The interaction among right atrial dyssynchrony and other functions under high altitude exposure. Subjects

were graded according to tertile of SD-TPS (%) value at high altitude. �p<0.05; ��p<0.01. RV, right ventricle; GLS,

global longitudinal strain; E/A, ratio of peak early to late diastolic annular inflow velocity; Vmin, minimal volume

index; EFact, active emptying fraction; HR, heart rate; mPAP, mean pulmonary arterial pressure. Other abbreviations

as in Fig 1.

https://doi.org/10.1371/journal.pone.0247107.g003
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Table 3. Univariate and multivariate linear regression analyses of clinical and echocardiographic parameters for SD-TPS (%) at high altitude.

Variables Univariate Stepwise Multivariate

β (95%CI) P-value β (95%CI) P-value

Age, yrs -0.09 (-0.25, 0.08) 0.293 Not selected

BMI, kg/m2 -0.32 (-0.58, -0.06) 0.017 -

SpO2, % -0.01 (-0.18, 0.16) 0.939 Not selected

SBP, mmHg -0.03 (-0.07, 0.02) 0.218 Not selected

DBP, mmHg 0.00 (-0.05, 0.05) 0.926 Not selected

HR, bpm 0.04 (-0.00, 0.08) 0.081 -

LVEF, % 0.03 (-0.02, 0.09) 0.250 Not selected

Mitral E/A -0.59 (-1.60, 0.42) 0.248 Not selected

RV FAC, % 0.06 (-0.07, 0.18) 0.376 Not selected

Tricuspid TAM, mm -0.12 (-0.36, 0.13) 0.350 Not selected

RVGLS, % -0.17 (-0.36, 0.01) 0.065 -

Tricuspid E/A -0.73 (-1.42, -0.04) 0.038 -0.73 (-1.37, -0.09) 0.025

mPAP, mmHg 0.12 (0.05, 0.16) <0.001 0.12 (0.07, 0.17) <0.001

sPAP, mmHg 0.05 (-0.02, 0.12) 0.143 Not selected

RAVmax, ml/m2 0.00 (-0.08, 0.09) 0.898 Not selected

RAVpre-A, ml/m2 0.01 (-0.08, 0.11) 0.780 Not selected

RAVmin, ml/m2 0.00 (-0.13, 0.12) 0.954 Not selected

RAEFtot, % 0.00 (-0.03, 0.04) 0.937 Not selected

RAEFpass, % -0.01 (-0.04, 0.02) 0.497 Not selected

RAEFact, % 0.01 (-0.02, 0.05) 0.469 Not selected

RAS, % -0.01 (-0.05, 0.03) 0.632 Not selected

Data are expressed as median (25th to 75th quartile). Bold values indicate statistically significant. Abbreviations as in Table 2.

https://doi.org/10.1371/journal.pone.0247107.t003

Fig 4. Regressions of right atrial SD-TPS (%) with mean pulmonary arterial pressure and tricuspid E/A. Abbreviations as in Figs 1 and 3.

https://doi.org/10.1371/journal.pone.0247107.g004
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Discussion

In this retrospective study, we utilized a new method to explore the effect of high altitude expo-

sure on RA mechanical synchrony by 2D speckle-tracking echocardiography. We found that

high altitude exposure led to the increase of RA SD-TPS (%), which was independently associ-

ated with mPAP. Additionally, subjects with higher RA SD-TPS (%) at high altitude showed

lower RVGLS, tricuspid E/A and RAEFact. For the first time, our findings indicated that high

altitude exposure induced RA dyssynchrony, which was linked with decreased RA contractile

function and RV performance.

In this study, 2D volumetric measurement and strain analysis were both used to assess RA

function, however speckle-tracking echocardiography is less load-dependent than volume

analysis and can represent regional myocardial function, especially the regional heterogeneity

of myocardial motion, which provides a feasible tool to assess RA dyssynchrony at high alti-

tude [16,21,34,35]. RA dyssynchrony can be analyzed by determining standard deviation of

the time to the peak strain and peak strain rate during RA reservoir, conduit and contractile

phases [7,20]. SD-TPS (%) was commonly used and has been recognized as a valuable index

among above-mentioned measurements of RA dyssynchrony [7,9,36–38]. Likewise, in this

study, significant increase was observed in SD-TPS (%) after high altitude exposure, while no

changes in other indexes as percentage.

Previous studies have reported the increase of RA dyssynchrony and its predictive value in

atrial fibrillation and heart failure patients [20,39]. Intriguingly, high altitude exposure-

induced RA dyssynchrony was observed in this study. Pezzuto, Forton [40] reported that RV

dyssynchrony increased after exposed to monitored 4500 m, in consequence of hypoxia. Hyp-

oxia may be the initial determinant on RA dyssynchrony following high altitude exposure. Pre-

vious studies demonstrated that increased pressure, regional wall stress heterogeneity and

delays in electrical depolarization could account for myocardial dyssynchrony [11,40,41]. Our

results consistently clarified that hypoxia-induced borderline pulmonary hypertension caused

pressure overload to RA, and led to RA dyssynchrony. However, high altitude exposure

induced pronounced RA intra-atrial dyssynchrony, but didn’t prolong interatrial dyssyn-

chrony. Additionally, we observed that higher HR was related to higher RA dyssynchrony at

high altitude, which implied that sympathetic activation may involve in high altitude expo-

sure-induced RA dyssynchrony.

RA function has three phases, serving as a reservoir during systole, as a conduit during

early diastole, and as a booster pump during late diastole. In the present study, subjects with

higher RA dyssynchrony showed decreased RA contractile function (assessed by RAEFact)

Table 4. Intra-class correlation coefficient analysis of intra- and inter-observer variations for right atrial function and dyssynchrony parameters.

Variables Intra-observer variation Inter-observer variation

ICC 95%CI P-value ICC 95%CI P-value

RA maximal volume, ml 0.90 0.76–0.96 <0.001 0.90 0.75–0.96 <0.001

RA pre-systolic volume, ml 0.80 0.51–0.92 <0.001 0.82 0.55–0.93 <0.001

RA minimal volume, ml 0.82 0.56–0.93 <0.001 0.83 0.58–0.93 <0.001

RAS, % 0.89 0.71–0.96 <0.001 0.80 0.51–0.92 <0.001

SD-TPS, ms 0.85 0.62–0.94 <0.001 0.77 0.42–0.91 0.001

SD-TPSRs, ms 0.81 0.54–0.93 <0.001 0.80 0.51–0.92 <0.001

SD-TPSRe, ms 0.89 0.72–0.96 <0.001 0.86 0.64–0.94 <0.001

SD-TPSRa, ms 0.82 0.54–0.93 <0.001 0.82 0.52–0.93 <0.001

Abbreviations as in Tables 1 and 2.

https://doi.org/10.1371/journal.pone.0247107.t004
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after high altitude exposure. However, no differences of RA reservoir and conduit function

were found in subjects with different magnitude of RA dyssynchrony. Indeed, atrial reservoir

and conduit function were considered to be regulated by RA and RV relaxation and compli-

ance [16]. Badagliacca, Poscia [11] indicated that RV dyssynchrony was related to RV systolic

dysfunction in patients with pulmonary arterial hypertension, due to a maladaptive switch of

myosin heavy chain. Similarly, previous immunofluorescence studies have observed a transi-

tion from α- to β-myosin heavy chain with lower adenosine triphosphatase activity in pres-

sure-overloaded atrium [42,43]. Likewise, the mechanism may involve in the high altitude-

induced RA dyssynchrony and subsequently decreased RA contractile function, which need to

be clarified at protein expression level.

It must be acknowledged that interplay exists among atrial function and ventricular perfor-

mance throughout the cardiac cycle [44]. RA effective contraction participates in the final

component of RV diastole and contributes approximately 15%-30% to RV stroke volume [45].

Accordingly, it is easy to understand that high altitude exposure causes pronounced RA dys-

synchrony and atrial inhomogeneous contraction, which may ultimately alter RV filling pat-

tern (assessed by tricuspid E/A). Moreover, RVGLS strain significantly deceased in subjects

with higher RA dyssynchrony. It is not unexpected that decreased RV longitudinal systolic

function causes excessive residual blood and increased pressure during diastole, which may

conduct to RA and ultimately aggravate RA dyssynchrony. Our results suggested that RA dys-

synchrony may interact with RV systolic as well as diastolic performance.

Our study may provide a novel insight into cardiac response to high altitude, but the clinical

implication remains to be clarified in the further study. Hypoxia, alkalosis and pulmonary

hypertension may predispose to atrial arrhythmia at high altitude, but evidence is limited due

to the difficulty in the field study at high altitude [1,4]. Increasing studies have demonstrated

that mechanical dyssynchrony was directly linked with arrhythmia [9,37]. In the present

study, we observed that high altitude exposure led to pronounced RA mechanical dyssyn-

chrony, which probably provide a possible atrial mechanical mechanism underlying high alti-

tude-induced arrhythmia. Additionally, it is well established that high altitude exposure is

accompanied by decreased exercise capacity [2]. Indeed, Liu, Wang [46] that RA dysfunction

was a risk factor for worse exercise capacity in patients with pulmonary hypertension. Accord-

ingly, our findings might imply a relationship between increased RA dyssynchrony and

decreased exercise capacity at high altitude.

However, there are still several limitations in the present study. First, the data is collected

from healthy young men. Thus, larger population with wider scale of age, different genders

and cardiovascular diseases should be included in further study. Second, as limited studies

have explored RA dyssynchrony in healthy subjects or patients using 2D speckle-tracking

echocardiography, no reference value can be used to make a comparison. Third, 3D speckle-

tracking was not included in this study since it is not widely used and time-consuming.

Although 2D speckle-tracking echocardiography to assess atrial function overcomes the vol-

ume- and angle-dependency of traditional echocardiography, 3D speckle-tracking is still

needed in the further study to clarify the results. Fourth, invasive cardiac catheterization and

in vitro experiment should be added to validate the results and further illustrate the mecha-

nism. Finally, longer follow-up is needed to clarify the clinical relevance of our results.

Conclusion

This study for the first time investigated the effect of high altitude exposure on RA mechanical

dyssynchrony in healthy young men. The result showed that high altitude exposure causes RA

dyssynchrony, which may be secondary to increased pulmonary arterial pressure.

PLOS ONE Right atrial dyssynchrony at high altitude

PLOS ONE | https://doi.org/10.1371/journal.pone.0247107 February 18, 2021 11 / 15

https://doi.org/10.1371/journal.pone.0247107


Additionally, subjects with higher RA dyssynchrony presented worse RA contractile function

and RV performance. Our findings perhaps can provide a potential atrial substrate for the

high altitude-induced arrhythmia. However, the pathophysiology and the clinical relevance

remain to be explored in further study.
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