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Abstract
Purpose In the era of precision medicine, patient-specific dose calculation using Monte Carlo (MC) simulations is deemed the
gold standard technique for risk-benefit analysis of radiation hazards and correlation with patient outcome. Hence, we propose a
novel method to perform whole-body personalized organ-level dosimetry taking into account the heterogeneity of activity
distribution, non-uniformity of surrounding medium, and patient-specific anatomy using deep learning algorithms.
Methods We extended the voxel-scale MIRD approach from single S-value kernel to specific S-value kernels corresponding to
patient-specific anatomy to construct 3D dose maps using hybrid emission/transmission image sets. In this context, we employed
a Deep Neural Network (DNN) to predict the distribution of deposited energy, representing specific S-values, from a single
source in the center of a 3D kernel composed of human body geometry. The training dataset consists of density maps obtained
from CT images and the reference voxelwise S-values generated using Monte Carlo simulations. Accordingly, specific S-value
kernels are inferred from the trained model and whole-body dose maps constructed in a manner analogous to the voxel-based
MIRD formalism, i.e., convolving specific voxel S-values with the activity map. The dose map predicted using the DNN was
compared with the reference generated using MC simulations and two MIRD-based methods, including Single and Multiple S-
Values (SSV and MSV) and Olinda/EXM software package.
Results The predicted specific voxel S-value kernels exhibited good agreement with the MC-based kernels serving as reference
with a mean relative absolute error (MRAE) of 4.5 ± 1.8 (%). Bland and Altman analysis showed the lowest dose bias (2.6%) and
smallest variance (CI: − 6.6, + 1.3) for DNN. TheMRAE of estimated absorbed dose between DNN,MSV, and SSVwith respect
to the MC simulation reference were 2.6%, 3%, and 49%, respectively. In organ-level dosimetry, the MRAE between the
proposed method and MSV, SSV, and Olinda/EXM were 5.1%, 21.8%, and 23.5%, respectively.
Conclusion The proposed DNN-based WB internal dosimetry exhibited comparable performance to the direct Monte Carlo
approach while overcoming the limitations of conventional dosimetry techniques in nuclear medicine.
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Introduction

Personalized medicine is a new paradigm aiming at improving
healthcare while lowering the costs, thus offering great poten-
tial for patient-specific diagnosis and optimal treatment [1].
Precision medicine aims at shifting from the current one-size
fits-all strategy to an individualized model. Dose calculation
in nuclear medicine is tightly linked to this approach [2]. In
this framework, personalized dose estimation is crucial for
optimizing clinical procedures while minimizing the risk of
radiation-induced toxicity [3].

In current clinical practice, patient dose monitoring is com-
monly based on simplified models, such as those derived by
the Medical Internal Radiation Dose Committee (MIRD) for-
malism [4]. The traditional MIRD technique is based on
organ-level dosimetry using time-integrated activity and
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radionuclide S-values, which represents the mean absorbed
dose to a target organ per radioactive decay in a source organ.
These quantitative parameters are modeled based on a refer-
ence computational model. This approach assumes a uniform
activity distribution within each organ and ignores individual
anatomical characteristics. To cope with inter-subject variabil-
ity of anatomical features, the organ-level dosimetry approach
was later extended by developing habitus-specific and patient-
specific computational models [5–9]. Furthermore, voxel-
based dosimetry techniques have been developed, including
dose point kernel [10] and voxel S-value (VSV) [4] ap-
proaches. Unlike probabilistic methods, dose point kernel is
a deterministic approach that calculates the radial absorbed
dose distribution around an isotropic point source in a homo-
geneous water medium [11, 12]. Voxel-level MIRD schema is
defined as a 3D voxel matrix representing the mean absorbed
dose to a target voxel per unit activity in a source voxel em-
bedded in an infinite homogeneous medium using Monte
Carlo (MC) simulations. However, voxel-based dose calcula-
tion should in principle take into account non-uniform activity
distribution of the radiotracer, the heterogeneity of the medi-
um consisting of different material compositions, e.g., lung,
soft tissue, and bone, is ignored. In this regard, direct MC
simulations, deemed the gold standard for implementation of
a reliable dose calculation framework in clinical setting, en-
able accurate estimation of whole-body dose map [13, 14].
Though MC simulation takes into account the non-uniform
activity distribution and heterogeneity of patient-specific ana-
tomical features, it suffers from expensive computational bur-
den. A number of previous works reported on the use of MC
simulations in the context of personalized dosimetry in nucle-
ar medicine [15–17]. Hybrid PET/CT or SPECT/CT images
are fed into the MC simulator to model energy deposition of
radiation emitted from the injected radiotracer considering the
patient-specific anatomy and voxelwise activity distribution
obtained from CT and PET/SPECT images, respectively.
Several works focused on reaching an optimal compromise
between accurate voxel-scale dosimetry and the computation-
al burden [18, 19]. Khazaee Moghadam et al. proposed a
tissue-specific dose point kernel approach implemented on a
stylized phantom [20]. Lee et al. extended further this idea by
applying this methodology on real patient data [21]. They
considered multiple material densities for internal dose calcu-
lation by providing multiple voxelwise S-value kernels for
various media with different densities according to human
body tissues. This enabled to provide multiple voxel-scale
dose maps in an analogous manner to the MIRD calculations.
Consequently, each density-specific dose map was multiplied
by the corresponding binary mask of the given density regions
obtained from CT-based segmentation, thus enabling the cal-
culation of the final dose map by superposition of the multiple
density-specific dose maps. This method improves the accu-
racy of dosimetry calculations compared with the single voxel

S-value approach, but relies on a basic assumption that energy
depositions in each voxel arise mainly from self-absorption.
This simplification introduces an extra error on the estimated
dose distribution, particularly in the boundary of tissues with
different densities.

Accurate patient-specific dosimetry is becoming a must
taking advantage of advances in targeted radionuclide therapy
and theranostic imaging [2]. In personalized dosimetry, MC
simulation is still considered the most accurate technique and
the de facto reference standard for research application. Yet,
this approach is not employed in routine clinical procedures
owing to the heavy computational burden. Deep learning
emerged as a promising technique in the area of computer
vision and image processing, exhibiting superior performance
over conventional state-of-the-art methods in medical image
analysis in PET and SPECT imaging, including attenuation
and scatter correction [22–24], low-count image reconstruc-
tion [25–27], and automated image segmentation [9, 28].
More recently, deep learning approaches were employed for
radiation dose estimation. Mardani et al. introduced a dose
distribution prediction method in external beam radiation ther-
apy using a multi-layer convolutional auto-encoder architec-
ture [29]. Nguyen et al. used a U-Net architecture for clinical
treatment plan optimization to improve the treatment plan
quality and uniformity while reducing the computational time
[30].Ma et al. implemented a deep learningmethod to provide
isodose features for modulated arc therapy treatment plans
[31]. Kearney et al. proposed a 3D fully convolutional dose
prediction algorithm for prostate stereotactic body radiothera-
py patients [32].

For effective training of a deep learning algorithm, well-
defined ground truth is an essential ingredient [33]. In the
abovementioned seminal works, the ground truth was obtain-
ed from a substitute of MC dosimetry for the training of the
networks that may bear some inaccuracies owing to the sim-
plifications in physical models [34]. To address this limitation,
Lee et al. used a U-Net deep neural architecture for internal
dosimetry where the training ground truths were obtained
from direct MC simulation [35]. They fed CT images,
representing patient structural features, and static PET images,
representing the activity distribution, into the network as input
to predict a 3D dose map rate. Gotz et al. set out to estimate
dose maps of patients who received 177Lu-PSMA using a
modified U-Net network [36]. In this work, the training
datasets consisted of a two-channel input, including CT im-
ages (i.e., patient-specific density map), MIRD-based voxel-
scale dose map obtained from SPECT images, and the ground
truth obtained from direct MC simulations. In these two
works, the deep learning networks were trained using
whole-body dose maps obtained from direct MC simulations.
However, generation of a comprehensive training dataset in
this manner would be challenging owing to the prohibitive
computational burden ofMC calculations. Hence, these works

671Eur J Nucl Med Mol Imaging  (2021) 48:670–682



either relied on a limited number of training samples or made
some approximations that could affect the accuracy of the
proposed models. Lee et al. reported that the time required
for a single full whole-body MC simulation exceeds
4704.03 h using a CPU with four cores and 16 GB RAM
[35]. However, GPU-basedMC simulations have been recent-
ly proposed to overcome this challenge [37–39]. In this re-
gard, we proposed a novel methodology to estimate whole-
body dose distributions using a deep convolutional neural
network, wherein unlike previous studies, generation of train-
ing datasets is no longer a bottleneck. The proposed dose map
generation framework consists of two steps. In the first step, a
deep neural network (DNN) is employed to predict dose dis-
tribution kernels, wherein the training dataset consists of only
density maps obtained from CT images as input and the cor-
responding dose distribution kernel for a point source with
unit activity obtained from MC simulations as output. In this
approach, the simulation time for generating a ground truth
(dose distribution map around the central voxel source) cov-
ering the annihilation photon mean free path is about 8000
times less than that required for whole-body MC simulations.
This strategy makes it possible to provide a diverse and ex-
tensive training dataset. In addition, this approach would re-
duce the complexity of the training process as the DNNmodel
should learn simpler features corresponding to a point source
distribution compared with direct translation from hybrid
density/activity maps to absorbed dose map. In the second
step, specific dose distribution kernels predicted by the trained
model are convolved with the activity map (here time-
integrated activity from dynamic PET images) to generate
the final whole-body dose map, in a manner analogous to
the voxel-based MIRD formalism.

Materials and methods

Method description

Direct MC simulations, wherein the 3D hybrid PET/CT or
SPECT/CT images are fed into a simulator to produce the
whole-body dose distribution, are regarded as the gold stan-
dard approach. The computational burden of direct MC sim-
ulations for building a comprehensive and large training
dataset is prohibitive. Hence, we split the direct process into
two main parts as schematically illustrated in Fig. 1. The idea
is inspired from the MIRD-based voxel-scale dosimetry for-
malism [4] where a single voxel S-value kernel is convolved
with the activity map (e.g., PET images) to produce a whole-
body dose map (Eq. 1). In the present study, we extended this
idea through estimation of the specific kernels according to
the density map obtained from patient’s CT images.
Analogous to the MIRD-based voxel-scale dose kernel, we
generate specific kernels, i.e., S(voxelk← voxelh) in Eq. 1,

in such a way that the central voxel contains the unit activity
of given a radiotracer, where the surrounding medium is de-
fined based on the patient density map.

The principle of the reciprocity theorem states the revers-
ibility or bilateralism of the interactions upon location inter-
change of the source and target in a uniform isotropic model.
Loevinger introduced this theorem to dose calculation prob-
lems in a uniform homogenous medium [40]. Cristy reported
that the reciprocity theory is warranted in heterogeneous com-
putational phantoms for photons [41]. We extended this the-
ory to heterogeneous media by applying a source to target
correction factor of the energy-absorption coefficient ratio
[42]. Since the deposited energy in each voxel depends on
the energy fluence multiplied by the mass energy-absorption
coefficient of the medium [43], we modified the conditions of
location interchange of source and target tacking into account
the ratio of the energy-absorption coefficient of target voxel to
the source voxel. The reciprocal energy fluence is assumed to
be approximately equal for annihilation photons with domi-
nant Compton scattering interaction.

To generate the specific kernels, the distribution of depos-
ited energy around the source voxel was calculated using MC
simulations. The size of the kernel depends on the type of
radiotracer, i.e., decay mode and energy spectrum. In this
work, we defined the size of kernels as 19.2 × 19.2 ×
19.2 cm3 where the mean free path of annihilation photons
in human tissue has been reported to be about 7 cm [44].

D voxelkð Þ ¼ ∑
N

h¼0

eAvoxelh :S voxelk←voxelhð Þ ð1Þ

In the first step, we employed a DNN to predict the specific
energy deposition kernel when the source voxel is located in
the center of the kernel (Fig. 1). The input data for the training
is 3D volume density maps while the corresponding output is
3D volume dose map obtained from MC simulations. To pre-
pare the input dataset for training, single voxels were random-
ly sampled from whole-body CT images and the surrounding
volumes (19.2 × 19.2 × 19.2 cm3) were extracted into 64 ×
64 × 64 matrices to generate the input samples. Given the
input matrices, the MC simulator was employed to produce
the dose distribution kernel considering a unit activity at the
center of eachmatrix. In other words, the training of the model
was performed for single-point sources located in various po-
sitions within the density volume map, i.e., whole-body CT
images. Hence, to produce a comprehensive training dataset
covering different anatomical sites, we randomly sampled
voxels from different whole-body CT images and the sur-
rounding volumes were extracted to generate the input sam-
ples. In the second step, the whole-body dose map was calcu-
lated by voxelwise convolution of the specific kernels with the
activity map (Eq. 1). Hence, we inferred the specific dose
distribution kernel for each source voxel, i.e., S(voxelk←
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voxelh), using our trained neural network model. We estimat-
ed the whole-body dose map in an analogous way to the
MIRD voxel formalism, which convolves a single S-value
kernel with each voxel in the activity map, yet using specific
S-values kernel for each voxel.

Deep neural network architecture

In this work, the ResNET [45] architecture implemented on
TensorFlow platform, composed of 20 convolutional layers
with dilation convolution operations within different levels
of feature extraction, was utilized. The dilation factor supports
the expansion of the receptive field-of-viewwithout resolution
loss by increasing the space between original kernel elements.
For low-level feature extraction, a dilation factor of zero
was used within the first seven layers, a dilation factor
of two within the second seven layers for medium-level
feature extraction, and a dilation factor of four within
the last six layers for high-level feature extraction.
Leaky rectified linear unit (LReLU) was used as activa-
tion function. The ResNET architecture benefits from 9
residual blocks, which results in a large number of re-
ceptive fields and improves the process of feature ex-
traction and network convergence (Fig. 2).

For the training of the model, pairs of CT density images
and deposited energy kernels were considered input/target,
respectively. The ResNET model with a 3D spatial window
equal to 3 × 3 × 3 voxels was used. The following setting was
used for the training of the network: learning rate = 0.001,
sample per volume = 1, optimizer = Adam, and decay =
0.0001. The optimization of the network was carried out based
on the L2 loss function.

Data preparation

To prepare the training dataset, density maps were extracted
from CT images. CT Hounsfield units (HUs) have a strong
correlation with electron density, and consequently with the
mass density of the medium.We converted HU values to mass
density using the methodology proposed by Schneider et al.
which established linear multi-regression models for the seg-
mentation of CT images into different tissue densities [46].
We extracted density maps consisting of 13 tissue densities,
including air, lung, fat, soft tissue, and bone where values
higher than 100 HUs were divided into eight discrete density
values. Afterward, the whole-body density maps were
resampled to 3 mm voxel size in three dimensions. To build
the ground truth data, MC simulations served as standard of

Fig. 1 Schematic representation
of the voxel-scale dosimetry pro-
cedure. The top and bottom
panels show the deep learning-
based specific S-value kernel
prediction and MIRD-based vox-
el dosimetry formalism
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reference. The MCNP transport code [47] was employed for
the generation of energy deposition kernels, i.e., specific voxel
S-values. To this end, one voxel was randomly sampled from
the whole-body density maps and a 3Dmatrix of 64 × 64 × 64
voxels around the central voxel was extracted. This matrix,
representing a heterogeneous medium of patients’ anatomical
structures, was directly imported to the MCNP code. The ma-
terial compositions of 13 segmented tissues were defined
based on Schneider et al. [46]. The central voxels of the ex-
tracted 3D matrix were defined as source location with uni-
form distribution of fluorodeoxyglucose (18F-FDG). Since the
resolution of the activity distribution (here PET images with
an average resolution of 3 mm) determines the spatial accura-
cy of dosimetry estimations, we adopted the same resolution
for the calculation of dose maps. The energy spectrum of
emitted positrons was taken from [48], where the positron
energy spectrum follows a Fermi distribution with an average
of 242.8 KeV andmaximum energy of 633.5 KeV. The output
of MC simulations consists of 3D kernels (64 × 64 × 64) with
3 mm resolution using energy deposition mesh tally in unit of
MeV/cm3 per particle. Three million particles were tracked to
reach a statistical uncertainty less than 4% in the border voxels
at about 10 cm away from the central voxel.

Clinical studies

To provide whole-body dosemaps from an activitymap based
on Eq. 1, a specific S-value kernel is required for each single
voxel of the activity map. Whole-body unenhanced CT im-
ages of 24 patients acquired on Siemens Definition Edge sys-
tem were used for the training of the model (generation of the
training dataset). The study protocol was approved by Geneva
Ethics Committee and all patients provided written informed
consent. For evaluation of the model, hybrid PET/CT image
sets consisting of a low-dose CT scan and dynamic whole-
body PET scans were employed. The hybrid PET/CT image
sets were acquired on a Siemens Biograph mCT scanner using
a dynamic scanning protocol at 13-time points after intrave-
nous injection of 18F-FDG [49, 50]. PET scanning was

conducted using continuous bed motion scan at ever increas-
ing time intervals. PET image reconstruction was performed
using 3D iterative ordinary Poisson OSEM (3D-OP-OSEM)
algorithm with a voxel size of 4.07 × 4.07 × 3 mm.

Dose map calculation

To estimate whole-body voxelwise absorbed dose, the trained
model was fed with patient-specific density maps to generate
the specific dose distribution kernels, S(voxelk← voxelh), for
each single voxel (i.e., voxelk) in the PET image, wherein the
corresponding voxel in CT images and its surrounding 64 ×
64 × 64 voxels were considered the input density map. The
predicted specific S-values were corrected by element-wise
multiplication of the ratio of the energy-absorption coefficient
of the target voxel to the source voxel obtained from [51].
Lastly, specific S-values underwent voxelwise convolution
with the cumulated activitymap to create the whole-body dose
map (Eq. 1). The cumulated activity map was calculated by
analytical integration of voxelwise time activity curves over
13-time points dynamic PET frames (Eq. 2).

eATotal ¼ ∑
13

i¼0
Ai þ Aiþ1ð Þ:Δti þ ∫

∞

T
A f e−λtdt ð2Þ

In Eq. 2, eATotal is the total number of disintegrations, Ai is
the activity concentration in the source organ obtained from
static images at the ith time frame, Af is the activity concen-
tration in the last time point of measurement, and λ is the
decay factor of the radionuclide. Bladder voiding schedules
were not taken into account. To conduct patient-specific
whole-body voxelwise dose estimation, the results were con-
verted in Gy after multiplication by a correction factor of
0.9673 corresponding to the fraction of positron emission for
18F.

To evaluate the proposed method, the predicted absorbed
dose from the current model was compared against direct MC
dose estimation serving as standard of reference and different
MIRD-based approaches, including the OLINDA/EXM

Fig. 2 Schematic diagram of the ResNET architecture
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software (organ-scale MIRD formalism) [52], single voxel S-
value (SSV), and multiple voxel S-value (MSV). For organ-
level dosimetry, regions-of-interest were manually drawn on
CT images to delineate eight organs, namely the brain, heart,
kidneys, liver, lungs, spleen, bone, and bladder. Lesions iden-
tified on PET images were segmented using a fixed threshold
of 42% of SUVmax and manually edited to remove the back-
ground and include necrotic regions. The kinetic data required
by the Olinda/EXM software were calculated from the cumu-
lated activity using Eq. 2 and the masses of organs were mod-
ified based on organ masks defined from the segmentation of
CT images. SSV and MSV voxel-scale dosimetry was de-
signed based on the MIRD formalism (Eq. 1) where the voxel
S-value kernels were generated from MCNP code with the
same kernel size used in the previous step, i.e., 19.2 cm in
3D with 3 mm resolution. Ten million particles were simulat-
ed to build a 64 × 64 × 64 kernel in an infinite homogenous
medium considering a unit activity in the central voxel. In the
MSVmethod [21], the S-value kernels of four different media
consisting of soft tissue, lung, and two different densities of
bone (with different calcium contents) were simulated.

Quantitative analysis

Voxelwise mean absolute error (MAE), mean relative abso-
lute error (MRAE %), and root mean square error (RMSE)
were calculated between reference and predicted dose maps.

MAE ¼ 1

vxl
∑
vxl

v¼1
Imagepredicted vð Þ−Imageref vð Þ�� �� ð3Þ

MRAE %ð Þ ¼ 1

vxl
∑
vxl

v¼1

Imagepredicted

� �
v
− Imagerefð Þv

Imagerefð Þv

������
������

� 100% ð4Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

vxl
∑
vxl

v¼1
Imagepredicted ið Þ−Imageref ið Þ

� �2
s

ð5Þ

where Imagepredicted stands for the dose map generated by the
DNN and Imageref stands for the reference dosemap. vxl and v
denote the total number of voxels and voxel index,
respectively.

Results

Network validation

The total number of training dataset consisted of 12′100 pairs
of volumetric images of density maps and energy deposition
kernels extracted from 24 different CT image sets. The spe-
cific voxelwise S-value kernels, obtained from the DNN, were

in good agreement with the reference MC kernels. The axial
profiles plotted over reference and predicted voxelwise S-
value kernels in the lung region are shown in Fig. 3. The mean
relative voxelwise difference between the two profiles is about
3.3%. Figure 4 illustrates the comparison of predicted voxel S-
values (64 × 64 × 64) against MC simulations for the test case
in the lung region with MRAE, RMSE, and MAE of 4.5 ± 1.8
(%), (1.8 ± 0.53) × 10−5 (MeV/cm3), and (1.8 ± 0.71) × 10−6

(MeV/cm3), respectively. Furthermore, the voxelwise joint
histogram plot depicting the correlation between the predicted
kernels and MC simulations is presented, where a coefficient
of determination (R2) of 0.98 was achieved.

Analysis of dose distributions

To assess the impact of medium heterogeneity on dosimetry
results, a whole-body map of deposited energy was generated
for a patient-specific computational phantomwith unit activity
distribution using three different methods, including DNN,
MSV, and SSV. In this regard, calculation of patient-specific
absorbed dose map (step 2 in Fig. 1) involves filling the pa-
tient’s body contour with a unit activity distribution instead of
a time-integrated activity map obtained from a dynamic PET
series. Dose profiles over axial and coronal slices are illustrat-
ed in Fig. 5. It is expected that SSV in medium with densities
lower than water overestimates the deposited energy while
underestimating the deposited energy for higher density me-
dia. The deposited energies obtained from MSV confirm the
limitation of this method in the heterogeneous boundaries in
the spine area with an average density of about 1.12 g/cm3 (b-
b’ line profile).

The voxelwise dose maps predicted by DNN and estimated
using MIRD-based methods, including SSV and MSV, were
compared with the results obtained fromMC simulations for a
patient diagnosed with lung adenocarcinoma having a pulmo-
nary tumor of about 120 g. Figure 6 displays a representative
dose profile drawn on axial views comparing dose maps esti-
mated from DNN, MSV, and SSV against MC simulations.
To quantify the agreement between the different methods with
respect to the standard of reference, Bland-Altman plots com-
pare absorbed doses calculated using DNN, MSV, and SSV
with MC-based calculations. Figure 7 illustrates the bias and
variance with 95% confidence interval (CI) of these methods
against the standard of reference method, where the data
points reflect the percent difference of voxelwise dose values.
The results show that the lowest absorbed dose bias (2.6%)
and the smallest variance (CI: − 6.6%, + 1.3%) were achieved
by the DNN approach. In addition, the results obtained using
MSV demonstrated good agreement with the ground truth
(absorbed dose bias of 2.9% and variance of CI: − 6.8%, +
12.6%), except in some regions corresponding to heteroge-
neous boundaries. Conversely, SSV showed significant dis-
crepancy compared with the reference in the lung and bone
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regions. In the lung region illustrated in Fig. 8 (top left), four
VOIs over the heart, bone, lower lobes of the lungs, and pul-
monary tumor were drawn on fused PET/CT images to per-
form quantitative analysis of absorbed doses within the VOIs.
The mean absolute relative errors of estimated absorbed doses
between DNN, MSV, and SSV against MC simulations were
2.6 ± 0.94%, 3 ± 3.5%, and 49 ± 68%, respectively.

Whole-body voxelwise absorbed dose estimations
based on time-integrated activity and patient-specific
anatomy obtained from a dynamic PET/CT scan are
presented in Fig. 9 along with two profiles plotted over
axial and coronal views. Organ-level dosimetry was ex-
tracted from the dose maps obtained from DNN, MSV,
and SSV methods and compared against a commercial
organ-based MIRD dosimetry software, i.e., Olinda/
EXM (Fig. 10). In most organs, Olinda/EXM underesti-
mates the absorbed dose compared with other voxel-
based methods except for lung. The MRAE between
organ doses estimated by DNN method and MSV,
SSV, and Olinda/EXM were 5.1%, 21.8%, and 23.5%,
respectively.

Discussion

Despite the paramount importance of personalization in rou-
tine clinical setting, this paradigm is still in its infancy, and in
the literature, only a few studies have addressed this issue. In
this work, we propose a novel methodology to perform per-
sonalized radiation dose quantification, which is applicable in
various nuclear medicine procedures including diagnostic,
therapeutic, and theranostics. The current methodology has
been employed in PET imaging dosimetry using 18F-FDG
radiopharmaceutical, as the proof of concept. We developed
a MC-based whole-body voxel-level dosimetry approach to
enable studies that might provide answers to controversies on
whether voxel-based dosimetry is superior to the mean
absorbed dose approach [53]. Deep learning algorithms have
been deployed to solve complex real-life problems by trans-
lating the fundamental physics behind the problem into the
computer vision domain. In this work, we extended the core
idea of the voxel-level MIRD dosimetry formalism by using
DNN algorithms to predict medium-specific S-value kernels
instead of using a single kernel obtained from deposited

Fig. 4 Probability distribution of relative absolute error (RAE) for predicted voxelwise S-value kernels (64 × 64 × 64) with respect to MC simulations
(left). A.U. = arbitrary units. Voxelwise joint histogram plot depicting the correlation of predicted kernels with respect to MC simulations (right)

Fig. 3 a CT-based density map. b Reference kernel obtained from MC simulations. c Predicted kernel by the DNN model. Line profiles across the S-
value kernels (right panel) comparing kernels obtained from MC simulations of DNN model predictions
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energy in a homogenous soft tissue medium. The size of the
kernel was 19.2 cm where the distance from the central voxel
to the border is more than the mean free path of annihilation
photons (511KeV). In a kernel of 19.2 cm in three dimensions
representing voxelwise deposited energy in an infinite soft
tissue medium obtained from MC simulations, the ratio of
the deposited energy at the border of the kernel to the central
source voxel is about 10–4 order of magnitude confirming
adequate size of the kernel. Although increasing the size of

the kernel up to three mean free paths of annihilation photons
from the center of the kernel can improve the accuracy of dose
estimation, it would induce considerably longer simulation
time. The resolution of the kernel was defined based on regu-
lar axial resolution of PET images. The statistical uncertainty
of MC simulations was less than 4%. It is obvious from Fig. 2
that even in the border of the S-value kernels, the noise level
owing to statistical uncertainty is not significant. To bench-
mark our assumption for extending the reciprocal theory to

Fig. 6 Dose distributions and profiles (right) drawn on axial views comparing dose maps estimated using DNN, MSV, and SSV methods against MC
simulations

Fig. 5 Voxelwise deposited energy (MeV/cm3) in a patient-specific computational phantomwith unit activity distribution estimated byDNN,MSV, and
SSV
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heterogeneous medium, we simulated a simple geometry
consisting of soft tissue, bone, and lung materials and calcu-
lated the deposited energy when the source and target were
locally interchanged. The deposited energies calculated using
the reciprocal theory were within 5% of those calculated by
simulations.

The predicted 3D kernels exhibited good agreement with
MC simulations with a MRAE of 4.5%. The DNN predicted
S-value kernel underestimates the ground truth as illustrated in
the joint histogram analysis. The comparison of the summa-
tion of the predicted 3D kernel against the summation of MC
S-value kernel, as an index of total energy deposition in the
medium, showed an overall 4% underestimation. Since the
deposited energy follows an inverse square law with respect
to the distance from the source, S-value kernels bear a very
broad dynamic range of intensities. Hence, we implemented a
nonlinear intensity normalization using a sigmoid function
before feeding the kernels into the network. Owing to the
nonlinear behavior of the sigmoid function, increased predic-
tion errors were observed for certain intensity values after
applying inverse sigmoid function. However, the model per-
formed overall much better using nonlinear normalization.

Voxelwise dose comparison between the proposed ap-
proach and conventional techniques revealed the limitations
of SSV and MSV for internal dosimetry calculations. Since
media with higher densities inherently contain more photon
interactions, this causes higher energy deposition in the
voxels, and the summation on S-value kernels of higher den-
sity media has higher values compared with those with lower
densities. The profiles of absorbed dose showed that SSV
overestimated the deposited energy within media with a den-
sity lower than soft tissue (e.g., lung) (Fig. 5). This concept
applies to densities higher than soft tissue, such as bone where
SSV underestimated the deposited energy. None of the
abovementioned seminal works compared their results with
the MSV approach which showed a good agreement with
direct MC simulations. However, since this approach relies
on the assumption that most absorbed doses are contributed
by self-absorption, dose estimation errors are commonly ob-
served at the boundaries of heterogeneous media (see Fig. 7
where few data points significantly deviated from the
reference), which is not clinically important. Furthermore,
MSV underestimated or overestimated the absorbed dose in
VOIs with small size depending on the medium density.

Fig. 8 Anatomical region for
dose evaluation (top left), axial
view of delineated VOIs (bottom
left). Average absorbed doses in
defined VOIs obtained using
DNN, MSV, and SSV compared
with MC calculations (right)

Fig. 7 Bland and Altman plots of voxelwise dose differences in the lung
region calculated using DNN (left), MSV (middle), and SSV (right) with
respect to MC-based calculations serving as standard of reference. The

solid and dashed lines denote the mean and 95% CI of the dose value
differences, respectively
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Figures 5, 8, and 9 confirm that MSV overestimated the re-
sults with respect to the ground truth in bones. These errors
were predictable since the total deposited energy in the soft
tissue kernel is 54% higher than that in lung kernel with the
same size, while this difference is about − 34% between soft
tissue and cortical bone kernels. This limitation causes signif-
icant errors in absorbed dose estimation for small size lesions
in media with different mass densities, e.g., pulmonary nod-
ules, which is a critical issue in targeted radionuclide therapy.
In addition, application of the MSV method is restricted to
radiotracers with higher positron energy, since taking only
self-absorption into account does not fulfill the requirements
of accurate internal dosimetry. The Bland-Altman analysis
demonstrated the lower bias and variance of DNN against
MSV and SSV. The data points of the DNN method beyond
the CI correspond to voxels at the boundary of body contour
having no impact on dose calculation results. In addition, the
data points of MSV method beyond the CI belong to voxels
with heterogeneous boundaries, while for SSV, three separate
regions were formed corresponding to three different media.
In nuclear medicine practice, knowledge of organ-scale

absorbed dose according to the different radiosensitivity of
organs is required. Olinda/EXM is a commercial software
package enabling estimation of organ-level absorbed doses
according to the MIRD formalism. For the studied patient, it
was observed that organ-level dosimetry leads to underesti-
mation of absorbed dose compared with voxel-level ap-
proaches, except the lungs, as a result of ignoring the non-
uniformity of organ activity distribution and inter-subject var-
iability of anatomical characteristics (Fig. 10). Another limi-
tation of this software is the use of isolated sphere model for
tumor dosimetry. This latter assumes that tumors are spheres
with unit density and uniform activity distribution and there is
no information about the cross-dose from a tumor to other
organs or from other organs to a tumor. Because of this lim-
itation, in the case study with a pulmonary tumor, we deter-
mined the total number of disintegrations within the lung and
tumor as input kinetic parameters of the lung in Olinda/EXM,
which led to an overestimation of lung self-absorbed dose by
Olinda/EXM. Conversely, the underestimation of tumor dose
lies in the fact that only self-absorbed dose is considered in
Olinda, whereas cross-irradiation is ignored [54, 55].
Absorbed doses in most organs considered soft tissue were
almost similar when using MSV and SSV techniques. MSV
was able to correct the SSV errors in regions with a density
different from soft tissue.

The importance of accurate patient-specific voxel-scale in-
ternal dosimetry is rapidly growing thanks to recent advances
in targeted radionuclide therapy and theranostics. Considering
the advantages of voxel-level dosimetry in molecular radio-
therapy in terms of providing dose indices, such as dose vol-
ume histograms, we developed a methodology for voxelwise
dosimetry. The execution time for building a whole-body vox-
el dose map is less than 0.1% of the time required for direct
MC simulations. However, the computational time is longer
than that of MSV because it has one additional component for

Fig. 9 Voxelwise dose maps estimated using DNN, MSV, and SSV along with horizontal and vertical profiles drawn on the coronal view
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Fig. 10 Whole-body organ-level absorbed doses estimated using DNN,
MSV, SSV, and Olinda/EXM software
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inferring the specific S-value kernels. The total computation
time for the first step is about 0.7 h using NVIDIA GEFORCE
RTX 2080 Ti platform, whereas the required time for the
convolution process is about 0.1 h on a 10-core CPU and
32 GB RAM. The results presented in this work demonstrated
that MSV provides reasonable accuracy for dose estimation in
diagnostic nuclear medicine procedures. However, due to its
limitations, it introduces significant uncertainties which might
limit its adoption in therapeutic applications. The proposed
method is robust and accurate and suitable for direct transfer
to other molecular imaging modalities. Its advantages com-
pared with other deep learning-based dosimetry techniques
reported in the literature [35, 36] are that it does not require
whole-body dose maps for the training step. In addition, a
single-trained model for a given radionuclide could be
employed for all compounds labeled with this radionuclide.
Furthermore, the fundamental principles and/or underlying
physics of energy deposition have been considered in our
model. The latter depends directly on the energy-absorption
coefficient of the target voxel and the probability of Compton
scattering, which depends on the density of the medium.
Previous works did not explicitly incorporate in their model
Compton scattering and its contribution to the overall
absorbed dose. In this regard, deep learning algorithms were
employed to predict the absorbed dose map from the density/
activity maps using an end-to-end scheme without explicitly
modeling the underlying physical principles (Compton scat-
tering and cross-irradiation). More importantly, we developed
a simple network with a single input/output channel featuring
detailed modeling of the underlying physical interactions,
which enables efficient and versatile training of the algorithm
with minimal risk of overfitting. Owing to the simple but
efficient deep learning-based core of the proposed framework
(smaller number of trainable parameters compared with end-
to-end image translation), the model provides an accurate and
robust solution using a small training dataset.

This work bears inherently some limitations that should be
acknowledged, among them the long time required for
simulation-based generation of ground truth dose maps.
First, the size of S-value kernel is about one mean free path
of annihilation photons. Second, extending the reciprocal the-
ory to heterogeneous media is not straightforward. However,
we proved the efficacy of the concept using a simple simula-
tion study. Third, the effect of the limited size of the training
and validation dataset warrants further investigation.
However, a single patient study was presented as a proof of
concept. Unlike organ-level dosimetry that is inherently sub-
ject-sensitive, estimation of voxelwise dose distribution based
on the voxel-based MIRD formalism is not subject-sensitive
since it depends only on physical parameters (S-value kernel,
density map, and activity distribution). In this context, the
accuracy of the results depends only on how the S-value ker-
nels are determined. Let us consider that SSV performs well in

homogenous media, and the accuracy of this method is not
related to the type of medium or the activity distribution. The
accuracy of this method directly depends on the S-value ker-
nels applied for voxelwise dosimetry. Likewise, the accuracy
of the proposed methodology is linked to the accuracy of the
specific S-value kernels while it is not dependent on patient-
specific anatomy and activity distribution. Hence, in the first
step, we evaluated our S-value prediction voxel-by-voxel to
assess the accuracy of our approach (Fig. 4). Lastly, we only
provided a model for 18F, yet our method is extendable to all
types of radionuclides/radiotracers where transfer learning can
be exploited to obviate the need for regeneration of large
ground truth dataset for training the network. In particular,
for positron-emitting radiotracers with different positron ener-
gies, the generation of the ground truth should be repeated for
a kernel size equal to the range of positrons. Since the depos-
ited energy outside the positron range is contributed by the
interactions of annihilation photons, for any pure positron-
emitting radiotracer, the central part of S-value kernels should
be replaced with the center of simulated S-value kernels for
18F generated in the current study.

Conclusion

We proposed a unified methodology for patient-specific
voxelwise whole-body internal dosimetry using deep learning
algorithms. The comparison of the proposed approach with stan-
dard of reference MC simulations revealed very good accuracy
with a MRAE of 2.6%. Our technique also outperformed con-
ventional voxel-level and organ-level MIRD-based formalisms.
Future work will focus on exploiting the current methodology to
generate whole-body voxelwise dose maps in few minutes to
serve as Monte Carlo-based ground truth datasets. A network
with two-channel inputs consisting of density/activity map pairs
and one output channel corresponding to voxelwise dose maps
obtained from the previous step is then trained to develop a
model for straightforward prediction of whole-body dose maps
from hybrid images.
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