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Abstract

Infiltrative gliomas are the most common neoplasms arising in the brain, and remain largely

incurable despite decades of research. A subset of these gliomas contains mutations in

isocitrate dehydrogenase 1 (IDH1mut) or, less commonly, IDH2 (together called “IDHmut”).

These mutations alter cellular biochemistry, and IDHmut gliomas are generally less aggres-

sive than IDH wild-type (IDHwt) gliomas. Some preclinical studies and clinical trials have

suggested that various forms of a ketogenic diet (KD), characterized by low-carbohydrate

and high-fat content, may be beneficial in slowing glioma progression. However, adherence

to a strict KD is difficult, and not all studies have shown promising results. Furthermore, no

study has yet addressed whether IDHmut gliomas might be more sensitive to KD. The aim of

the current study was to compare the effects of a unrestricted, cycling KD (weekly alternat-

ing between KD and standard diet) in preclinical models of IDHwt versus IDHmut gliomas. In

vitro, simulating KD by treatment with the ketone body β-hydroxybutyrate had no effect on

the proliferation of patient-derived IDHwt or IDHmut glioma cells, either in low or normal glu-

cose conditions. Likewise, an unrestricted, cycling KD had no effect on the in vivo growth of

patient-derived IDHwt or IDHmut gliomas, even though the cycling KD did result in persis-

tently elevated circulating ketones. Furthermore, this KD conferred no survival benefit in

mice engrafted with Sleeping-Beauty transposase-engineered IDHmut or IDHwt glioma.

These data suggest that neither IDHwt nor IDHmut gliomas are particularly responsive to an

unrestricted, cycling form of KD.

Introduction

Diffusely infiltrative gliomas strike over 17,000 people in the United States per year [1].

The vast majority of these tumors recur and progress, despite advancements in surgery,
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chemotherapy, radiotherapy, and immunotherapy. In 20–39 year-olds, gliomas are the 2nd

most common cause of cancer death in men, and are the 5th most common cause in women

[1]. The most common type of primary brain cancer in adults is diffusely infiltrative glioma;

the most common subtype of infiltrative glioma, glioblastoma (GBM), is unfortunately also

the most lethal. Despite great advances in treating many other kinds of cancer, the median sur-

vival of GBM patients is still only 12–15 months after diagnosis, even with surgical resection,

radiation, and temozolomide therapy [2, 3]. Long-term prognosis is grim; only about 15% of

patients with an infiltrative glioma survive 5 years after diagnosis. As a group, primary brain

cancers rank #1 among all cancers in terms of average years of life lost [4]. Despite intensive

research, very little progress has been made in the treatment of GBM, and new approaches are

badly needed.

Alterations in cell metabolism have long been known to be a hallmark of cancer, ever since

Otto Warburg first described the preferential reliance of cancer cells on aerobic glycolysis over

oxidative phosphorylation [5, 6]. However, it was only relatively recently that mutations in

metabolic genes were found to occur in some cancers. For example, approximately 20–30%

of infiltrative gliomas carry mutations in isocitrate dehydrogenase 1 (IDH1) or, far less com-

monly, IDH2 (together referred to as “IDHmut”) [7–9]. This subset of gliomas tends to occur

in grade 2–3 gliomas, disproportionately arises in younger adults, and is associated with longer

survival. Wild-type IDH1 and IDH2 encode enzymes that catalyze the oxidative decarboxyl-

ation of isocitrate to α-ketoglutarate in the cytosol/peroxisomes and mitochondrion, respec-

tively. In the process, these enzymes also generate reduced nicotinamide adenine dinucleotide

phosphate (NADPH). Point mutations in codon 132 of IDH1 (usually R132H), and codon

172 of IDH2, cause the mutant enzymes to reduce α-ketoglutarate to D-2-hydroxyglutarate

(D2HG), thereby consuming NADPH [10].

Because cancers mostly rely on glucose for energy and anabolism, numerous studies have

explored the therapeutic potential of dietary carbohydrate restriction in cancer patients. This

is achieved through a ketogenic diet (KD), which is characterized by high-fat, low-carbohy-

drate, and moderate-protein content. KD limits the bioavailability of carbohydrates and

induces the liver to produce ketone bodies, such as β-hydroxybutyrate and acetoacetate, which

are then converted into acetyl-CoA for use in the tri-carboxylic acid (TCA) cycle [11]. The

goal of KD is to force tumor cells to use ketone bodies for energy, while still meeting the

patient’s basic nutritional needs.

KD has been tested as an adjuvant therapeutic strategy in a number of cancers, including

GBM, with mixed results thus far [12, 13]. However, an aspect of this research that has not

yet been experimentally addressed is whether IDHmut gliomas might be particularly respon-

sive to KD. One study suggested that the D2HG product of IDHmut can actually bind and

inhibit ATP synthase, thereby inhibiting oxidative phosphorylation and ATP production

[14]. In that study, human colorectal HCT116 cells transduced with IDH1 R132H were

highly vulnerable to glucose deprivation in vitro, and were not able to use ketone bodies as

effectively as IDHwt HCT116 cells. A recent clinical study found that 8 weeks of KD did

indeed elevate urinary ketones in glioma patients, with no significant change in fasting glu-

cose or hemoglobin A1c. Additionally, the levels of intratumoral ketones were similar

between IDHwt and IDHmut glioma patients [15]. However, that study was not designed to

evaluate antitumor efficacy. Therefore, we sought to explore whether KD might preferen-

tially inhibit the growth of IDHmut gliomas in vitro and in vivo, using both patient-derived

endogenous IDH1wt and IDH1mut xenografts in immunocompromised mice, as well as an

isogenic Sleeping Beauty transposase-engineered model of IDH1wt and IDH1mut gliomas in

immunocompetent mice.
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Methods

Ethics statement

This study was performed in accordance with the recommendations in the Guide for the Care

and Use of Laboratory Animals of the National Institute of Health. The protocol was approved

by the Institutional Animal Care and Use Committee (IACUC) of Northwestern University

(protocol #5715), and allowed for flank tumors to reach a volume of 6,000 mm3 (maximum

dimensions of 20 mm x 30 mm). All surgery was performed under isoflurane inhalant anesthe-

sia. Every effort was made to minimize animal suffering. Patient-derived cell lines were all

developed under the auspices of an Institutional Review Board-approved protocol at Mayo

Clinic and Duke University, with consent obtained from their donors.

Cell lines and cell culture

Five cell types were derived from the Mayo Clinic Brain Tumor Patient-Derived Xenograft

National Resource [16]. Three were IDH1wt glioblastomas (GBM6, GBM12, and GBM43), and

2 were IDH1mut grade 4 astrocytomas (GBM164 and GBM 196). Two additional IDH1mut cell

types were TB09, a WHO grade 3 astrocytoma obtained from Dr Hai Yan at Duke University,

and HT1080, a fibrosarcoma cell line from the American Type Culture Collection (the fibro-

sarcoma cell line was chosen to directly compare any possible differences in proliferation

based solely on IDH1mut status). All IDH1mut cells were R132H except for HT1080, which was

R132C IDH1. NPA and NPAC1 were rodent isogenic cell lines engineered using the Sleeping

Beauty transposase system, gifted courtesy of Dr. Maria Castro from the University of Michi-

gan [17]. Both NPA and NPAC1 have activating mutations in NRAS and inactivating muta-

tions in TP53 and ATRX; NPAC1 also expresses IDH1 R132H [17]. All IDH1mut cell types

produced high amounts of D2HG via liquid chromatography-mass spectrometry, relative to

the IDH1wt cells (not shown). All cell types are authenticated via short tandem repeat analysis,

and are summarized in Table 1.

For cell culture studies, GBM6, GBM43, TB09, and HT1080 cells were grown in Dulbecco’s

modified eagle medium (DMEM, Corning) supplemented with 10% fetal bovine serum and

1% penicillin streptomycin at 37˚C with 5% CO2.

In vitro proliferation

Cells were plated in 24 well plates at a concentration of 5x104 cells per well in triplicate. Experi-

mental wells were supplemented with 10 mM β-hydroxybutyrate (Sigma Product #H6501). To

mimic the low glucose environment characteristic of physiological ketosis, a formulation of

Table 1. Summary of cell lines used.

Cell Line Origin Derivation IDH1 Status Other mutations

GBM6 IDHwt glioblastoma (Mayo Clinic) Patient Wild-Type EGFRvIII amplified, TERT C228T

GBM12 IDHwt glioblastoma (Mayo Clinic) Patient Wild-Type EGFR amplified, TERT C250T

GBM43 IDHwt glioblastoma (Mayo Clinic) Patient Wild-Type NF1, TERT C228T

GBM164 IDHmut astrocytoma grade 4 (Mayo Clinic) Patient R132H Mutant TP53, CDKN2A/B deletion, MET gain

GBM196 IDHmut astrocytoma grade 4 (Mayo Clinic) Patient R132H Mutant TP53, CDKN2A/B deletion, MET gain

TB09 IDHmut astrocytoma grade 3 (Duke) Patient R132H Mutant ATRX, TP53

HT1080 Fibrosarcoma (ATCC) Patient R132C Mutant NRAS

NPAc1 CH157 mice (Michigan) Mouse (Sleeping Beauty Transposase) R132H Mutant shp53, NRAS, ATRX

NPA CH157 mice (Michigan) Mouse (Sleeping Beauty Transposase) Wild-Type shp53, NRAS, ATRX

https://doi.org/10.1371/journal.pone.0257725.t001
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DMEM (Corning) with 1.0 g/L of glucose was tested alongside the normal glucose concentra-

tion of 4.5 g/L. Plates were trypsinized at specific time points, and live cells were counted via

trypan-blue exclusion using a BioRad TC20 Automated Cell Counter. Absolute cell counts

were used to determine cell viability rather than the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-

tetrazolium (MTT) assay, as the latter uses mitochondrial metabolism as a marker of cell via-

bility, and we sought to avoid any potential confounding effects of culture conditions on

mitochondria.

In vivo studies

GBM12, GBM164, and GBM196 cells were sourced from tumors propagated as subcutaneous

growths in athymic nude mice and prepared for implantation. Briefly, after euthanizing each

animal, tumors were aseptically excised from the flank and minced in a sterile culture dish with

a scalpel. The cell suspension was centrifuged after mechanical disruption, filtered through

70 μM nylon-mesh filters, re-centrifuged, and re-suspended in an equal volume ratio of cell cul-

ture media to Matrigel. A 16-gauge needle and syringe were used to inject the cell suspension

into the flanks of 6 week-old female NCr athymic nude mice (NCRNU-F sp/sp, Taconic).

Intracranial injections of NPA and NPAC1 cells were performed as described previously in

10 week-old female C57BL/6J mice (Jackson) [17].

Animals received post-operative support care through administration of 0.9% saline solu-

tion, DietGel 76A, and thermal support while recovering from anesthesia until awake and

ambulatory. One administration of meloxicam 1 mg/kg was given at the time of the procedure

for 24 hour analgesia coverage, followed by another dose approximately 24 hours post-proce-

dure, and a final dose 48 hours post-procedure if deemed necessary.

Animal monitoring and treatment

All animals were fed standard rodent chow (standard diet, or SD) for 3 days following flank or

intracerebral engraftment before being randomized to either remain on SD ad libitum, or

given a formulated KD (Ketogenic Diet TD.96355, Envigo Teklad Diets, Madison WI) ad libi-
tum. The KD was received directly from the manufacturer and was a nutritionally complete

diet composed of 15.3% protein, 0.5% carbohydrate, and 67.4% fat by weight (Table 2). Mice

assigned to the KD group were kept on KD for one week, followed by SD for one week, and

so on, in order to prevent obesity and reduce midlife mortality. Mice were still allowed to

feed ad libitum, in order to reduce potentially confounding effects of weight loss from calorie-

restricted diets and more effectively maintain plasma ketone levels, as was described by others

[13, 18]. At the end of each week, blood from the saphenous vein was collected to test circulat-

ing metabolite levels using the Precision Xtra Blood Glucose and Ketone Monitoring System

(Abbott SKU# 9881465). Animals were monitored twice weekly for signs of morbidity, such as

weight loss, behavioral changes, and hunched positions, and were euthanized when tumor size

Table 2. Summary of macronutrient composition of standard and experimental diets presented as proportion of

total kilocalories.

Diets Standard Diet Ketogenic Diet

Macronutrients Envigo Teklad LM-485 Rodent Diet Envigo Teklad Ketogenic Diet td.96355

Protein % 19.1 9.2

Carbohydrate % 44.3 0.3

Fat % 5.8 90.5

kcal/g 3.1 6.7

https://doi.org/10.1371/journal.pone.0257725.t002
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reached 2,000 mm3 (below the maximum IACUC-approved volume), or when moribund.

Euthanasia was performed via CO2 asphyxiation followed by cervical dislocation, in accor-

dance with IACUC-approved guidelines.

Flank tumor volume was based on caliper measurements and calculated using the modified

ellipsoidal formula [19, 20]:

Volume ¼
length x width2

2

Statistical analyses

Differences between mean values of two groups were compared using unpaired two-sample t-
tests, or for interactions between glucose and ketones in vitro, via two-way ANOVA; P values

less than 0.05 were considered significant. Log-rank tests compared survival between groups.

Graph generation and statistical analyses were performed with GraphPad Prism 9 (GraphPad

Software, San Diego, CA).

Results

First, we examined the effects of a ketogenic-like diet on cultured IDH1wt and IDH1mut

patient-derived cancer cell lines under the following conditions: (i) normal basal glucose (NG)

of 4.5 g/L; (ii) low glucose (LG) of 1.0 g/L; (iii) NG with 10 mM β-hydroxybutyrate (BHB); (iv)

LG with BHB (Fig 1). Both pairs of IDH1wt and IDH1mut cell types responded similarly, with

slightly attenuated proliferation in LG medium, but no effect of BHB in either NG or LG

Fig 1. Effect of ketones on patient-derived IDH1wt and IDH1mut tumor cell proliferation in vitro. Absolute cell counts over 14 days of culture in

either normal glucose (NG) or low glucose (LG), with or without 10 mM β-hydroxybutyrate (BHB). Each data point is shown as mean ±SEM. Two-way

ANOVA analyses of the final time points are described in the Results text and Table 3.

https://doi.org/10.1371/journal.pone.0257725.g001
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medium, as indicated by two-way ANOVA analyses (Table 3). Specifically, among IDH1wt

GBM6 cells, proliferation was higher in NG than LG (F (1, 8) = 10.0, P = 0.013), but BHB had

no effect in either NG or LG media (F (1,8) = 0.20, P = 0.66). There was also no statistically

significant interaction between glucose and BHB (F (1,8) = 0.0048, P = 0.95). Among IDH1wt

GBM43 cells, proliferation was higher in NG than LG medium (F (1, 8) = 12.0, P = 0.0088),

but BHB had no effect in either NG or LG media (F (1,8) = 0.48, P = 0.51), with no significant

interaction between glucose and BHB (F (1,8) = 0.044, P = 0.84). Among IDH1mut TB09 cells,

proliferation was higher in NG than LG (F (1, 8) = 42.0, P = 0.0002), but BHB had no effect in

either NG or LG media (F (1,8) = 1.4, P = 0.28), and there was no statistically significant inter-

action between glucose and BHB (F (1,8) = 0.90, P = 0.37). Similarly, IDH1mut HT1080 cells

showed higher proliferation in NG than LG medium (F (1, 8) = 13.0, P = 0.0069), but BHB had

no effect in either NG or LG media (F (1,8) = 2.2, P = 0.18). There was also no significant inter-

action between glucose and BHB (F (1,8) = 1.8, P = 0.22).

Next, we evaluated the ability of an unrestricted, cycling KD (see “Methods”) to induce

ketosis in mice without tumors. Over the first 5 weeks that mice were on KD, blood glucose

levels were similar to control mice on SD, even during weeks in which KD was implemented

(Fig 2A). Interestingly, blood glucose rose 15% in KD mice after week 6 (147.8 mg/dl in KD

versus 128.0 mg/dl in SD, P = 0.0029) (Fig 2A). This persisted in week 7 (144.3 mg/dl in KD

versus 127.3 mg/dl in SD, P = 0.0053). Ketones, in contrast, increased by 112.5% after just one

week on KD compared to mice on SD (1.13 mM versus 0.53 mM, P = 0.00022) (Fig 2B). While

circulating ketones declined in KD mice during the weeks when they were back on SD, they

remained 81–236% higher than in SD mice over the entire 7-week interval, consistent with

previously published data by other who employed this type of KD [13, 18]. Body mass was

13% higher in KD mice than SD mice by week 4 (26.3 grams versus 23.3 grams, P = 0.033), but

this was transient, as the mass of the SD mice matched the KD mice by week 6 (Fig 2C).

Mice bearing subcutaneous flank patient-derived xenografts (PDX) of endogenous IDH1wt

GBM12, or IDH1mut grade 4 astrocytoma (GBM164 and GBM196), were subjected to the

unrestricted cycling KD or kept on regular SD. (The flank was chosen because IDH1mut

GBM164 and GBM196 cells grow poorly intracerebrally and in vitro, and these two PDX

models were chosen for in vivo studies because IDH1mut TB09 cells grow poorly in vivo.) As

Table 3. Two-way ANOVA analyses of in vitro proliferation of IDHwt and IDHmut tumor cells in varying glucose

and ketogenic culture conditions.

cell type source of variation % of total variation P
IDHwt GBM6 interaction 0.026 0.95

NG vs. LG 55.0 0.013
-BHB vs. +BHB 1.1 0.66

IDHwt GBM43 interaction 0.21 0.84

NG vs. LG 58.0 0.0088
-BHB vs. +BHB 2.4 0.51

IDHmut TB09 interaction 1.7 0.37

NG vs. LG 80.0 0.0002
-BHB vs. +BHB 2.6 0.28

IDHmut HT1080 interaction 7.2 0.22

NG vs. LG 52.0 0.0069
-BHB vs. +BHB 8.7 0.18

NG = 4.5 g/L, LG = 1.0 g/L, -BHB = without β-hydroxybutyrate, +BHB = 10 mM β-hydroxybutyrate. Each analysis

was done on the last day of culture for each cell type, as indicated in Fig 1.

https://doi.org/10.1371/journal.pone.0257725.t003
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Fig 2. Basic metabolic parameters of mice on an unrestricted cycling KD. Saphenous vein blood samples tested for

glucose (A) and ketones (B) at the end of each week. Mouse body weights are shown in (C). Green bars indicate weeks

in which mice were on KD.

https://doi.org/10.1371/journal.pone.0257725.g002
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expected, IDH1wt GBM12 grew faster than IDHmut GBM164 and GBM196 (Fig 3). However,

within each PDX subtype, growth was similar in KD mice and SD mice (GBM164: 221 mm3

SD versus 226 mm3 KD, P = 0.95; GBM196: 354 mm3 SD versus 335 mm3 KD, P = 0.90;

GBM12: 1540 mm3 SD versus 1251 mm3 KD, P = 0.44).

To determine the effect of unrestricted cycling KD on intracerebral, isogenic-matched

IDH1wt and IDH1mut gliomas, we engrafted IDH1wt NPA and IDH1mut NPAC1 glioma cells

(Table 1) into the brains of immunocompetent mice (Fig 4). Among mice maintained on SD,

those engrafted with IDH1mut NPAC1 cells survived 20% longer than mice engrafted with

IDH1wt NPA cells (median survival 26.5 days versus 22.0 days, HR = 0.11, 95% CI = 0.03–0.39,

P = 0.0022), in keeping with published data on these models [17]. However, KD had no effect

on survival in either NPA-engrafted subjects (HR = 0.47, 95% CI = 0.15–1.5, P = 0.27) (Fig 4A)

or NPAC1-engrafted subjects (HR = 1.0, 95% CI = 0.31–3.2, P = 0.81) (Fig 4B).

Discussion

Altered metabolism in cancer cells raises the possibility of exploiting metabolic vulnerabilities

to inhibit tumor growth, such as putting patients on KD. However, while KD may have

Fig 3. The effect of unrestricted cycling KD on patient-derived IDH1wt and IDH1mut flank xenograft growth. Tumor volumes for mice

subcutaneously engrafted with IDH1mut GBM164 at 21 days, IDH1mut GBM 196 at 14 days, and IDH1wt GBM12 at 14 days, either on SD or

cycling KD (initiated 3 days after engraftment). Time points differed due to differing rates of tumor growth. Bars = means, P values calculated

by unpaired t-tests.

https://doi.org/10.1371/journal.pone.0257725.g003
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efficacy against some cancers, clinical studies have been limited in glioma patients, and have so

far mostly focused on feasibility, not outcomes [15, 21–26]. At the preclinical level, some stud-

ies showed that mice engrafted with IDH1wt GBM did not benefit from KD [13, 27], although

others have suggested otherwise [28], and to the best of our knowledge, there has not yet been

a direct experimental comparison of IDH1wt and IDH1mut gliomas exposed to KD. Another

study by others suggested that IDH1mut might confer sensitivity to KD, based on in vitro data

using HCT116 cells engineered to express IDH1 R132H [14]. Thus, we sought to determine

KD efficacy in a variety of preclinical in vitro and in vivo models of IDH1wt and IDH1mut

glioma. Our data suggest that an unrestricted cycling KD does not have significant activity

against either IDHwt or IDHmut glioma.

Since the original studies describing IDH1mut and its neoenzymatic activity in cancer, a

great deal of research has been done studying the metabolic effects of IDH1mut, often generat-

ing conflicting results. For example, while some have shown that IDH1mut depletes the cell of

TCA intermediates [29–34], others have found little to no changes in those intermediates [10,

35, 36]; indeed, IDH1mut gliomas may actually use lactate and glutamate anaplerosis to replen-

ish TCA intermediates [35]. Some have suggested that glycolysis is reduced in IDHmut gliomas

[34, 36], but one group found reduced glucose uptake by IDHmut glioma cells, and otherwise

no difference in the rate of glycolysis compared to IDHwt cells [37].

Results in IDH1mut metabolic research seem to vary greatly depending on whether one is

studying cells artificially overexpressing IDHmut, or is focusing on cells and tissues with endog-

enous IDHmut, as more pronounced metabolic changes tend to occur in the former than the

latter [37]. This suggests that cells with naturally-occurring IDHmut may, over time, adjust their

metabolism to at least partially compensate for perturbations caused by the mutant enzyme.

For example, IDH1mut gliomas may adjust for the depletion of TCA intermediates by upregu-

lating glutamate dehydrogenase 2 expression [34]. Since IDHmut gliomas mostly use the TCA

precursor glutamine to produce D2HG, these tumors compensate by turning pyruvate into

TCA chemicals [38, 39]. Although IDHmut consumes NAPDH, which should lead to glutathi-

one depletion, IDHmut gliomas upregulate enzymes involved in glutathione synthesis, thereby

maintaining glutathione levels [40]. Thus, when IDHwt wild-type cells are abruptly forced to

overexpress IDHmut, any metabolic results, including sensitivity to KD-like conditions, need to

be validated in patient-derived and/or transgenic models with endogenous IDHmut.

Fig 4. The effect of unrestricted cycling KD on patient-derived IDH1wt and IDH1mut intracranial xenograft growth. Kaplan-

Meier survival curves of mice engrafted with (A) IDH1wt NPA or (B) IDH1mut NPAC1, either on SD or cycling KD (initiated 3 days

after engraftment).

https://doi.org/10.1371/journal.pone.0257725.g004
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Just as there is heterogeneity in metabolism-themed IDHmut research, a variety of KD regi-

mens have been studied in preclinical models of disease. Two major sources of such variation

include ad libitum versus caloric restriction, and cycling versus non-cycling KD. In one study

combining non-cycling KD and caloric restriction in mice intracranially engrafted with synge-

neic IDHwt CT-2A gliomas, caloric restriction on a regular diet reduced tumor growth, but

the addition of KD to the caloric restriction had no significant effect [41]. Another study from

the same group showed that a different calorie-restricted, non-cycling KD slowed the in vivo
growth of IDHwt CT-2A mouse glioma cells and IDHwt U87-MG human glioma cells [42].

However, a different group reported that an unrestricted, non-cycling KD was able to slow the

in vivo growth of isogenic GL-261 mouse glioma cells [43, 44], and such diets do lead to an

accumulation of BHB within engrafted tumors [28, 43]. In a nontumor preclinical model of

aging, an unrestricted cycling KD reduced midlife mortality and improved memory in C57/

BL6 mice [18]. Since that type of KD had never been tried in animal models of gliomas, and

prolonged adherence to KD is notoriously difficult [15, 45], we tested that same unrestricted

cycling KD regimen in both patient-derived and engineered mouse glioma cells, with negative

results in both settings.

A recent patient-based study showed that KD causes similarly elevated levels of ketones

within IDHwt and IDHmut gliomas by magnetic resonance spectroscopy [15], but patient sur-

vival was not a part of that analysis. Other recent preclinical and clinical studies have suggested

that gliomas can metabolically adapt to ketogenesis, and even use ketones to facilitate disease

progression [25, 27]. Our in vitro and in vivo experimental results align with such studies, and

show that, despite achieving a ketosis-like state in tumor bearing animals, no difference in

overall tumor volume or survival benefit was observed. Thus, our data suggest that an unre-

stricted cycling KD does not have a role in glioma patients, regardless of IDH1mut status.
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