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BACKGROUND Central hemodynamic parameters are typically measured via pulmonary artery catherization—an

invasive procedure that involves some risk to the patient and is not routinely available in all settings.

OBJECTIVES This study sought to develop a noninvasive method to identify elevated mean pulmonary capillary wedge

pressure (mPCWP).

METHODS We leveraged data from 248,955 clinical records at the Massachusetts General Hospital to develop a deep

learning model that can infer when the mPCWP >15 mmHg using the 12-lead electrocardiogram (ECG). Of these data,

242,216 records were used to pre-train a model that generates useful ECG representations. The remaining 6,739 records

contain encounters with direct measurements of the mPCWP. Eighty percent of these data were used for model

development and testing (5,390), and the remaining records comprise a holdout set (1,349) that was used to evaluate the

model. We developed an associated unreliability score that identifies when model predictions are likely to be

untrustworthy.

RESULTS The model achieves an area under the receiver operating characteristic curve (AUC) of 0.80 � 0.02 (test set)

and 0.79 � 0.01 (holdout set). Model performance varies as a function of the unreliability, where patients with high

unreliability scores correspond to a subgroup where model performance is poor: for example, patients in the holdout set

with unreliability scores in the highest decile have a reduced AUC of 0.70 � 0.06.

CONCLUSIONS The mPCWP can be inferred from the ECG, and the reliability of this inference can be measured. When

invasive monitoring cannot be expeditiously performed, deep learning models may provide information that can inform

clinical care. (JACC Adv 2022;1:100003) © 2022 The Authors. Published by Elsevier on behalf of the American College of

Cardiology Foundation. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
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ABBR EV I A T I ON S

AND ACRONYMS

ECG = electrocardiogram

HF = heart failure

mPCWP = mean pulmonary

capillary wedge pressure

RHC = right heart

catheterization
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A lthough standard hemodynamic pa-
rameters such as blood pressure
and heart rate are readily obtained

by the bedside, central hemodynamic param-
eters are challenging to infer from the phys-
ical examination alone and are only reliably
measured via the insertion of a pulmonary
artery catheter (PAC).1,2 While PAC-guided
care has not been shown to reduce mortality
or length of hospital stay in critically ill patients, mea-
surements of advanced hemodynamic parameters
have important diagnostic and therapeutic implica-
tions in a variety of patient cohorts.3-6 The mean pul-
monary capillary wedge pressure (mPCWP), for
example, is a strong predictor of post-discharge out-
comes in patients admitted with severe symptomatic
heart failure (HF), and hemodynamic congestion with
concomitant elevations in left-sided pressures often
precedes the onset of symptoms.7-10

The gold standard procedure for measuring
advanced hemodynamic parameters, PAC insertion, is
associated with complications, ranging from benign
self-limited arrhythmias to rare, but often fatal, pul-
monary artery perforations.11,12 The procedure cannot
always be scheduled expeditiously, especially in the
setting of a global pandemic. Noninvasive methods
that infer when important hemodynamic parameters
are abnormal could therefore guide clinical decisions
when an invasive procedure cannot be performed, or
in the context of telemedicine. To these ends, we
postulated that deep learning could be leveraged to
estimate when the mPCWP is elevated using a readily
available and routinely acquired signal, the electro-
cardiogram (ECG).

Deep learning is a subfield of machine learning
where complex models are used to learn from data.
Traditional models that have been used for clinical
inference (eg, logistic regression and Cox propor-
tional hazards survival models) typically require one
to hand-pick features that are related to the task of
interest. For example, the Pooled Cohort Equations
utilize a predefined set of prognostic features that are
related to major adverse cardiovascular events.13 By
contrast, deep learning typically takes raw data as
input and therefore does not require the user to make
decisions with respect to the features that are most
informative. Such methods can therefore be useful
when it is not initially clear what features from the
data will be most dispositive. Classic examples
include deep learning applied to medical images,
where models are constructed that take all of the
pixels within an image as input.14 In the present
study, we use a type of deep neural network, a
convolutional neural network, which takes the entire
12-lead ECG as input and infers the mPCWP.

Deep learning algorithms have been applied to the
12-lead ECG for a variety of predictive tasks. Although
many of these approaches have demonstrated
remarkable discriminatory ability for problems that
seem unrelated to the electrical activity of the
heart,15-17 studies that use the ECG to identify
abnormal hemodynamic values are sparse. Three
recent studies developed deep neural networks to
identify patients with pulmonary hypertension (PH),
yielding models with impressive discriminatory abil-
ity.15,18,19 In these studies, the diagnosis of PH was
made using echocardiography—that is, the mean ve-
locity of a regurgitant jet across the tricuspid valve is
directly related to the mean pulmonary arterial
pressure.20 While one can obtain information about
the mPCWP using cardiac ultrasound, such insights
require precise spectral Doppler measurements of
mitral inflow velocities21—a task that is not within the
average health care provider’s skillset. These ap-
proaches can also be unreliable in patients who do not
have echocardiographic evidence of diastolic
dysfunction.21 The reliable identification of elevated
mPCWP, using readily available clinical data, remains
an unmet clinical need.

We describe a deep learning model for detecting
elevated mPCWP from the standard 12-lead ECG
alone. We also derive a quantitative metric that in-
dicates when the model’s prediction is most un-
trustworthy, allowing health care providers to
identify when the model is likely to yield a misleading
result. The resulting unreliability score is essential
because deep neural networks are generally opaque
to mechanistic explanation, so it not possible to
validate a model output by examining its internal
logic, unlike for a mechanistic model or a human
decision-maker.

METHODS

DATA ACQUISITION. Our primary data set consisted
of 6,739 right heart catheterization procedures from
4,304 patients, occurring between January 2010 and
October 2020: our right heart catheterization (RHC)
data set. These data correspond to an in-house reg-
istry at the Massachusetts General Hospital (MGH),
where pressures were documented at the time of the
catheterization procedure. This population only in-
cludes procedures for which same-day ECGs were
available. In addition, any ECGs containing
nonphysical values (eg, voltage >5 mV in magnitude
in any lead) were removed.



FIGURE 1 Training and Testing Procedure

Data sets used for training and evaluating model 1, model 2, and RHCNet. The model with the best performance on the test set is also evaluated using the holdout set.

ECG ¼ electrocardiogram; RHCNet ¼ Right Heart Catheterization Network.
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Standard pressures were measured in each pro-
cedure: right atrial pressure (RAP), right ventricular
pressure (RVP), pulmonary arterial pressure (PAP),
and PCWP. For each site, systolic and/or diastolic
pressures were often recorded in addition to the
mean pressure. Only the mean pressure was utilized
in this study. Cardiac output (CO), measured via
thermodilution, was also obtained. We only utilized
data from patients who had mean PAP (mPAP),
mPCWP, and CO measurements documented. Pul-
monary vascular resistance (PVR) was computed for
each set of measurements using the mPAP, mPCWP,
and CO. We binarized pressure measurements using a
cutoff of 20 mmHg for the mPAP and 15 mmHg for the
mPCWP. We binarized the CO and PVR with cutoffs of
4 L/min and 3 Wood units, respectively. For each
measurement, a label of zero indicates a value below
the given threshold and a label of one indicates a
value above the threshold. Most of the ECGs extrac-
ted were sampled at 500 Hz. Any ECGs sampled at
250 Hz were upsampled by a factor of 2 via linear
interpolation. Each set of results from RHC was
matched to the first ECG taken on the day of
catheterization.

Initial results suggested that model performance
could be improved by first pre-training a model using
a larger data set of ECGs for whom RHC data were not
available. We used a previously constructed registry
of ECGs, also derived from the MGH. For each patient
in this registry, the most recent ECG was selected,
provided that it was sampled at 500 Hz. All ECGs
within the registry had ancillary data, including age,
sex, and interval durations that were derived from
automatic machine reads of the ECG at the time of
acquisition. ECGs in this cohort correspond to pa-
tients aged between 20 and 90 years. The final cohort
consists of 242,216 ECGs, each from a unique patient.
The average age in this population was 56 � 17 years,
and 52% of the population was male. We refer to this
registry as our pre-training data set.
DEVELOPMENT OF ELEVATED mPCWP DETECTION

MODELS. We divided the RHC data set into a devel-
opment set (5,390 samples) and a holdout set (1,349
samples). The development set is split into training
(4,304 samples), validation (546 samples), and testing
sets (540 samples) as shown in Figure 1. We developed
3 models to infer mPCWP from ECG data and evalu-
ated each on the test set. The holdout set is used to
further evaluate the best performing model, Right
Heart Catheterization Network (RHCNet) (Figure 1).
All data sets are divided by patient to avoid over-
lapping patients between data sets, and the rate of



TABLE 1 Main Indications for Catheterization in the

Development Data Set and in the Holdout Data Set

Main Indication
for RHC

Number of
Cases in the

Development Set (%)

Number of
Cases in the

Holdout Set (%)

Heart failure 2,376 (44.1) 552 (40.9)

Transplant 1,604 (29.8) 427 (31.7)

Coronary artery disease 731 (13.6) 163 (12.1)

Valvular disease 318 (5.9) 60 (4.4)

Pulmonary hypertension 155 (2.9) 62 (4.6)

Other pulmonary disease 66 (1.2) 37 (2.7)

Pericardial disease 20 (0.4) 0 (0.0)

Congenital defect 7 (0.1) 13 (1.0)

Electrical dysfunction 7 (0.1) 3 (0.2)

Other 106 (1.9) 32 (2.4)

Values are n (%).

RHC ¼ right heart catheterization.

Schlesinger et al J A C C : A D V A N C E S , V O L . 1 , N O . 1 , 2 0 2 2

Predicting Elevations in mPCWP From the 12-Lead ECG Using Deep Learning M A R C H 2 0 2 2 : 1 0 0 0 0 3

4

elevated mPCWP is roughly equivalent in each data
set. The training set is used to optimize the model
parameters, the validation set (“Val” in Figure 1) is
used to determine when the training should be
terminated, and the test set is used to evaluate the
trained model.

Three models were developed during the course of
this work:

1. Model 1 is a logistic regression model. The inputs to
this model are ECG interval data. These were
extracted by the ECG acquisition systems–
automated interval extraction algorithm. The
model is trained to detect when the mPCWP
>15 mmHg only using extracted intervals (ie, heart
rate, PR interval, QRS interval, and QT interval).

2. Model 2 is a deep learning model (convolutional
neural network, or CNN, see Supplemental
Figure 1) that was trained for a multitask classifi-
cation problem. The model tries to learn when each
of 4 hemodynamic parameters are elevated
(mPCWP >15 mmHg, mPAP >20 mmHg, PVR >3
Wood units, and CO >4 L/min). Although we are
primarily interested in the mPCWP, the other
estimated hemodynamic quantities are used to
develop an unreliability score, which we discuss in
subsequent sections.

3. RHCNet is also a deep learning model that was
trained to accomplish the same multitask classifi-
cation problem as model 2. RHCNet differs in that
training was done in 2 stages: 1) A CNN is first
trained to infer interval durations, including the
RR interval, QRS interval, QT interval, and the PR
interval, from the ECG alone; 2) In the second
stage, the model (after pre-training) was modified
by truncating it at its penultimate layer and then
appending with additional dense layers. This new
model was then trained again using the develop-
ment data set (Figure 1).

To calculate statistical measures of uncertainty for
all model results, ECGs were drawn from the devel-
opment test set uniformly at random, with replace-
ment, to produce 10 bootstrapped data sets of equal
size to the original data. The same was done for the
holdout data set. Error values of performance metrics
represent 1 standard deviation computed across the
results on the 10 bootstrapped data sets.

UNRELIABILITY SCORE. We developed an unreli-
ability score that identifies subgroups where model
predictions are poor. Essentially, the method com-
putes the probability that the mPAP is elevated using
2 approaches. If the 2 approaches disagree for a spe-
cific ECG, then we propose that the model is
unreliable for that ECG. Essentially, the method
computes the probability that the mPCWP is
elevated—our main prediction task—as well the
probability that mPAP, PVR, and CO are abnormal.
As all of these quantities are inter-related, the un-
certainty score captures how consistent all of these
measures are. If they are inconsistent, we postulate
that the model prediction in question is untrustwor-
thy. In practice, we compare the p(mPAP >20 mmHg),
an explicit model output, to the probability that an
ECG is associated with pulmonary hypertension. The
probability of pulmonary hypertension, p(PH), ac-
counts for patients with isolated pre-capillary PH,
isolated post-capillary PH, and also mixed states
where there is both pre- and post-capillary hyper-
tension—hence the calculation of p(PH) requires
knowledge that p(PVR >3 Woods Units) and
p(mPCWP >15 mmHg). The associated probabilistic
formalism is shown in the Supplemental Information.
The unreliability score, U(ECG), is therefore a func-
tion of the difference between p(mPAP >20 mmHg)
and p(PH). We note that 0# U(ECG) #1, where higher
values indicate more untrustworthy predictions.

To evaluate the utility of the unreliability score,
data were sorted by U(ECG). Model outputs were split
into 2 groups based on the U(ECG) score: those in the
highest decile of scores and all others. The group with
the higher scores represents the most unreliable
predictions. Area under the receiver operating char-
acteristic (AUC) and Brier scores were computed for
each of these 2 groups. The Brier score is the average
error of the model—lower Brier scores correspond to

https://doi.org/10.1016/j.jacadv.2022.100003
https://doi.org/10.1016/j.jacadv.2022.100003
https://doi.org/10.1016/j.jacadv.2022.100003


FIGURE 2 ECG Interval Logistic Regression Model

In model 1, ECG intervals, derived from the machine read of each ECG, are used to train a logistic regression model to predict the probability that cardiac filling pressures

are elevated. This model achieves an AUC of 0.50 � 0.02. AUC ¼ area under the receiver operating characteristic curve; ECG ¼ echocardiogram.

J A C C : A D V A N C E S , V O L . 1 , N O . 1 , 2 0 2 2 Schlesinger et al
M A R C H 2 0 2 2 : 1 0 0 0 0 3 Predicting Elevations in mPCWP From the 12-Lead ECG Using Deep Learning

5

lower, on average, errors. These metrics were
computed for each bootstrap, and the standard de-
viation was computed for each metric from those
results.

MODEL EVALUATION. The model with the highest
discriminatory ability on the test data was also eval-
uated on the holdout data set of 1,349 clinical en-
counters (Figure 1). All statistical measures on the
holdout set were computed in the same way as for the
development test set, with 10 bootstraps generated
by drawing uniformly at random, with replacement,
from the holdout data set.

STATISTICAL ANALYSIS. Area under the receiver
operating curve (AUC) is computed as follows: a
sample xðþÞ

i is drawn uniformly at random from the
positive-labeled data, and a sample xð�Þ

j is drawn from
the negative-labeled data. Then, for the model f,
which outputs a probability between 0 and 1, the
following expression is evaluated:

f
�
xðþÞ
i

�
> f

�
xð�Þ
j

�

This is repeated for N pairs of samples. The AUC
score corresponds to the percentage of pairs of sam-
ples for which the aforementioned expression holds,
that is,

AUC ¼ 1
N

X

fx ðþÞ
i ;x ð�Þ

i g
1
h
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where 1[.] is the indicator function. The AUC reflects
the discriminatory ability of the model.22

Sensitivity values were calculated as the true pos-
itive rate—the rate of correct identification of positive
cases. Sensitivities were computed using different
model thresholds, and the corresponding specificities
(true negative rates) were computed for each
threshold. For a given sensitivity, specificity, and
prevalence of elevated mPCWP, the positive predic-
tive value (PPV) and negative predictive value (NPV)
are computed as follows:

PPV ¼
Sensitivity,prevalence

Sensitivity,prevalenceþ ð1� specificityÞð1� prevalenceÞ
NPV ¼

Specificity,ð1� prevalenceÞ
Specificity,ð1� prevalenceÞ þ ð1� sensitivityÞprevalence

An unpaired, 2-tailed Student’s t-test is used to
compare results across bootstraps between 2
cohorts of interest, whenever variances between the 2
groups were similar. Otherwise, Welch’s t-test was
used.23
RESULTS

STUDY POPULATIONS EVALUATING MODEL

DISCRIMINATORY ABILITY. Our development data
set consists of patients who were referred for an RHC
at the MGH (5,390 procedures from 3,446 patients)
(Figure 1). In this cohort, 48% of procedures found an
mPCWP >15 mmHg, where 15 mmHg is the upper limit
of normal.24 The average age at catheterization was
64 � 4 years. Patient age ranged from 18 to 99 years.
Sixty-four percent of the population was also male.
Indications for catheterization are listed in Table 1.
The most common indication was HF (44.1%), fol-
lowed by heart transplant (29.8%), including sur-
veillance endomyocardial biopsy and RHC in patients
who are post-cardiac transplant.

We used these data to train 3 models to predict
hemodynamic quantities. The first was a logistic



FIGURE 3 Randomly Initialized Deep Neural Network

In model 2, a deep neural network is trained to detect elevated mPCWP from the 12-lead ECG signal. Initial model parameters are set to random values and then

modified to maximize model performance. Convolutional layers use specialized functions to extract information about the shape of the ECG. This yields an AUC of

0.69 � 0.03. AUC ¼ area under the receiver operating characteristic curve; ECG ¼ echocardiogram; mPCWP ¼ mean pulmonary capillary wedge pressure.
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regression model that takes extracted ECG interval
duration (PR, QRS, and QT intervals) and heart rate
as input to predict when the mPCWP >15 mmHg
(Figure 2). The resulting AUC was 0.50 � 0.02, sug-
gesting that these ECG features do not yield a model
with discriminatory ability (Figure 2). We then
trained a convolutional neural network—a type of
deep learning model—to detect abnormal mPCWP,
mPAP, CO, and PVR, using the raw ECG samples. The
resulting AUC for predicting an elevated mPCWP was
0.69 � 0.03 (Figure 3).

To further boost our performance, we leveraged a
pre-training data set consisting of 242,216 ECGs
derived from an in-house registry of patients at the
MGH. The overall training strategy for this model,
which we call RHCNet, is shown in Figure 4. The first
“pre-training step” involves training the model to
estimate the duration of ECG intervals (Figure 4,
Supplemental Figure 2). Although extracted Intervals
are not themselves predictive of abnormal mPCWPs
(as demonstrated in model 1 results), we hypothe-
sized that this pre-training step would yield “high-
level” features that could be used to build a
predictive model with good discriminatory ability
(Figure 4). These high-level features represent com-
plex functions of the original 12-lead ECG and there-
fore include more information than just the interval
lengths themselves. The resulting model achieves an
AUC for predicting an elevated mPCWP of 0.80 � 0.02
on the test set data.

We evaluated the final model on the holdout data
set of 1,349 samples, which had an average age at
catheterization of 61 � 16 years, and 66% were male.
The proportion of procedures from patients with HF
was 40.9%, and 31.7% of procedures were from
transplant patients. In the holdout set, the AUC for
inferring elevated mPCWP was 0.79 � 0.01. ROC
curves for all model outputs are shown in the
Supplemental Figures 3 and 4.

EVALUATING RHCNet PREDICTIVE PERFORMANCE.

We evaluated model performance on patient sub-
groups of interest. We focused on the 2 indications in
which we had more than 1,000 cases in the develop-
ment set, to help ensure that we had enough data to
compute robust metrics of performance, and used a

https://doi.org/10.1016/j.jacadv.2022.100003
https://doi.org/10.1016/j.jacadv.2022.100003


FIGURE 4 RHCNet Pre-training, Training, and Performance on Test Data

RHCNet is trained in 2 steps. First, a deep neural network model is trained to estimate ECG intervals from a large set of ECGs for which information about cardiac filling

pressures was not available. Fine-tuning involves using the parameters from this model as initial values for additional training, using an independent data set of 12-lead

ECGs that are matched to hemodynamic measurements. This yields an AUC of 0.80 � 0.02 on the test set. Pre-training the model for a different task using a large data

set results in a set of initial model parameters that give improved results. AUC ¼ area under the receiver operating characteristic curve; ECG ¼ echocardiogram;

RHCNet ¼ Right Heart Catheterization Network.
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decision threshold corresponding to a sensitivity of
80%. In the holdout set, the PPV was 0.76 � 0.02 in
samples from patients with HF (prevalence: 61%) and
the NPV was 0.92 � 0.03 in samples from transplant
patients (prevalence: 15%) (Table 2).

As the overall prevalence of an elevated mPCWP is
high in our entire cohort, we explored how the model
would perform in cohorts where the prevalence of
disease is lower. Toward this end, we calculated both
TABLE 2 RHCNet’s Performance for Detecting mPCWP

>15 mmHg Within Specified Cohorts of Interest

Data Set Indication PPVa NPVa

Holdout set Heart failure 0.76 � 0.02 0.42 � 0.04

Transplant 0.19 � 0.03 0.92 � 0.03

Values are mean � SD. aUsing cutoff that achieves sensitivity of 0.80 for each
bootstrap on the full test set.

mPCWP¼mean pulmonary capillary wedge pressure; NPV ¼ negative predictive
value; PPV ¼ positive predictive value; RHCNet ¼ Right Heart Catheterization
Network.
PPVs and NPVs for RHCNet using different values for
the underlying prevalence. Since the PPV and the
NPV are functions of the model’s sensitivity and
specificity, we first computed sensitivity and speci-
ficity values for the model using different decision
thresholds (Figure 5A). PPVs and NPVs for prevalence
values of 10, 20, 30, 40, and 50% are shown in
Figures 5B and 5C. As expected, the PPV improves as
the prevalence increases and the NPV increases when
the prevalence decreases. In particular, when the
sensitivity is 0.8 and the prevalence is 10%, the NPV
is >0.97.

IDENTIFYING TRUSTWORTHY MODEL PREDICTIONS. We
developed a score, 0# U(ECG) #1, to identify sub-
groups associated with poor model performance.
Large values of U are associated with relatively large
model errors and therefore indicate an untrustworthy
inference. We used the average model error (the Brier
score) to quantify model performance in both reliable



FIGURE 5 RHCNet Performance as a Function of Sensitivity and Prevalence

(A) Specificity as a function of sensitivity; (B) PPV as a function of sensitivity (x-axis) and prevalence (5%, 10%, 20%, 30%, 40% and 50%); (C) NPV as a function of

sensitivity and prevalence. NPV ¼ negative predictive value; PPV ¼ positive predictive value; RHCNet ¼ Right Heart Catheterization Network.
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and unreliable subgroups. In the holdout set, the
average model error was high when the unreliability
score was high (Figure 6A). Similarly, the discrimina-
tory ability of the model was reduced when pre-
dictions have higher unreliability scores (Figure 6B).

DISCUSSION

In this work we describe a novel deep learning model
for detecting elevated mPCWP using the standard 12-
lead ECG. To our knowledge, this is the first study to
leverage deep learning to detect elevated mPCWP
from the ECG alone. While the overall discriminatory
ability of RHCNet is good (AUC: 0.80 on the devel-
opment test set and 0.79 on the holdout set), the
predictive performance of the model varies with
indication. For patients with HF, where the preva-
lence of an elevated mPCWP is large, positive pre-
dictions are much more informative than negative
predictions, while the opposite is true for post-
cardiac transplant patients, where the prevalence of
an elevated mPCWP is much smaller. To gauge model
performance over the population at large, knowledge
of the underlying prevalence is needed. Although
estimates of the wider prevalence of elevated
mPCWPs are lacking in the literature, we note that the
prevalence of HF diagnoses in adults older than
60 years varies between 5 and 12%.25 Assuming a
prevalence of 5 to 10%, an RHCNet decision threshold
yielding a sensitivity of 0.8 would achieve an NPV
between 0.97 and 0.98 in this cohort, while still
capturing 80% of the true positives.

Deep learning provides a platform to develop
models that can utilize information in large and
complex data sets to yield clinically useful insights,
but such approaches are largely “black box methods.”
It is often challenging for even a computer scientist to
understand precisely what a deep learning model has
learned or why it arrives at a particular prediction.
This remains an obstacle that limits broad acceptance
by the clinical community.26 As a first step toward
understanding what RHCNet has learned, we use sa-
liency maps—a method that discovers what portions
of the input data a model tends to focus on when
making a decision.27,28 Calculated saliency maps
suggest that our model tends to focus on the ven-
tricular diastolic phase of the cardiac cycle—a finding
in line with the notion that the mPCWP is often a
good estimate of the left ventricular end-diastolic
pressure29 (Supplemental Figure 5). However, sa-
liency maps, while useful, tell us where a model is
looking, but do not fully explain how a model works.
In short, no clear standard exists for the development
and evaluation of explainable artificial intelligence
systems.30,31

At their core, explainable models are attractive
because they inspire trust—predictions that are ach-
ieved via a set of understandable and cogent steps are
intuitively more trustworthy. In this vein, we devel-
oped a method that not only produces a prediction

https://doi.org/10.1016/j.jacadv.2022.100003


FIGURE 6 RHCNet Performance as a Function of Model Unreliability

(A) Normalized Brier score (average model error) for inferring an elevated mPCWP in patients with high and low unreliability in the devel-

opment set (B) and AUC for the same. The unreliable subgroup is defined as the set of all predictions having unreliable scores within the top

decile. For simplicity, we refer to all other predictions that are relatively reliable. *P < 10�2, **P < 10�3. AUROC ¼ area under the receiver

operating characteristic curve; mPCWP ¼ mean pulmonary capillary wedge pressure; RHCNet ¼ Right Heart Catheterization Network.
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but also aspires to identify when the model produces
untrustworthy predictions. We do so by calculating
an unreliability score that identifies when model
predictions fall into a subgroup where model perfor-
mance is likely to be poor. In addition to learning
when the mPCWP is elevated, the model also learns
information about other hemodynamic variables that
are related to the mPCWP. If the model correctly
captures the underlying physiology, the quantities
estimated by the model should be internally consis-
tent. When the model’s predictions are incompatible,
we assume that it has not correctly learned the un-
derlying physiology for the given input, indicating
that the corresponding predictions are untrustwor-
thy. Using this principle as a guide, we derived a
metric, U, that quantifies how internally consistent
the estimated model predictions are. Our work dem-
onstrates that while the overall discriminatory power
of the model is good, model performance is poor in
subgroups enriched with predictions that have high U
values.

To illustrate how these data could be used in
practice, we show the hemodynamic trajectory of an
example patient from the holdout data set, alongside
the model probability of elevated mPCWP and the
unreliability metric (Central Illustration). For this
patient, prior to orthotopic heart transplant, the
measured mean wedge pressures are elevated, and
model predictions agree with these observations.
After transplantation, the patient’s mPCWP drops and
the inferred model probability decreases as well.
Moreover, the most accurate predictions are associ-
ated with low unreliability scores. Together, the
mPCWP and the associated unreliability score provide
complementary information that may support the
identification of when the mPCWP is truly elevated.
STUDY LIMITATIONS. Our model was developed on
patients arising from a single tertiary care center;
hence, additional studies are needed to determine its
applicability to other settings. We have therefore
made the model publicly available to facilitate its
testing in different clinical environments (https://
github.com/daphneschles/RHCnet). In addition,
while we ensured that the time between 12-lead ECG
acquisition and the cardiac catheterization was
<24 hours, the precise time of catheterization is not
known, introducing additional noise to the data due
to hemodynamic changes that may have occurred

https://github.com/daphneschles/RHCnet
https://github.com/daphneschles/RHCnet


CENTRAL ILLUSTRATION Evaluating Trends in mPCWP on a Per-Patient Basis

Schlesinger DE, et al. JACC Adv. 2022;1(1):100003.

RHCNet predictions on serial ECGs for a patient in our holdout set. This patient had HF and then underwent orthotopic cardiac transplantation, as noted in the colored

bar at the bottom of the figure. The x-axis represents the time from the patient’s first RHC. At each time point a 12-lead ECG was obtained and RHCNet was used to

estimate the probability that the mPCWP was elevated (blue), as well as the unreliability of that prediction (black), using only the 12-lead ECG. The right-hand axis

corresponds to the model output and unreliability, both inferred from a 12-lead ECG. The left-hand axis corresponds to the measured mPCWP, acquired via right heart

catherization on the same day that the ECG was acquired (red line). Overall, RHCNet tracks the patient’s mPCWP and subsequent improvement after transplant.

Moreover, high unreliability scores (near the threshold corresponding to the 10% highest unreliability) are more likely to be incorrect. These data suggest that RHCNet

may enable serial non-invasive tracking of central hemodynamics using the 12-lead ECG. ECG ¼ electrocardiogram; HF ¼ heart failure; mPCWP ¼ mean pulmonary

capillary wedge pressure; PAC ¼ pulmonary artery catheter; RHC ¼ right heart catheterization; RHCNet ¼ Right Heart Catheterization Network.

Schlesinger et al J A C C : A D V A N C E S , V O L . 1 , N O . 1 , 2 0 2 2

Predicting Elevations in mPCWP From the 12-Lead ECG Using Deep Learning M A R C H 2 0 2 2 : 1 0 0 0 0 3

10
between the acquisition of the ECG and the cathe-
terization procedure. We expect that better results
could be obtained if each 12-lead ECG were recorded
just prior to catheterization. Our model generates a
binary classification of the mPCWP based on a clini-
cally important threshold rather than predicting the
precise value of the mPCWP itself. Larger data sets,
and prospective studies, are required to determine
the predictive value of deep learning models for
estimating advanced hemodynamic parameters.

CONCLUSIONS

Our results suggest that a machine learning model is
able to identify when the mPCWP is elevated using
information from the ECG alone. The model has the
potential to be an effective screening tool for the
detection of elevated left-sided filling pressures in
selected patients. Further studies are needed to
establish the potential clinical applications of the
method in real-world applications.
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COMPETENCY IN SYSTEMS-BASED PRACTICE: Deep

learning applied to the 12-lead surface ECG can be used to es-
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timate when the mPCWP is elevated in patients with suspected

cardiac disease.

TRANSLATIONAL OUTLOOK: Further prospective trials of

RHCNet are needed to determine the clinically utility of using

deep learning to estimate central pressures in patients with

cardiac disease.
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