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Abstract

A long-standing assumption in evolutionary biology is that the evolution rate of protein-coding genes depends, largely, on

specific constraints that affect the function of the given protein. However, recent research in evolutionary systems biology

revealed unexpected, significant correlations between evolution rate and characteristics of genes or proteins that are not

directly related to specific protein functions, such as expression level and protein–protein interactions. The strongest

connections were consistently detected between protein sequence evolution rate and the expression level of the respective
gene. A recent genome-wide proteomic study revealed an extremely strong correlation between the abundances of

orthologous proteins in distantly related animals, the nematode Caenorhabditis elegans and the fruit fly Drosophila
melanogaster. We used the extensive protein abundance data from this study along with short-term evolutionary rates (ERs)

of orthologous genes in nematodes and flies to estimate the relative contributions of structural–functional constraints and

the translation rate to the evolution rate of protein-coding genes. Together the intrinsic constraints and translation rate

account for approximately 50% of the variance of the ERs. The contribution of constraints is estimated to be 3- to 5-fold

greater than the contribution of translation rate.

Key words: protein evolution, structural–functional constraints, misfolding, protein abundance.

Introduction

The rates of evolution of protein-coding genes span a range

of three to four orders of magnitude but each gene has

a characteristic rate that remains relatively constant over
long evolutionary intervals (Zuckerkandl and Pauling

1965). Genome-wide measurements of evolutionary rates

(ERs) revealed a remarkable constancy of the shape of

the distributions of the rates across sets of orthologous

genes in diverse life forms, from bacteria to mammals

(Grishin et al. 2000; Wolf et al. 2009). The universality of

the ER distribution implies simple and equally universal

underlying determinants. The nature of these factors, argu-
ably, is one of the central problems of evolutionary biology. It

is traditionally assumed that ER is a multiplicative function

of, first, the intrinsic structural–functional constraints

that affect the given protein and, second, the biological

importance of the protein in the organism (Wilson et al.

1977). Until recently, this hypothesis and the relative contri-

butions of the two terms remained effectively inaccessible to
empirical study.

Functional genomics and systems biology revealed a com-

plex structure of correlations between evolutionary and

phenomic variables (Herbeck and Wall 2005; Koonin and

Wolf 2006; Pal et al. 2006; Vitkup et al. 2006; Wolf

2006) which comprise two distinct classes so that within-

class correlations are positive whereas between-class corre-

lations are negative (Wolf et al. 2006). For instance, the ER

and propensity for gene loss are positively correlated; by

contrast, each of these variables is negatively correlatedwith

the gene expression level. Surprisingly, little if any correlation

was detected between the essentiality of genes for the re-

production of organisms and the ER: at best, nonessential

genes evolve slightly faster than essential genes (Hurst

and Smith 1999; Hirsh and Fraser 2001; Jordan et al.

2002; Krylov et al. 2003; Wall et al. 2005; Wolf 2006).

Among all the detected connections, the most consistent
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and strongest one is the negative correlation between the
expression level of a gene and its sequence evolution rate:

highly expressed genes evolve significantly slower than

lowly expressed ones (Pal et al. 2001; Krylov et al. 2003;

Drummond et al. 2005; Lemos et al. 2005).

The link between expression level and sequence evolu-

tion is invariably detected across a broad range of model

organisms, so it was proposed that expression level or, more

precisely, the rate of translational events is the dominant de-
terminant of the sequence evolution rate (Drummond et al.

2005, 2006; Drummond and Wilke 2008). This idea is

embodied in the mistranslation-induced misfolding (MIM)

hypothesis according to which the underlying cause of

the covariation between the sequence evolution rate and

expression level is the selection for robustness to protein

misfolding, that is, increasingly important for highly ex-

pressed genes owing to the toxic effects of misfolded pro-
teins (Drummond et al. 2006; Wilke and Drummond 2006;

Drummond andWilke 2008, 2009). Detailed computer sim-

ulations of protein evolution seem to indicate that the toxic

effect of protein misfolding, indeed, could suffice to explain

the observed covariation of expression level and sequence

evolution rate (Drummond and Wilke 2008). An empirical

test of the MIM hypothesis indicated that the ERs of do-

mains in multidomain proteins (in which the domains are
translated at the same rate) are substantially homogenized

compared with the ERs of the same domains in separate

proteins (Wolf et al. 2008). This observation directly sup-

ports the hypothesis that the translation rate is one of

the determinants of protein evolution and suggests that

the contribution of this factor might be comparable with

that of structural–functional constraints.

A recent comparative proteomic study of two distantly
related model animals, the nematode Caenorhabditis ele-
gans and the fruit fly Drosophila melanogaster, revealed
an unexpectedly strong positive correlation (correlation co-

efficient of ;0.8) between the abundances of orthologous

proteins in the two organisms (Schrimpf et al. 2009). This

finding seems to be compatible with the generalized

MIM hypothesis because protein abundance comes across

as an evolutionarily highly conserved and, by implication,
critically important feature. Although protein abundance

is obviously a function of both translation rate and protein

degradation rate, experimental studies suggest that the

contribution of translation rate is much greater than that

of the degradation rate (Belle et al. 2006).

Here,we showthat the correlationbetweenprotein abun-

dances is much higher than the correlation between the ERs

of orthologous genes in the nematode and the fly. We then
develop a mathematical model that allows a quantitative es-

timationof the relative contributions of structural–functional

constraints and translation rate to the rate of evolution of

protein-coding genes and shows that structural–functional

constraints are the primary factor shaping protein evolution.

Materials and Methods

Genome sequences of D. melanogasterwere obtained from
the FlyBase database. Genome sequences of Drosophila
pseudoobscura, C. elegans, and Caenorhabditis briggsae
were obtained from the National Center for Biotechnology

Information’s RefSeq database (Wheeler et al. 2003). Recip-

rocal BlastP (Altschul et al. 1997) searches (e value threshold
1 � 10�6, effective database size 2 � 107, no low-complex-

ity filtering or composition-based statistics) were performed

for C. elegans–C. briggsae and D. melanogaster–D.
pseudoobscura genome pairs. Putative orthologs were

identified as bidirectional best hits (Tatusov et al. 1997). Pro-

tein sequences of orthologs were aligned using MUSCLE

(Edgar 2004). Lineage-specific ERs were estimated as amino

acid distances between aligned sequences of orthologs and

were calculated using PROTDIST (Felsenstein 1996) with the

Jones-Taylor-Thornton evolutionary model (Jones et al.

1992), and gamma-distributed site rates with the shape pa-
rameter equal to 1.0. If the amino acid sequences of ortho-

logs were identical, a distance of 0.5/length was assigned.

Protein and mRNA abundance data for the nematode

C. elegans and the fruit fly D. melanogaster (Schrimpf

et al. 2009) and the worm-fly orthology relationship data

were kindly provided by Manuel Weiss and Sabine Schrimpf

(University of Zurich, Zurich, Switzerland). When the orthol-

ogy relationship involved multiple genes from one of both
organisms, the most similar pair was included (a simplified

Index Ortholog procedure Krylov et al. 2003; Wolf et al.

2006).

Assignments of worm and fly genes to EggNOGs (Jensen

et al. 2008) were used to ascribe a functional class (Tatusov

et al. 2003) to a worm-fly pair of orthologs.

ER and mRNA abundance data for human and mouse

proteins were from Wolf et al. (2009).
Logarithms of protein (mRNA) abundances and evolution

rates for 2,297 quartets of orthologs were standardized to

the average of 0 and standard deviation of 1.

Results and Discussion

Correlations between Evolutionary and Phenomic
Variables
Considering the unexpected high correlation between the

abundances of orthologous proteins in the nematode and

the fly (Schrimpf et al. 2009), we reexamined the data

and compared this correlation with the correlation between

the rates of sequence evolution among orthologous genes

in the respective lineages. To this end, we calculated lineage-

specific, short-term ERs by comparing the sequences of
orthologous genes for the nematodes C. elegans and

C. briggsae and the flies D. melanogaster and

D. pseudoobscura. The two pairs of species are separated

by nearly the same evolutionary distance and show nearly
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identical distributions of ERs between orthologs (supple-

mentary fig. S1, Supplementary Material online). Altogether

we identified 2,297 quartets of orthologs for which reliable

abundance data (Schrimpf et al. 2009) were available as

well. The correlations between protein abundances and lin-

eage-specific ERs within this set of orthologs are shown in

figure 1A and 1B, and table 1. The correlation between pro-

tein abundances was nearly identical to the value reported
by Schrimpf et al. (2009), whereas the correlation between

the ERs was substantially lower (;0.52 for the rates vs.

;0.80 for the abundances; compare figures 1A and 1B).
For each lineage, a moderate but highly significant negative

correlation was observed between the ER and protein abun-

dance (fig. 1C and 1D), in agreement with the universal neg-

ative correlation between ER and expression level (Pal et al.

2001; Krylov et al. 2003; Wolf et al. 2006; Drummond and
Wilke 2008, 2009).

Thus, protein abundance seems to be controlled by pu-

rifying selection much more tightly than the ER, regardless

of the factors that determine the latter (provided that the

measurement noise is of comparable magnitude for both

variables). The availability of two parallel arrays of ER and

protein abundance data for orthologs from distantly re-

lated animals prompted us to attempt to disentangle
the contributions of structural–functional constraints

and translation rate to the ER. Orthologs from different an-

imals are highly similar structurally and functionally, so to

a good approximation the structural–functional con-

straints can be assumed to be the same. Under this as-

sumption, although the correlations between the ER

and the abundances of worm and fly proteins, considered

separately, are affected by both structural–functional and
translation rate–determined effects, the correlations be-

tween the differences in the ER and the differences be-

tween the protein abundances in two organisms

(hereinafter rD) should be determined solely by the trans-

lation rates and random noise.

Hence an important reality check: if the observed dif-

ference between abundances of orthologous proteins is

biologically relevant rather than caused by random noise,
rD should have the correct sign (same as in the rate-

abundance correlation) and be statistically significant. Our

calculation yielded rD � �0.09 (table 1, fig. 1E), a relatively
low but statistically significant value (P5 1.7� 10�5). More-

over, estimates of rD were consistent with respect to the

sign, magnitude, and statistical significance of the correla-

tion when different, independent data sets were analyzed

and were supported by a bootstrap test (see below). Thus,

we proceedwith a formal model of the effects of constraints

and translation rate on the ERs and solve this model for its

parameters.

Modeling Evolution of Protein-Coding Genes to
Infer the Relative Contributions of Structural–
Functional Constraints and Translation Rate

Assumptions. We developed a mathematical model to

use the data on the correlations between protein abun-

dances and ERs in two lineages to infer the relative contri-
butions of constraints and translation rates to the evolution

of protein-coding genes. The model rests on the following

assumptions.

1. ER can be broken down into a product of the
following components:

o translation rate-dependent factors;
o factors that are independent of translation rate
but are common for orthologs in the compared
organisms, and

o other factors that are independent of translation
rate and independent between orthologs;

We refer to the factors that are common for orthologs

but independent of the translation rate as ‘‘structural–

functional constraints.’’ This interpretation appears plau-
sible because orthologous protein, at least, those that

show high sequence conservation, typically possess the

same overall structure, retain the same function and op-

erate in similar cellular contexts, even in organisms sepa-

rated by hundreds of millions of years of evolution, such as

representatives of different animal phyla. Both the intrin-

sic constraint term and the translation rate-dependent

term can be approximated by power functions (linear
functions of log variables in the log scale) of a protein-

specific ‘‘structural–functional factor’’ and translation

rate, respectively.

2. There is a substantial component in the contribution
of structural–functional constraints, that is, lineage
independent and gene independent.

3. There is a substantial component in the contribution
of translation rate, that is, gene independent but
lineage specific.

Thus, the above two assumptions refer to the genome-

wide factors that determine the relationships between

structural–functional constraints and effects of translation

rate. In addition, each gene has a specific translation rate

and unique structural–functional constraints that affect

Table 1

Measured Correlations between Protein Abundances and Lineage-

Specific Evolutionary Rates

Variable Nematode Fly

rA þ0.80

rR þ0.52

rRAxx, rRAYY �0.41 �0.34

rRAxY, rRAYx �0.37 �0.32

rD �0.09*

*P 5 1.7 � 10�5
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the relative contribution of these factors to the evolution

rate of this gene.

4. Translation rate is approximated by the abundance of
the corresponding gene product (protein or mRNA);
the difference between protein (mRNA) abundances
is negligible between closely related species but
substantial between distantly related lineages (this
assumption is compatible with the results of genome-
wide studies on evolution of gene expression in
diverse model organisms Jordan et al. 2005;

Khaitovich et al. 2006); the error of the abundance
estimate is independent of other variables but could
be correlated between orthologs in different lineages.

5. Effects of other translation-independent factors that
differ between orthologs in different organisms,
random noise, and errors of rate measurement can
be combined into a single variable which is in-
dependent of other variables.

6. Means and variances of the distributions of all
variables are finite.

FIG. 1.—Correlations between abundances and evolutionary rates of orthologous proteins in nematodes and flies. A) Protein abundances in C.

elegans and D. melanogaster. B) Evolutionary rates in the nematode and fly lineages. C) Protein abundance versus evolutionary rate in the nematode. D)

Protein abundance versus evolutionary rate in the fly. E) Difference in abundances versus difference in evolution rates.
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The Model. With the above assumptions, for gene i in
species X and Y, respectively, the ER (on the log scale) is:

RX;i 5 bSi þ aXTX;i þ EX;i ;
RY ;i 5 bSi þ aYTY ;i þ EY ;i ;

ð1Þ

where Rx,i is the ER of gene i in the lineage X, Si is the gene-
specific constraint factor assumed to be identical for or-

thologous genes in the two lineages, Tx,i is the translation

rate of gene i, Ex,i is the gene-specific combination of ran-

dom and unknown factors, and ax and b are coefficients

that reflect the gene-independent (genome-wide) compo-

nents of the relative contributions of the constraints and

translation rate, respectively (same for gene i in species Y).
In practice, the translation rates cannot be measured di-

rectly but are correlated with the observable abundances of

gene products:

AX;i 5 cTX;i þ eX;i ;
AY ;i 5 cTY ;i þ eY ;i ;

ð2Þ

whereAx,i is theobservedabundanceof the i-th geneproduct
inspeciesX,c is the‘‘accuracycoefficient’’ that reflects thecor-
relation between abundance and the actual (hidden) transla-

tionrate,andex,i is thecomponentof theobservedabundance

that encompasses gene-specific measurement errors and

other random factors (same for the i-th gene in the speciesY).
If ER, translation rates, abundances, and constraint fac-

tors each are standardized on the log scale to the mean
of 0 and variance of 1, then:

ÆR2X;iæ5 ÆR2Y ;iæ5 ÆT2
X;iæ5 ÆT2

Y ;iæ5 ÆA2
X;iæ5 ÆA2

Y ;iæ5 ÆS2i æ51

(where Æaiædenotes the expectation of ai across all i). The
fraction of the total variance of R unexplained by S and T
(ÆE2X;iæ andÆE

2
Y ;iæ) is unknown, whereas Æe2X;iæ5Æe2Y ;iæ51� c2

(from eq. (2)). As random factors are uncorrelated with each

other or with other variables, expectations of all cross prod-

ucts involving E or e are equal to zero with the exception of

ÆeX;ieY ;iæ (see below).

Solution of the Model. From the equations (1) and (2):

rR 5 ÆRX;iRY ;iæ5 b2 þ aXaY ÆTX;iTY ;iæ
þ aXbÆSiTX;iæ þ aYbÆSiTY ;iæ;

rA 5 ÆAX;iAY ;iæ5 c2ÆTX;iTY ;iæ þ ÆeX;ieY ;iæ;
rRAXX 5 ÆRX;iAX;iæ5 cðaX þ bÆSiTX;iæÞ;
rRAYY 5 ÆRY ;iAY ;iæ5 cðaY þ bÆSiTY ;iæÞ;
rRAXY 5 ÆRX;iAY ;iæ5 cðaXÆTX;iTY ;iæ þ bÆSiTY ;iæÞ;
rRAYX 5 ÆRY ;iAX;iæ5 cðaY ÆTX;iTY ;iæ þ bÆSiTX;iæÞ

ð3Þ

(the names for the correlations that can be measured

from the data are assigned for convenience). Additionally,

we express the correlation between the deviations of the

experimentally measured abundances from the true trans-

lation rates using the correlation coefficient re
ÆeX;ieY ;iæ5reð1� c2Þ. Then the system (3) can be solved with

respect to ax, aY and b using c and re as free parameters:

aX 5
rRAXX � rRAYX þðrRAYY � rRAXY ÞÆTX;i TY ;i æ

cð1� ÆTX;i TY ;i æ2Þ
;

aY 5
rRAYY � rRAXY þðrRAXX � rRAYX ÞÆTX;i TY ;i æ

cð1� ÆTX;i TY ;i æ2Þ
;

b2 5 rR � aXaY ÆTX;iTY ;iæ
� aXð rRAXXc � aXÞ � aY ð rRAYYc � aY Þ;

ð4Þ

where ÆTX;iTY ;iæ5
rA�reð1�c2Þ

c2 . Additionally,

ÆE2X;iæ5 1 � b2 � a2X � 2aXð rRAXXc � aXÞ;
ÆE2Y ;iæ5 1 � b2 � a2Y � 2aY ð rRAYYc � aY Þ;
ÆSiTX;iæ5 ð rRAXXc � aXÞ=b;
ÆSiTY ;iæ5 ð rRAYYc � aYÞ=b;
rD 5

rRAXX þ rRAYY � rRAXY � rRAYX
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� rRÞð1� rAÞ
p :

ð5Þ

Equation (4) gives the absolute value for b without any

indication of its sign. Indeed, given that here S is a hidden,
not directly observable variable, it can be construed as ei-

ther a measure of constraint (negatively correlated with R)
or as a measure of robustness to mutational and transla-

tional errors (positively correlated with R). Hereinafter,

we interpret S as a constraint and, accordingly, assume

b to be negative.

Exploring the Parameter Space. Equations (4–5) allow
one to estimate the relative contributions of intrinsic con-

straints and translation rate to the ER of protein-coding

genes from the correlations between the variables (eq.

(3), table 1) if the accuracy coefficients c connecting the ob-

served gene product abundance with the hidden translation

rate and re, the correlation between the abundance mea-

surement errors, are known. The available data do not allow

a direct estimate for c and re but several observations can be
made regarding these parameters.

Both c and re are correlation coefficients, the former be-

tween the translation rate and measured abundance (eq.

(2)) and the latter between measurement errors for ortho-

logs in different organisms. Thus, both must be less than or

equal to 1. Moreover, the values of c and re have to conform

to several boundary conditions arising from the nature of

the model variables and parameters (supplementary table
S1, Supplementary Material online); for instance, we expect

a nonnegative correlation between the measured and real

values.

Estimation of the Relative Contributions of
Structural–Functional Constraints and Translation
Rate to Protein Evolution. Thecaseofc/1(thevalueof

re becomes irrelevant here) implies a perfect correspondence

Wolf et al. GBE
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between translation rate and the measured protein abun-

dance. Under this assumption, we estimate the b/a ratio to

be in the range of 4–7 and the correlations between the con-
straint and translation rate factors (ÆSiTX;iæ and ÆSiTY ;iæ) in the

range of 0.35-0.36 depending on organism (table 2).

Perhaps, not surprisingly, all boundary conditions (supple-

mentary table S1, SupplementaryMaterial online) combined

exclude more than 3/4 of the possible values of c and re
(fig. 2A). Numerical exploration of the (c, re) parameter

space (fig. 2 and supplementary fig. S3B–K, Supplementary

Material online) reveals a singularity areawhere the absolute
values of ax, aY, and b increase above 1, the b/a ratio drops

to;0.8, the correlation between organism-specific transla-

tion rates ÆTX;iTY ;iæ approaches 1, the correlations between

the constraint factors and translation rates (ÆSiTX;iæ and

ÆSiTY ;iæ) approach �1, and the residual fraction of the var-

iance of R (ÆE2X;iæ, ÆE
2
Y ;iæ) declines toward 0. This area corre-

sponds to unrealistic relationships between the ER,

structure-functional constraints, and translation, with virtu-
ally no real differences between orthologs (ÆTX;iTY ;iæ / 1)

but with amplification of whatever tiny fraction of variance

in Tx,i–TY,i remains by the very high absolute values of ax and
aY (extremely strong amplification by translation). Because

the variance of R is assumed to be equal to 1, this dictates

comparably high absolute values of b and a very strong neg-

ative correlation between S and T.
In the absence of any reliable a priori information about

c and re, we assume a uniform distribution of these param-

eters within the range of c and re that is compatible with the

boundary conditions (fig. 2A). Then, we can estimate me-

dian values for all parameters and variables, that is, values

such that, for half of the area within the domain, the surface

of the corresponding function lies below and for the other

half above this value (table 2). Given the relative flatness of

the surfaces representing the parameter values (fig. 2B,C,D),
medians seem to be a good representation of the values

‘‘typical’’ for the system.

The relative contribution of the structural–functional con-

straints to the ER is predicted to be greater than the contri-

bution of the translation rate (b/a . 1) over most of the

parameter space with the exception of the neighborhood

of the singularity (fig. 2). Using the median as a realistic mid-

dle ground, we find that the effect of constraints is approx-
imately 3- to 5-fold greater than the effect of the translation

rate. The fraction of the variance of the ER, that is, explained
by the combination of the constraint and translation rate

factors (1 � ÆE2X;iæ, 1 � ÆE2Y ;iæ) remains remarkably stable

at ;50%.

Protein abundance data can explain 10–17% (r2RA) of the
ER variance within an organism. In part, this contribution

seems to arise from a joint effect of structural–functional

constraints and translation rate as there is a moderate

but substantial positive correlation between S and T (median
values þ0.37 for both organisms). These findings suggest

that structural–functional constraints could partly determine

the allowable abundance of proteins. Again, using the me-

dian values, we estimate that translation rate alone would

explain only 2–5% (a2) of the original variance of ER,

whereas structural–functional constraints, if amenable to di-

rect measurement, alone would explain ;41% (b2) of the
original variance; the remaining 8–15% of the variance is
explained by the joint contribution of the constraint and

translation rate factors (fig. 3).

To assess the robustness of the above estimates to sam-

pling bias, we used two approaches. First, we produced

1,000 bootstrap replications of the pairs of orthologous

genes, computed the correlations for the bootstrapped

samples, and estimated themodel parameters for each sam-

ple (supplementary table S2A, Supplementary Material on-
line; the estimates are for c / 1). The 95% confidence

intervals for the b/a ratio in the resampled data were

2.8–6.2 and 3.9–20.7 for b/ax and b/aY, respectively (com-

pare with the values in table 2). Second, we analyzed four

broad functional classes of genes (information storage and

processing, cellular processes and signaling, metabolism,

and poorly characterized Tatusov et al. 2003) separately

(supplementary table S2B, Supplementary Material online;
the estimates are for c/ 1). Due to an approximately 4-fold

reduction of the sample size, neither of these categories

gives a statistically significant rD value. Nevertheless, the

estimates for the b/a ratio stay within the same range

(1.7–18.6, supplementary table S2B, Supplementary Mate-

rial online) across all the classes. Thus, the results are robust

to sampling error and do not depend on the presence of

a small number of biased sets of orthologs.
The same approach to modeling evolution of protein-cod-

ing genes can be implemented also by using themRNA abun-

dance data as a proxy for the translation rate. As noticed by

Schrimpf et al. (2009), mRNA abundance data are relatively

poorly correlated between nematodes and flies and with the

ERs (supplementary table S3, Supplementary Material online)

compared with the protein abundance data (table 1). Never-

theless, the rD value computed for themRNAabundance data
remained significant (rD 5 �0.05, P 5 1.1 � 10�2), so we

used it to perform the same calculations (supplementary table

S4, Supplementary Material online). The estimate range for

the median b/a ratio (5–25) was generally consistent with

the values obtained for the protein abundance data. The

Table 2

Estimated Model Parameters

Variable c 5 1, re 5 0 Median Source

ÆTX;iTY ;iæ þ0.80 þ0.82 equation (4)

ax, aY �0.17, �0.10 �0.22, �0.13 equation (4)

b �0.68 �0.64 equation (4)

b/a 4.0, 6.9 2.9, 4.9

ÆSiTX;iæ, ÆSiTY ;iæ þ0.36, þ0.35 þ0.37, þ0.37 equation (5)

ÆE2X;iæ, ÆE
2
Y ;iæ 0.43, 0.48 0.43, 0.51 equation (5)
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wider range of values, probably, is caused by the relatively low

correlations between mRNA abundances. Similar results, al-

beit with an even greater scatter (the b/a ratio in the range of

7–50), were obtained for 8,511 human–mouse orthologs us-

ing expressed sequence tag counts as a proxy for expression

level (supplementary table S5, Supplementary Material on-

line).

The estimations of the relative contributions of struc-
tural–functional constraints and translation rate (abun-

dance) to the evolution of protein-coding genes critically

depend on the use of rD , which is a small value. This could

be an issue of concern but the fact that rD is statistically sig-

nificant for the independently measured protein and mRNA

abundances and that estimations using both data sets yield

compatible values of the b/a ratio suggests that the resulting
estimates are valid and reasonably robust.

For the final and, arguably, crucial test of the above con-

clusions, we employed the data on protein abundance of

proteins in the plant Arabidopsis thaliana (kindly provided

by Christian von Mering) paired with the fruit fly data to re-

peat the estimation of the relative contributions of the con-

straint and translation rate factors to the ER (supplementary

table S6, Supplementary Material online). The resulting ra-

tios of the medians of b and a are in the range of 1.6–7.1, in

a good agreement with the results obtained with the fly and

nematode data. The congruence of the results obtained
with organisms as evolutionarily distant as animals and

plants suggests that the relative contributions of the con-

straint and translation rate factors to protein evolution could

be universal across the entire diversity of cellular life forms.

A General Model of Misfolding-Driven Protein
Evolution
The MIM hypothesis postulates the central role of MIM cost
in determining the selection pressure experienced by a pro-

tein-coding gene (Drummond et al. 2006; Drummond and

FIG. 2.—Relationships between the model parameters c and re and the key variables. A) Area of the parameter space satisfying the boundary

conditions from Table 2. B) Values of aX. C) Values of aY. D) Values of b.
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Wilke 2008). Our present results suggest an even more gen-

eral model to explain the dependence of protein evolution

on both the intrinsic structural–functional constraints and

translation rate. A protein fold or (super)family can be rep-

resented as a peak in a protein folding landscape where the

plane corresponds to the sequence space and the altitude is

the probability that a given sequence will fold correctly,

hereinafter ‘‘robustness’’ (fig. 4). Under theMIM hypothesis,
the altitude of a point in the sequence space depends not

only on the robustness of the exact replica of the corre-

sponding protein but also on the robustness of each of

themistranslation products of themRNA coding for this pro-

tein, weighted by the probability of emergence of a partic-

ular mistranslated variant. The total cost of misfolding for

a given protein is determined by the amount of misfolded

forms; this amount is proportional to the translation rate
and inversely proportional to misfolding robustness. More

precisely, the fitness difference between two alleles depends

(possibly, in a nonlinear fashion) on the difference between

misfolding costs incurred by the expression of these alleles.

Selection to reduce the misfolding cost favors mutations

that increase robustness, whereas random drift tends to

scatter protein sequences away from the summit and down

the slope of a robustness peak. These two trends reach an
equilibrium at some cost level; the corresponding equilib-

rium level of robustness depends on the translation rate:
highly expressed proteins must be highly robust, otherwise

the misfolding cost would be unacceptably high (fig. 4). This

model yields a possible explanation of the apparently para-

doxical observation that, although highly expressed proteins

are selected for higher robustness, they also are more con-

strained: the higher the equilibrium robustness level, the

smaller the fraction of mutations that do not push pro-

tein robustness below this threshold (fig. 4). The model im-
plies that both MIM and native sequence misfolding are

important determinants of protein evolution, and the con-

tribution of native sequence misfolding is the greatest for

highly expressed proteins that have small robust sequence

neighborhoods (fig. 4).

The MIM hypothesis assumes, explicitly (Wilke and

Drummond 2006) or implicitly (Drummond and Wilke

2008), that, although robustness peaks differ in height
and shape between protein folds and (super)families, and

in particular, robust folders have higher amino acid residue

contact densities than less robust ones (Drummond and

Wilke 2008; Zhou et al. 2008), these differences are less

consequential than direct effects of translation rates. Our

previous work showed that the effects of structural–

functional constraints and translation rate are comparable

(Wolf et al. 2008). The present findings that result from
a completely different approach further extend and specify

these conclusions, suggesting that the intrinsic difference in

robustness between protein domains is the primary determi-

nant of the ER, whereas translation rate alone explains but a

small fraction of the variance (fig. 3). The positive correlation

between the apparent pressure of structural–functional

constraints and translation rate further implies that,

although highly expressed proteins are likely to be more ro-
bust to misfolding than lowly expressed proteins, as a result

of adaptation, the fitness landscape becomes increasingly

rugged, with steeper peaks, as altitude (i.e., intrinsic mis-

folding robustness of the native sequence) increases. Thus,

proteins that are highly robust to misfolding are conversely

weakly robust to mutation as sequences in their immediate

neighborhoods are substantially less robust to misfolding.

In principle, interpretation of the present results in terms
of the robustness of proteins to misfolding is not strictly nec-

essary. One could view the high contribution of the factor

denoted S in our model as a measure of the ‘‘functional den-

sity’’ of a protein (Wilson et al. 1977). However, in contrast

to the misfolding-rate hypothesis discussed above, the func-

tional density perspective does not imply any physical mech-

anism to explain the universal dependence between

evolution rate and the abundance of proteins. Furthermore,
are misfolding-rate concept is compatible with the recent

results on the connection between protein folding and evo-

lution which indicate that the characteristic distribution of

sequence evolution rate is a consequence of the fundamen-

tal physical principles of folding (Lobkovsky et al. 2010).

FIG. 4.—The general model of misfolding-driven protein evolution.

The schematic shows the relationships between misfolding robustness,

fitness, expression, selection, and drift in protein evolution.

FIG. 3.—Relative contributions of structural–functional constraints

and protein abundance (translation rate) to the evolution of protein-

coding genes. Top: accounting for protein abundance; bottom:

accounting for translation rate and structural–functional constraints.
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It should be stressed that the present results and conclu-
sions are at no discrepancy with the widely supported ob-

servation that expression level of protein-coding genes is the

best known predictor of the ER (Pal et al. 2001; Drummond

et al. 2005, 2006; Wolf et al. 2006; Drummond and Wilke

2009). Instead, the results of this work provide a step toward

dissection of this phenomenological connection into spe-

cific, mechanistic components, and suggest that the factor

primarily responsible for the observed anticorrelation be-
tween expression level and ER is the intrinsic robustness

of proteins to misfolding. The negative correlation between

expression level (abundance) and ER comes across as the

strongest because the even stronger relationship between

intrinsic structural–functional constraints and ER (fig. 3) is

not directly measurable (at least not without much extra ef-

fort). The present results do not invalidate the central point

of the MIM hypothesis, that the cost of misfolding is a key
determinant of protein evolution. However, our observa-

tions shift the emphasis from translation rate per se to in-

trinsic structural–functional constraints that in turn affect

the translation rate and thus take the entire concept of

misfolding-driven protein evolution closer to a specific,

mechanistic model.

Concluding Remarks
The recently reported high-quality proteomic data for two

distantly related animals (Schrimpf et al. 2009) followed by

similar results for even more distantly related organisms, re-

veal not only a strong correlation between abundances of or-

thologous proteins in different organisms but also a relatively

high correlation between protein abundances and evolution

rates. We used these data to reexamine the determinants of

the ERs of protein-coding genes. In a previous study, we
showed that both intrinsic structural–functional constraints

and the rate of expression made substantial and apparently

independent contributions to the ER (Wolf et al. 2008). Here,

we describe a mathematical model that takes advantage of

the availability of comparative data on ER and protein abun-

dances for several diverse lineages of eukaryotes to disentan-

gle the contributions of the constraint factor and the

translation rate factor and assess them quantitatively. We
found that together, the two factors account for approxi-

mately 50% of the variance of the ER of proteins and that

the contribution of structural–functional constraints is sev-

eral-fold greater than the contribution of translation rate. Fur-

thermore, the two factors are connected so that a protein’s

robustness to misfolding dependent on structural–functional

constraints, to a large extent, determines the maximum al-

lowable translation rate of the given protein.
The conclusions derived in this work directly apply only to

subsets of proteins in each of the studied eukaryotic organ-

isms that are, first, highly conserved in evolution so that

orthologs between distant organisms can be identified with

confidence and, second, are highly expressed so that they

can be confidently identified by proteomic methods. These
are ‘‘high status’’ (Wolf et al. 2006), largely house-keeping

genes. Furthermore, comprehensive studies with different

approaches and improved proteomic techniques should

determine how general are the present conclusions on

the relative roles of different factors in protein evolution.

The present model is based on several assumptions on

the relationships between the key variables that affect evo-

lution of protein-coding genes. Although these assump-
tions appear plausible, it would be important to

investigate the possible effects of their violation. The lim-

ited amount of high-quality data on protein abundance

presently does not allow us to investigate the full range

of parameters. However, comprehensive analysis including

validation of the present assumptions should become pos-

sible when such data become available for a wider range of

organisms separated by a broader range of evolutionary
distances.

Supplementary Material

Supplementary figures S1–S3 and supplementary tables

S1–S6 are available atGenome Biology and Evolution online

(http://www.oxfordjournals.org/our_journals/gbe/).
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