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Abstract 

Background:  The COVID-19 disease is putting unprecedented pressure on the global 
healthcare system. The CT (computed tomography) examination as a auxiliary con-
firmed diagnostic method can help clinicians quickly detect lesions locations of COVID-
19 once screening by PCR test. Furthermore, the lesion subtypes classification plays a 
critical role in the consequent treatment decision. Identifying the subtypes of lesions 
accurately can help doctors discover changes in lesions in time and better assess the 
severity of COVID-19.

Method:  The most four typical lesion subtypes of COVID-19 are discussed in this 
paper, which are GGO (ground-glass opacity), cord, solid and subsolid. A computer-
aided diagnosis approach of lesion subtype is proposed in this paper. The radiomics 
data of lesions are segmented from COVID-19 patients CT images with diagnosis and 
lesions annotations by radiologists. Then the three-dimensional texture descriptors 
are applied on the volume data of lesions as well as shape and first-order features. The 
massive feature data are selected by HAFS (hybrid adaptive feature selection) algorithm 
and a classification model is trained at the same time. The classifier is used to predict 
lesion subtypes as side decision information for radiologists.

Results:  There are 3734 lesions extracted from the dataset with 319 patients collec-
tion and then 189 radiomics features are obtained finally. The random forest classifier 
is trained with data augmentation that the number of different subtypes of lesions is 
imbalanced in initial dataset. The experimental results show that the accuracy of the 
four subtypes of lesions is (93.06%, 96.84%, 99.58%, and 94.30%), the recall is (95.52%, 
91.58%, 95.80% and 80.75%) and the f-score is (93.84%, 92.37%, 95.47%, and 84.42%).

Conclusion:  The three-dimensional radiomics features used in this paper can bet-
ter express the high-level information of COVID-19 lesions in CT slices. HAFS method 
aggregates the results of multiple feature selection algorithms intersects with tra-
ditional methods to filter out redundant features more accurately. After selection, 
the subtype of COVID-19 lesion can be judged by inputting the features into the RF 
(random forest) model, which can help clinicians more accurately identify the subtypes 
of COVID-19 lesions and provide help for further research.
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Introduction
In December 2019, the 2019 Coronavirus disease (COVID-19) began to spread world-
wide [1, 2]. According to statistics from Johns Hopkins University: as of June 8, 2021, 
173,533,746 people worldwide have been diagnosed with the virus, and the death toll 
is 3,734,475 [3]. With the rapid growth of patients of the COVID-19, the shortage 
of clinicians is increasingly severe. Currently, clinicians mainly use RT-PCR (reverse 
transcription-polymerase chain reaction) technology to detect RNA in sputum or 
nasopharyngeal swabs to detect COVID-19 pneumonia. But this method has a cer-
tain false-negative rate 40% [4]. Therefore, clinicians will also use chest CT images 
as a additional diagnostic method to improve the accuracy of COVID-19 detection 
for confirmed diagnosis. Moreover, the imaging pattern can change rapidly in a short 
period of time within the treatment process [5]. During the early COVID-19 surgery, 
Peng et al. [6] found that the COVID-19 lesions in CT had different subtypes, includ-
ing GGO, cord, solid and subsolid. Zhang et al. [7] believe that different COVID-19 
lesion subtypes have their own unique features.

However, the existing work mainly focuses on lesion detection of COVID-19 or its 
severity assessment. Few studies are paid attention to the classification of lesion sub-
types, which ignores the important role of lesion subtypes in the diagnosis of COVID-
19 disease. The subtypes identification of lesions in a timely manner can enable 
clinicians to better assess the patient’s condition and prescribe precise medicines in 
personality. Zhao et al. [8, 9] pointed out the severity and the symptoms of COVID-
19 pneumonia are different from common pneumonia, and lesions and characteristics 
of it are also different from common pneumonia. So the lesions caused by COVID-19 
pneumonia are more worthy of further study. At the same time, if the patient lesion 
type can be determined more accurately, the doctor can more accurately determine 
the COVID-19 patient’s condition by referring to the lesion type. In addition, train-
ing deep convolutional neural networks to diagnose COVID-19 requires massive CT 
impression data and huge computing resources, otherwise it is easy to cause under-
fitting of the model. As we all know, it is difficult to collect so much real CT images 
of COVID-19 for experimentation in a short period of time, while the machine learn-
ing algorithm can ignore the shortcomings of small amount of data and insufficient 
computing resources. Moreover, the machine learning methods of classification for 
COVID-19 are mainly based on features extracting from the 2D CT images in the 
exist papers.

To address above issues, we propose a novel random forest-based on hybrid adaptive 
feature selection (HAFS-RF) for CT slices. Thus, HAFS-RF first extracts the features 
of the lesion based on the CT slices, and filters redundant features by HAFS. Finally, 
the subtype of the lesion is judged according to the retained characteristics. It is worth 
mentioning that 3D radiomics features we used can make full use of the advanced infor-
mation of lesions which is not discussed in present work to the best of our knowledge 
in the state of art. Therefore, HAFS-RF helps to study the computer-aided diagnosis 
of COVID-19 lesion subtypes recognition, at the same time, the study can reduce the 
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image reading burdens of radiologists in vast data. The contributions in this paper can 
be discussed by three aspects. 

1.	 The pilot research work on lesions subtypes of COVID-19 is discussed in this paper, 
which has never been seen in previous studies so far and may greatly assist doctor 
diagnosis and evaluating severity of COVID-19 patients more effectively.

2.	 The 3D texture radiomics analysis method is applied on COVID-19 lesions diagnosis 
which is better to explore more hidden inner characters within the lesions to help 
experts better understand the pathological features of COVID-19.

3.	 Extensive experiments on clinical real-world datasets demonstrate the effectiveness 
of the proposed model of hybrid adaptive feature selection method. Moreover, we 
show the capability of the proposed model for the high dimension feature data with 
serious imbalance problem.

The rest of the paper is organized as follows. This paper first briefly summarizes the 
related works. We next introduce introduce the method with the composition of the 
dataset, the characteristics of 3D features, and the feature selection strategy in “Materi-
als and methods” section. The experimental results on the prepared database are dis-
cussed in "Results" section. We finally conclude this paper and look forward to the future 
work in “Conclusion” section .

Related work
The research work of lesion segmentation has achieved good results in the diagnosis of 
COVID-19 through machine learning or deep learning methods.

In terms of machine learning, Shi et al. [10] use medical imaging features and clinical 
features as input, and logistic regression as a classifier to distinguish COVID-19. Barstu-
gan et  al. [11] have made improvements in 2D feature extraction. GLCM (gray-level 
co-occurrence matrix), LDP (local directional pattern), GLRLM (gray-level run length 
matrix), GLSZM (gray-level size zone matrix), and DWT (discrete wavelet transform) 
were used to obtain the second-order statistical features for classification of COVID-
19. Ozkaya et al. [12] also propose a new method that fuses and ranks deep features for 
early detection in SVM. Elaziz et al. [13] used the new fractional multi-channel exponent 
moments (FrMEMs) to extract features from chest X-ray images. Then an improved 
Manta-ray search optimization based on differential evolution is used to select the most 
important features and a K-nearest neighbor classifier is used to distinguish COVID-19 . 
Tuncer et al. [14] proposed a feature generation method called Residual Exemplar Local 
Binary Pattern (ResExLBP) and used a novel Iterative ReliefF (IRF) for feature selection. 
In their work, the SVM classifier achieved 100.0% classification accuracy by using ten-
fold cross-validation.

In addition, some scholars have proposed some deep learning methods for the diag-
nosis of COVID-19. Zhou et al. [15] segment COVID-19 lesions from CT by using the 
U-Net segmentation network with a spatial and multi-channel attention mechanism to 
assist in diagnosis COVID-19. Khan et  al. [16] proposed a deep convolutional neural 
network called Coro-Net based on Xception architecture, which can detect COVID-19 
infection from chest X-ray images. Afshar et al. [17] pointed out that CNN is easy to lose 
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the spatial information between image instances, so an alternative framework based on 
the capsule network is proposed, which can handle small datasets. Khalifa et al. [18] fine-
tuned deep transfer learning for limited datasets to detect pneumonia chest X-ray based 
on generative confrontation network. Minaee et al. [19] trained four popular convolu-
tional neural networks, including ResNet18, ResNet50, SqueezeNet, and DenseNet-121, 
to identify COVID-19 disease in the analyzed chest X-ray images. He et al. [20] propose 
a synergistic learning framework for automated severity assessment of COVID-19 in 3D 
CT images, by jointly performing lung lobe segmentation and multi-instance classifica-
tion. Xu et al. [21] use a 3D deep learning model to segment candidate infection areas 
from lung CT images, then score these areas, and finally uses noise or Bayes function to 
calculate the final confidence score to classify patients as COVID-19, Influenza-A viral 
pneumonia (IAVP), and not infected.

Results
In this section, the classifier evaluation criteria are illustrated firstly. Then, we present 
experimental results achieved by different methods on the evaluation dataset. Finally, 
the comparative experiments are conducted to prove the influence of data augmenta-
tion, 3D features and HAFS.

Experimental evaluation of HAFS with RF model

We evaluate HAFS with RF (HAFS-RF) model on the collected chest CT images dataset. 
Table 1 shows the quantitative results achieved by different methods.

From Table 1, we can clearly observe that HAFS-RF achieved an accuracy of (93.06%, 
96.84%, 99.58% and 94.3%) for label 1, 2, 3 and 4, respectively, under the condition 
of α = 0.5 . Followed by DT (91.49% , 95.53% , 98.89% and 91.79% ), next is RF (90.42% , 
93.48% , 98.79% and 91.30% ). The accuracy of the remaining models such as SVM, KNN, 
LR, GaussianNB, and QDA is much lower than theirs. Obviously, HAFS-RF achieved 
the best performance. For each method, especially the accuracy of QDA is (63.72% , 
66.82% , 99.97% and 79.07% ), the accuracy of label 3 is always the highest, some of them 
even close to 100. The possible reason for this phenomenon is that although we have 
enhanced the data in the experiment, the number of the four types of lesions tends to be 
balanced. However, the number of lesions on label 3 is still the least. On the contrary, the 
precision value of GaussianNB is (88.57% , 42.62% , 14.64% and 37.82% ), and the fitting 
ability is seriously insufficient. The reason may be that GaussianNB is prone to under-
fitting for a small number of samples.

Figure 1 shows the ROC curves of different models. It is also obvious that our method 
has the highest ROC curve area. These results all show that HAFS-RF can improve the 
performance and efficiency of COVID-19 classification.

Influence of data augmentation

To evaluate the effectiveness of the data augmentation, we compare it to without data 
augmentation, with the results reported in Table 2. The algorithm used for data enhance-
ment is ADASYN, which is a widely used method for the data processing stage before 
the experiment. The main idea is: firstly, the total number of samples that need to be 
synthesized are calculated for minority samples. Secondly, for each minority sample, 
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find its neighbors and calculate a weight to automatically determine the number of sam-
ples that need to be synthesized for the sample.

As can be seen from Table 2, after data augmentation, the number of the four types 
of lesions changed from (2637, 519, 103 and 475) to (2637, 1098, 386 and 976). The data 
augmentation consistently achieves better results in label 2, 3 and 4, and worse in label 1. 
For example, data augmentation achieves (93.84% , 92.37% , 95.47% and 84.42% ) in terms 
of F-measure, none achieve (93.84% , 92.37% , 95.47% and 84.42% ). The possible reason 
is that the excessive number of samples of label 1 leads to the over-fitting of the model. 
On the contrary, the insufficient number of other types leads to insufficient fitting abil-
ity. After using data augmentation, the four sample sizes are relatively balanced, thus 
avoiding over-fitting to label 1, so the score of label 1 decreases, but the overall score 
increases.

Table 1  Performance of COVID-19 classification achieved by SVM, KNN, LR, GaussianNB, QDA, RF, 
HAFS-RF ( α = 0.5)

Bold values indicate the maximum value of each type of lesion classification index

Method Label Precision (%) Recall (%) Accuracy (%) F-measure (%)

SVM 1 76.34 99.42 82.3 86.37

2 99.48 62.07 92.31% 76.45

3 100.0 57.75 98.04 73.21

4 96.84 58.2 91.75 72.71

KNN 1 88.04 86.32 85.66 87.17

2 83.09 83.23 93.19 83.16

3 78.05 86.49 98.17 82.05

4 65.98 67.96 87.58 66.96

LR 1 83.46 88.4 83.8 85.86

2 76.93 75.3 89.83 76.11

3 66.67 52.11 96.58 58.5

4 55.86 50.27 83.7 52.92

GaussianNB 1 88.57 59.6 72.88 71.25

2 42.62 62.72 75.52 50.75

3 14.64 86.62 76.01 25.05

4 37.82 10.19 79.89 16.05

QDA 1 95.14 36.67 63.72 52.94

2 39.1 97.27 66.82 55.78

3 100.0 99.3 99.97 99.65
4 43.38 48.66 79.07 45.87

DT 1 91.85 92.57 91.49 92.21

2 91.53 87.21 95.53 89.32

3 86.75 90.34 98.89 88.51

4 78.36 79.93 91.79 79.14

RF 1 89.70 93.31 90.42 91.47

2 84.92 83.59 93.48 84.25

3 86.11 87.94 98.79 87.02

4 80.78 72.53 91.30 76.43

HAFS-RF (our) 1 92.21 95.52 93.06 93.84
2 93.17 91.58 96.84 92.37
3 95.14 95.8 99.58 95.47

4 88.43 80.75 94.3 84.42
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Influence of 3D features

As shown in Fig. 2, each feature will have its own score in HAFS. The green features 
are discarded in the first stage of HAFS, the orange features are discarded in the sec-
ond stage of HAFS, and the blue features are selected after HAFS.

The details of blue features of Fig.2 are shown in Table 3. It is obvious that after fea-
ture selection, a total of 48 features out of 189 features were retained. Among them, 

Fig. 1  ROC curves achieved by different models

Table 2  Performance of COVID-19 classification achieved with data augmentation

Augmentation Label Number Precision (%) Recall (%) Accuracy (%) F-measure (%)

With 1 2637 93.17 96.85 92.95 94.97

2 519 89.84 86.02 96.88 87.89

3 103 89.47 77.27 99.16 82.93

4 475 82.94 73.25 93.55 77.79

Without 1 2637 92.21 95.52 93.06 93.84

2 1098 93.17 91.58 96.84 92.37

3 386 95.14 95.8 99.58 95.47

4 976 88.43 80.75 94.3 84.42
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there are 18(6 ×  3) 2D features and 30 3D features. More 3D features are retained 
than 2D features. So 3D features may be more effective than 2D features.

To study the influence of 3D features, a comparison was done with and without the 
3D features for our model. Results of the evaluated criteria are given for the 189 features 
in Table  4. As shown in Table  4, HAFS-RF achieves the better classification accuracy 
when we use 2D and 3D features (93.06% , 96.84% , 99.58% and 94.3% ) than when we use 
2D features (89.37% , 93.12% , 98.47% and 91.2% ). The possible reason for improvements 
is that the 3D features we use have high-level feature representation, thereby improving 
the typing performance.

Influence of HAFS

To study the effectiveness of the HAFS selection, firstly we compare HAFS with state-
of-the-art feature selection methods (F-test, MIC, REF, and Lasso). Since they cannot 
determine the optimal number of features, we select the same number of features of 
them as HAFS-RF ( α = 0.5 ) for comparison experiments. The results are reported in 
Table 5.

Fig. 2  Scores of 189 features

Table 3  The features after the process of HAFS

Dimension 
of features

Kind of features Characteristics

2D First order Length, Mean, Max, Var, ASM, Energy

3D First order Robust mean absolute deviation, Mean, Root mean squared, Range, Interquar-
tile range, Skewness

Glszm Gray-level variance, High gray-level zone emphasis, Zone percentage, Small area 
low gray-level emphasis

Glrlm Long-run high gray-level emphasis, Difference variance, Gray-level nonuniform-
ity normalized, Run percentage

Glcm Sum squares, Id, Joint average

Gldm Dependence nonuniformity normalized, Dependence entropy, Dependence 
entropy

Shape Major axis length
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One can observe from Table 5 that compared to the other four methods, HAFS gets 
the highest accuracy (93.06% , 96.84% , 99.58% and 94.3% ). This proves from the side 
that the features selected by HAFS are more representative.

Secondly, we further develop four methods based on SVM, KNN, GaussianNB, and 
QDA by using HAFS (i.e., HAFS-SVM, HAFS-KNN, HAFS-GaussianNB, and HAFS-
QDA). We evaluate these eight methods, with the results reported in Table 6.

As shown in Table  6, the accuracy of QDA is increased from (63.72% , 66.82% , 
99.97% and 79.07% ) to (82.69% , 84.84% , 96.68% and 83.12% ). We can see that HAFS is 
effective and can improve the performance of the method for different methods. The 

Table 4  Performance of COVID-19 classification achieved by using 2D features and using 2D and 3D 
features

Feature Label Precision (%) Recall (%) Accuracy (%) F-measure (%)

2D 1 88.38 93.56 89.37 90.89

2 84.18 81.9 93.12 83.02

3 85.94 79.14 98.47 82.4

4 79.84 69.29 91.2 74.19

2D and 3D 1 92.21 95.52 93.06 93.84

2 93.17 91.58 96.84 92.37

3 95.14 95.8 99.58 95.47

4 88.43 80.75 94.3 84.42

Table 5  Performance of different feature selection algorithm achieved by F-test, MIC, RFE, Lasso, 
HAFS ( α = 0.5 ) using Random Forest

Bold values indicate the maximum value of each type of lesion classification index

Method Label Precision (%) Recall (%) Accuracy (%) F-measure (%)

F-test 1 86.59 91.66 87.32 89.05

2 78.32 71.99 90.51 75.02

3 74.62 64.67 97.2 69.29

4 71.43 67.52 88.66 69.42

MIC 1 87.4 93.09 88.69 90.16

2 76.75 75.04 90.91 75.89

3 88.0 70.06 97.98 78.01

4 73.42 65.59 88.27 69.28

RFE 1 84.82 93.32 86.99 88.87

2 81.29 77.26 92.28 79.23

3 88.07 61.15 97.59 72.18

4 75.43 63.97 88.53 69.23

Lasso 1 87.69 93.44 89.05 90.47

2 77.84 73.85 91.0 75.79

3 80.45 68.15 97.52 73.79

4 74.69 67.69 88.85 71.02

HAFS 1 92.21 95.52 93.06 93.84
2 93.17 91.58 96.84 92.37
3 95.14 95.8 99.58 95.47
4 88.43 80.75 94.3 84.42
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reason may be that HAFS can select a small number of irrelevant features from a large 
number of features, thereby avoiding the phenomenon of over-fitting. And we can see 
that for different models, the best α is different, for example, for SVM, the best α is 
0.1, KNN is 0.5, GaussianNB is 0.1, and QDA is 0.3. The possible reason for the differ-
ence is that the principle of the classifier is not the same.

Discussion
For the detection of patients with new coronary pneumonia, the use of machine learning to 
make judgments is the current mainstream method [10–13]. This is because of the amount 
of data required for machine learning is small and the characteristics of the lesion can be 
characterized by extracting its features from the patient’s CT image, the model can be fitted 
with less data. At present, the subtype classification of COVID-19 lesions, which is similar 

Table 6  Performance of HAFS achieved by SVM, KNN, GaussianNB and QDA by using and not using 
HAFS

Method α Label Precision (%) Recall (%) Accuracy (%) F-measure (%)

SVM 1 76.34 99.42 82.3 86.37

2 99.48 62.07 92.31 76.45

3 100.0 57.75 98.04 73.21

4 96.84 58.2 91.75 72.71

HAFS-SVM 0.1 1 90.08 95.03 91.3 92.49

2 91.64 87.03 95.8 89.28

3 99.1 77.46 98.92 86.96

4 84.98 80.14 93.58 82.49

KNN 1 88.04 86.32 85.66 87.17

2 83.09 83.23 93.19 83.16

3 78.05 86.49 98.17 82.05

4 65.98 67.96 87.58 66.96

HAFS-KNN 0.5 1 89.01 87.01 86.6 88.0

2 83.17 84.52 93.42 83.84

3 80.77 85.14 98.31 82.89

4 66.89 69.37 87.97 68.11

GaussianNB 1 88.57 59.6 72.88 71.25

2 42.62 62.72 75.52 50.75

3 14.64 86.62 76.01 25.05

4 37.82 10.19 79.89 16.05

HAFS-GaussianNB 0.1 1 81.77 77.8 77.71 79.74

2 46.21 51.38 78.19 48.66

3 34.96 55.63 93.16 42.93

4 46.67 41.11 80.02 43.71

QDA 1 95.14 36.67 63.72 52.94

2 39.1 97.27 66.82 55.78

3 100.0 99.3 99.97 99.65

4 43.38 48.66 79.07 45.87

HAFS-QDA 0.3 1 86.07 82.19 82.69 84.09

2 60.85 82.88 84.84 70.17

3 58.93 92.96 96.68 72.13

4 56.51 31.84 83.12 40.73
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to the classic classification task, has only been studied by very few people. Therefore, simi-
lar to most previous work, in this paper, we also use machine learning methods to classify 
COVID-19 lesion subtypes.

Compared with the previous method, HAFS-RF has achieved excellent performance. 
There are two main reasons: (1) for the data set, we use the ADASYN algorithm to enhance 
the data of different types of samples to alleviate the imbalance of the data in the training 
set. (2) For each lesion, our group uses more features, including three-dimensional features 
such as GLCM and LDP, which can better represent the information of the lesion. (3) For 
the training model, we designed an HAFS feature selection algorithm, which first uses the 
GA algorithm performs a feature selection, and then uses the F-test [32], MINE, RFE [34], 
and Lasso [35] algorithm to score the features, and selects the head features with higher 
comprehensive scores, and discards the tail features. Doing so can filter out features with 
low influence, avoid feature redundancy, and reduce the amount of calculation.

Table 5 shows the performance scores obtained after applying HAFS and other classic 
feature selection algorithms to our model. It can be seen that the scores obtained by HAFS 
are the best. It can be seen from Table 1 that the model we used HAFS-RF is better than the 
traditional RF model, and even scored higher than other models such as SVM.

However, the problem of data imbalance between different subtypes is still difficult to 
solve, and more CT data will be collected in the next step. In addition, with the increase 
of COVID-19 image data, deep learning can increasingly exert its superior performance. 
We will try to use CNN to implement a point-to-point COVID-19 subtype discrimination 
model in the future. In addition, in our model, the weighting factor α is generally a specific 
value (i.e., [0,  1.0]). In the future, we will change it to a learnable parameter, so that the 
performance of the model may be further improved. Finally, it is worth mentioning that 
the HAFS feature selection method we proposed can be used as a basic method for other 
machine learning models.

Conclusion
The most four typical lesion subtypes of COVID-19 are discussed and a computer-aided 
diagnosis approach of lesion subtype is proposed in this paper. Then the three-dimensional 
texture descriptors are applied on the volume data of lesions as well as shape and first-order 
features. The massive feature data are selected by hybrid adaptive selection algorithm and 
a classification model is trained at the same time. Extensive experiments on clinical real-
world datasets demonstrate the effectiveness of the proposed model of HAFS-RF. More-
over, we show the capability of the proposed model for the high dimension feature data 
with serious imbalance problem. The results show that the 3D radiomics features chosen by 
HAFS algorithm can better express the advanced information of the lesion data. The clas-
sification model obtains a good performance and is compared the models of COVID-19 in 
the state of art, which can help clinicians more accurately identify the subtypes of COVID-
19 lesions and provide help for further research.

Materials and methods
In this study, four lesion subtypes are studied, namely ground-glass opacity (GGO, 
referred as label 1), cord (referred as label 2), solid (referred as label 3), and subsolid 
(referred as label 4) [22]. The CT images of the prepared dataset in this paper are shown 
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in Fig. 3, which are presented in transverse, sagittal and coronal plane, respectively, and 
the lesions are annotated by two radiologists with ITK-SNAP software.

The numbers of the four types of lesions are 2637, 519, 103 and 475, respectively, and 
the total is 3734 in original dataset. Table 7 shows the summary of the prepared dataset 
that are maximum, minimum and standard variance values of the sizes of three direc-
tions and volumes for each lesions subtypes. The subtype of ground-glass opacity hosts 
the majority of COVID-19 which shows imbalance data problem. The subsolid subtype 
is the largest in size of lesions while the cord subtype is the smallest one.

Based on this data set, the flowchart of the algorithm is shown in Fig. 4 and the archi-
tecture of the algorithm is shown in Fig. 5 which includes four steps. We firstly introduce 
the algorithm of lesions extraction and data augmentation used in this study. Then, the 
feature extraction process for the 2D and 3D features are discussed. The implementation 
details are presented subsequently. Finally, we describe the random forest model in the 
forth step.

Fig. 3  Typical four lesion subtypes in CT images of COVID-19. The labels and regions are given by medical 
experts. The red area represents ground-glass opacity, the green area represents cord, the blue area 
represents solid and the yellow area represents subsolid

Table 7  Samples of lesion from prepared dataset COVID-19

Label Num Statistics X-length Y-length Z-length Volume

1 2637 Max 247.0 312.0 399.0 20148480.0

Mean 46.78 49.2 24.84 395826.08

Std 42.2 50.68 39.63 1596465.23

2 519 Max 186.0 205.0 310.0 5142630.0

Mean 43.38 41.28 24.86 124041.76

Std 31.4 27.92 28.17 409901.04

3 103 Max 217.0 301.0 223.0 5878530.0

Mean 40.46 37.9 21.53 210307.5

Std 46.06 45.99 26.49 752977.45

4 475 Max 204.0 283.0 378.0 16873920.0

Mean 61.9 63.26 38.79 722428.14

Std 50.65 57.84 53.43 1979445.47
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Lesions data extraction and augmentation

VB-Net is to predict and segment the image of the unknown lesion location. It combines 
V-Net and bottleneck layers to reduce and combine redundant information [23]. How-
ever, all the 3D volume data used in this experiment has the mask position of the cor-
responding lesion from annotations by the radiologists. Therefore, the VB-Net or V-Net 
will cause an error in extracting lesions. So we firstly use a breadth-first traversal (BFS) 
based lesion extraction algorithm to extract lesions which is mostly used in graph struc-
ture data. It should be noted that the lesion locations and subtypes are labeled by two 
radiologists that ensure the accuracy of evaluation data.

The BFS-based lesion extraction algorithm is shown as Algorithm  1. We traverse 
the mask array, which is created by radiologists, in the entire 3D volume data. When 
traversing the pixels with a lesion mark, this paper uses the BFS to extract the lesion 
range from the case with that mask [24]. The input is generally a point in the graph, 

Fig. 4  The flowchart of our algorithm

Fig. 5  Overview of the COVID-19 classification using random forest based on hybrid adaptive feature 
selection
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then use the point to initialize a queue. The main idea of the algorithm is to take out 
a point from it each time, and then for this point, all nearby points that meet the 
requirements are enqueued, and then the above process is repeated until the queue is 
empty. 

Input: 3D coordinates of a point,A; Mask of the lesion, Mask; Array of
mark, mark; Length of the search range,L.

Output: Range
Q = {A};
Range = {+∞,−∞,+∞,−∞,+∞,−∞};
while Q = ∅ do

Cur = Q.get();
Update Range with Cur
for N(x,y,z) ∈ Mask do

if dist(N,Cur) ≤ L then
if mark[N] = false then

if Mask[N] = true then
Q.put(N);

end
end

else
mark[N ] = ture;

end
end

Algorithm 1: The lesion extraction algorithm.

Because the setting of the search range L in the algorithm, the algorithm can well 
avoid the discontinuity of the lesion data in a certain dimension caused by inaccurate 
data labeling. And we set a global mark in the algorithm, all traversed points will be 
recorded. There are two advantages to this: 

1.	 In the current BFS process, the marked points will not be enqueued, which can avoid 
double calculation;

2.	 In the global traversal of the mask data, the marked points will not call the BFS algo-
rithm repeatedly. This can ensure that each time the BFS algorithm only generates 
one lesion and returns its 3D ranges.

As we all know, the data imbalance problem will lead to a decrease in the accuracy 
of multi-classification. The four different subtypes of lesions number are 2637, 519, 
103 and 475. Obviously they are unbalanced, and the number of label 1 lesions is far 
greater than label 3, which can leads to insufficient fitting ability of the classifier to 
label 3 samples. The unbalance characteristic data can shift the decision boundary 
of the classifier, and affect the final classification effect. Therefore, we have adopted 
a data enhancement method based on ADASYN proposed by He [25] to reduce its 
impact on classification accuracy. This paper adopts a data enhancement method 
based ADASYN to increase the number of label 2, 3 and 4. The method is briefly 
introduced in Algorithm 2. 
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Input: Datasettrain
Output: The synthetic data xsyn

The number of majority class is defined as: nl;
The number of minority class is defined as: ns;
Calculate the degree of class imbalance: Degreeimbalance = ns/nl;
if Degreeimbalance < Degreethreshold then

Calculate the number ∆syn of synthetic data to be generated:
∆syn = (nl − ns)× α α ∈ [0, 1];
for xi ∈ minority class do

Calculate the ratio ri defined as ri = NKNeighbor/K where
NKNeighbor is the number of majority class examples in the K
nearest neighbors of xi;
Normalize ri r̂i = ri/

ns

i=1 ri;
Calculate the number gi of synthetic data defined as gi = r̂i ×∆syn;
for i = 1 to gi do

for Random choose xmi ∈ K nearest neighbors of xi do
xsyn = xi + (xmi − xi)× β β ∈ [0, 1];

end
end

end
end
Algorithm 2: The algorithm of data enhancement based on ADASYN in lesion
subtypes unbalance improvement process.

The algorithm increases the number of four subtype lesions from (2637, 519, 103 
and 475) to (2637, 1098, 386 and 976) which is evaluated that the data augmentation 
can effectively improve the classification performance evaluated by the experiments in 
“Results” section .

Three‑dimensional feature extraction

The most of the current medical imaging research on COVID-19 are mainly based on 
X-rays images or ignoring the characteristics of CT planar images. Furthermore, 3D fea-
tures are also seldom considered in the research. Therefore, this paper extracted the 2D 
features of some certain layers and more 3D features of the CT data to better character-
ize the lesion information.

The existing methods are mainly based on extracting 2D features from CT images. 
This ignores that the COVID-19 lesion is a kind of volume data. Therefore, in the pro-
cess of feature extraction, the connection between layers is ignored, and some hidden 
features are lost.

In order to improve the accuracy of classification, we extracted multiple types of fea-
tures of the lesion that include 2D and 3D features and are shown in detail as following: 

1.	 Infected lesions number: The stage of the COVID-19 affects the number of lesions 
and also affects the distribution of different types. Therefore, we add the total num-
ber of lesions in the same patient.

2.	 Shape features: Some cord-type lesions are significantly different from other lesions 
in shape, so we extracted three-dimensional shape features from the lesions in order 
to improve the accuracy of multi-classification.
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3.	 First-order features: The first-order features provide information related to the gray-
level distribution of the image. We first obtain the middle layer and the layer with the 
largest lesion area of CT images in three directions, and extract 14 two-dimensional 
manual features from them, including mean, var, max, skewness, kurtosis, area, com-
pact, rough, contrast, dissimilarity, homogeneity, energy, correlation, ASM (active 
shape model). Then we also extract the three-dimensional features and hybrid them 
into the total features.

4.	 Second-order features: Second-order features give more information about the rela-
tive positions of the various gray levels within the lesion image. 

a.	 The gray-level co-occurrence matrix (GLCM) [26]: The GLCM is a statistical 
method of analyzing texture that considers the spatial relationship of pixels. The 
(i, j)th element of GLCM P(i, j|δ, θ) describes the number of times the combina-
tion of levels i and j occur in two pixels in the image, that are separated by a dis-
tance of δ pixels along angle θ . The 3D-GLCM considers 13 directions and need 
to be calculated separately and finally averaged.

b.	 The gray-level run length matrix (GLRLM) [27]: The GLRLM quantifies gray-
level runs, which are defined as the length in number of pixels of the same gray-
level value. The (i, j)th element of the GLRLM P(i, j|δ, θ) represents the number 
of runs with gray level i and length j occur in the image along angle θ . Similar to 
3D-GLCM, 3D-GLRLM also needs to be calculated separately for 13 directions.

c.	 The gray-level size zone matrix (GLSZM) [28]: In the GLSZM P(i, j), the (i, j)th 
element represents the number of zones with gray level i and size j appear in the 
image. A zone is defined as the number of connected voxels that share the same 
gray-level intensity. Contrary to GLCM and GLRLM, the 3D-GLSZM is rota-
tion independent, with only one matrix calculated for all directions.

d.	 Gray-level dependence matrix (GLDM) [29]: The GLDM quantifies gray-level 
dependencies in the image. The (i, j)th element in GLDM P(i, j|α) equals the 
number of times a voxel with gray level i with j dependent voxels in its neighbor-
hood appears in an image. A neighboring voxel with gray level j is considered 
dependent on center voxel with gray level i if |i − j| ≤ α . Similar to 3D-GLRLM, 
the 3D-GLDM is also rotation independent.

	  We introduced some 3D features from GLCM, GLSZM, GLRLM, GLDM, and 
the numbers are 22, 16, 16, 14, respectively. The detailed information of features 
can be found in the Pyradiomics [30] document on [31]. These features corre-
spond to the GLCM(1–15 16–21 23–24), GLRLM(1–16), GLSZM(1–16), and 
GLDM(1–14).

In addition, we also extracted 4 features that are width, height, length and volume 
of the 3D lesion from the bounding box of COVID-19 lesion. In summary, a total of 
189 features are used in our study.
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Hybrid adaptive feature selection method

As described in “Three-dimensional feature extraction” section, we extract specific features 
from 3D lesion data. However, some irrelevant features can easily cause over-fitting of the 
model, which will reduce the accuracy of the test set. Therefore, before training the model, 
it is necessary to perform feature selection processing to reduce the influence of the redun-
dant feature.

There are three kinds of algorithms in the existing feature selection process, namely fil-
ters, wrappers, and embedded. Although these methods have their advantages, they all have 
one obvious disadvantage that the number of features in the subset after feature selection 
cannot be determined. So at this stage, we proposed a Hybrid Adaptive Feature Selection 
(HAFS) algorithm. It can not only solve the problem of the uncertain number of features in 
the subset, but also integrate the advantages of various traditional methods.

HAFS method is divided into two stages. In the first stage, the feature set 
F = {f1, f2 . . . f189} is used as input, and the genetic algorithm (GA) is used to accurately 
select features. First, a population of q chromosomes will be initialized, and each chromo-
some is a binary set of length n U = {U1,U2 . . .U189} , each value of Ui is 1 or 0, if Ui = 1 , 
it means fi is selected , otherwise, fi is not selected. Next, p iteration will be performed. 
Before each iteration, individual fitness is evaluated for each chromosome. Then, accord-
ing to the fitness, the chromosomes in the population are calculated with different prob-
abilities of three genetic operators that are selection, crossover, and mutation. At the end of 
the iteration, the feature subset FGA = {fGA1, fGA2 . . . fGAm} is determined according to the 
value of each bit according to the chromosome Umax with the highest fitness. A schematic 
illustration of the first stage is shown in Fig. 6.

In the second stage, in order to integrate the advantages of multiple feature selection 
methods, we use FGA as input, and take two filters method that are F-test [32] and maxi-
mal information coefficient (MIC) [33], one wrappers method that is recursive feature 
elimination (RFE) [34], and one embedded method that is L1 regularized linear regres-
sion model(Lasso) [35] into data preprocessing methods to score features and sort them in 
ascending order, the results are presented as F1, F2, F3 and F4:

So we score each fGA in FGA according to F1, F2, F3 and F4 . According to the S(fGA) score, 
FGA is sorted in ascending order. In this way, we can decide which features to keep. The 
scoring standard, S(fGA) , is:

(1)F1 = F-test(FGA) = {fF1, fF2 . . . fFm},

(2)F2 = MIC(FGA) = {fM1, fM2 . . . fMm},

(3)F3 = RFE(FGA) = {fR1, fR2 . . . fRm},

(4)F4 = Lasso(FGA) = {fL1, fL2 . . . fLm}.

(5)S(fGA) =

∑4
i=1 index(Fi, fGA)

4
.
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On the other hand, in order to further prevent feature over-fitting after GA selection, 
some features of FGA are selected and a parameter α is set as the ratio of the number of 
selected features. The final result of feature selection FHAFS is:

Random forest‑based classification model

In the classification stage, the classifier used in this paper is random forest (RF) model. 
The main idea is: select a subset Sb from all sample set S through randomly selecting 
sample features and sampling. Then a classification and regression tree is established for 
Sb . The classification and regression tree uses the Gini coefficient as the criterion [36]. 
In this paper, the above process was repeated 1000 times to construct 1000 CART trees 
to construct a random forest. The random forest-based classification model is shown in 
Algorithm 3. 

(6)FHAFS = αFGA.

Fig. 6  A schematic illustration of first stage of HAFS
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Input: Samples S; Features of the lesion F ; Number of iterations m.
Output: Type of lesion predicted, P .
j=1;
m=1000;
while j ≤ m do

Take Sb samples with Bootstrap from S.
Randomly select Fs features from FHAFS .
Build a CART tree by Sb samples and Fs features.
j=j+1;

end
For each new sample. Generate m results through the CART trees.
Determine the type of lesion by the principle of minority obeying the
majority P .
Algorithm 3: Random Forest algorithm for COVID-19 Classification.

Experimental settings

Since COVID-19 is a new disease, there are few public data sets of CT images with anno-
tations suitable for this study. Therefore, we extracted lesions from 319 cases of COVID-
19 pneumonia patients provided by Neusoft Medical to construct a dataset. All patients 
received a thin-slice CT scan of the chest by Neusoft 256 slice CT.

The final subsets of features are evaluated by RF classifications associated with ten-
fold cross-validations. Precision, recall, accuracy and F-measure are used to compare the 
estimated and known labels according to the following expressions:

where TP, TN, FP and FN in Eqs. 7–10 represent true positive, true negative, false posi-
tive, and false negative, respectively.

In our experiments, we compare our model with the following widely adopted machine 
learning methods. These models are relatively classic and commonly used models in the 
field of machine learning. 

1.	 Logistic regression (LR)
2.	 Support vector machine (SVM) (use a radial basis function kernel with default 

parameters.)

(7)Precision =
TP

TP+ FP
,

(8)Recall =
TP

TP+ FN
,

(9)Accuracy =
TP+ TN

TP+ TN+ FP+ FN
,

(10)F-measure =
2 ∗ Precision ∗ Recall

Precision+ Recall
,
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3.	 K-neighbors classifier (KNN) (set k = 20 through cross-validation)
4.	 Decision tree classifier (DT)
5.	 GaussianNB
6.	 Quadratic discriminant analysis (QDA)
7.	 Random forest (RF)
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