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Abstract The COPI coat forms transport vesicles from the Golgi complex and plays a poorly

defined role in endocytic trafficking. Here we show that COPI binds K63-linked polyubiquitin and

this interaction is crucial for trafficking of a ubiquitinated yeast SNARE (Snc1). Snc1 is a v-SNARE

that drives fusion of exocytic vesicles with the plasma membrane, and then recycles through the

endocytic pathway to the Golgi for reuse in exocytosis. Removal of ubiquitin from Snc1, or deletion

of a b’-COP subunit propeller domain that binds K63-linked polyubiquitin, disrupts Snc1 recycling

causing aberrant accumulation in internal compartments. Moreover, replacement of the b’-COP

propeller domain with unrelated ubiquitin-binding domains restores Snc1 recycling. These results

indicate that ubiquitination, a modification well known to target membrane proteins to the

lysosome or vacuole for degradation, can also function as recycling signal to sort a SNARE into

COPI vesicles in a non-degradative pathway.

DOI: https://doi.org/10.7554/eLife.28342.001

Introduction
Sequential rounds of vesicle budding and fusion reactions drive protein transport through the secre-

tory and endocytic pathways (Rothman, 1994). Vesicle budding often requires cytosolic coat pro-

teins, such as COPI, COPII or clathrin, that assemble onto the donor organelle to mold the

membrane into a tightly curved structure while collecting cargo for inclusion into the nascent vesicle

(Faini et al., 2013). Efficient departure of cargo from the donor organelle requires a sorting signal

within the cargo protein that is recognized by the coat complexes. For example, the heptameric

COPI coat complex assembles onto Golgi membranes where it selects cargo bearing a C-terminal

di-lysine (KKxx-COO- or KxKxx-COO-) sorting signal exposed on the cytosolic side of the membrane

(Eugster et al., 2004; Letourneur et al., 1994; Waters et al., 1991). The two large COPI subunits,

a- and b’-COP, each contain a pair of WD40 repeat domains that form twin b-propellers used to

select cargo by binding to the sorting signal (Jackson, 2014; Jackson et al., 2012). After budding,

COPI vesicles uncoat and deliver the di-lysine bearing cargo to the ER by fusing to this acceptor

membrane in a SNARE-dependent reaction (Rein et al., 2002; Südhof and Rothman, 2009).

Intrinsic to the SNARE hypothesis is the privileged selection of v-SNAREs by the vesicle budding

machinery to ensure the nascent vesicle can fuse to its target membrane bearing complementary

t-SNAREs, and the subsequent need for v-SNARE recycling back to the donor compartment

(Miller et al., 2011). v-SNAREs are small, single-pass membrane proteins with the C-terminus

embedded within the lumenal space (Weber et al., 1998). Thus, COPI cannot select v-SNAREs using

Xu et al. eLife 2017;6:e28342. DOI: https://doi.org/10.7554/eLife.28342 1 of 22

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.28342.001
https://doi.org/10.7554/eLife.28342
https://creativecommons.org/
https://creativecommons.org/
http://elifesciences.org/
http://elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


the canonical C-terminal motifs and there is no well-defined sorting signal within a v-SNARE that is

recognized by COPI. A further complication with the vesicular transport process is that it leads to

depletion of v-SNAREs from the donor membrane and their deposition in the acceptor membrane.

Thus, it is essential to recycle the v-SNAREs back to the donor compartment in order to sustain the

vesicular transport pathway. Exocytic v-SNAREs that bud from the trans-Golgi network and target

vesicles to the plasma membrane have served as models to understand the mechanisms of SNARE

recycling, although these studies have primarily focused on how the v-SNAREs are endocytosed

from the plasma membrane for delivery to early endosomes (Burston et al., 2009; Lewis et al.,

2000; Miller et al., 2011). The subsequent step of transport from endosomes back to the Golgi,

however, is poorly understood.

The yeast endocytic pathway is complex and tightly coupled to the Golgi through several vesicu-

lar transport pathways. Proteins and lipids internalized from the plasma membrane can be targeted

to separate compartments marked by the syntaxin (t-SNARE) homologs Pep12 and Tlg1

(Holthuis et al., 1998a, 1998b; Prescianotto-Baschong and Riezman, 2002; Wiederkehr et al.,

2000). Tlg1 marks an organelle where bulk-phase endocytic tracers (cationized nanogold) first

appear after internalization from the plasma membrane, and therefore this organelle has been

described as an early endosome (Prescianotto-Baschong and Riezman, 2002). Endocytosed pro-

teins that rapidly recycle back to the plasma membrane (for example, the exocytic v-SNARE Snc1

and the chitin synthase Chs3) also enter the Tlg1 compartment via endocytosis, whereas internalized

cargo targeted for destruction in the vacuole may be transported directly to Pep12-marked endo-

somes (also called the prevacuolar compartment) (Holthuis et al., 1998b). Therefore, Tlg1 may mark

an early/recycling endosome and is required for Snc1 recycling as GFP-Snc1 accumulates in internal

compartments in tlg1D cells (Lewis et al., 2000). However, the distinction between the TGN and

Tlg1-positive early endosome is blurred as a portion of Tlg1 also localizes to a Sec7-marked com-

partment considered the yeast TGN, and TGN resident proteins can also be found in the Tlg1 com-

partment (Holthuis et al., 1998a; Holthuis et al., 1998b; McDonold and Fromme, 2014;

Prescianotto-Baschong and Riezman, 2002). In spite of the similarity in protein composition, the

early/recycling endosome appears to be functionally distinct from the TGN as mutants defective in

Snc1 recycling (e.g. rcy1D) trap GFP-Snc1 in an enlarged Tlg1-positive compartment that is deficient

for the TGN marker Sec7 (Furuta et al., 2007; Lewis et al., 2000). Newly synthesized proteins are

secreted from tlg1D or rcy1D mutants with wild-type kinetics implying formation of exocytic vesicles

at the TGN is unperturbed (Holthuis et al., 1998a; Wiederkehr et al., 2000), and therefore the

GFP-Snc1 recycling defect is thought to occur at a vesicular transport step between an early/recy-

cling endosome and TGN. However, given the uncertainty in the nature of these compartments

marked by Tlg1 and Sec7 (early endosome, TGN, or a hybrid of these organelles), we use the term

‘recycling’ to indicate movement of GFP-Snc1 from the endocytic pathway to the exocytic pathway.

Here, we sought to clarify the sorting signals in Snc1-GFP and vesicle coat protein acting in this recy-

cling step.

Snc1 recycling is independent of retromer and clathrin adaptors known to mediate transport of

other cargos in these pathways (Lewis et al., 2000). Instead, an F-box protein (Rcy1) (Galan et al.,

2001), a phosphatidylserine flippase (Drs2/Cdc50) (Furuta et al., 2007; Hua et al., 2002; Xu et al.,

2013), an ArfGAP (Gcs1) (Robinson et al., 2006), and a sorting nexin complex (Snx4/41)

(Hettema et al., 2003; Ma et al., 2017) are required for recycling of Snc1, although the precise

functions for these proteins remain unclear. F-box proteins are best known as substrate-selecting

adaptors in Skp1-Cullin-F-box (SCF) E3 ubiquitin (Ub) ligases, but the Rcy1-Skp1 complex plays a

role in Snc1 recycling that is independent of the cullin subunit or the Cdc34 E2 Ub ligase

(Galan et al., 2001). Moreover, ubiquitination of membrane proteins in the endocytic pathway is

thought to set a course for their degradation in the lysosome or vacuole via the ESCRT/MVB path-

way (MacGurn et al., 2012). Thus, it seemed unlikely that Rcy1 mediates ubiquitination of Snc1 in

order to recycle this SNARE protein out of the endocytic pathway. Nonetheless, several high-

throughput studies have shown that Snc1 is ubiquitinated (Peng et al., 2003; Silva et al., 2015;

Swaney et al., 2013), and altering a targeted lysine to arginine (Snc1-K63R) surprisingly perturbed

its recycling (Chen et al., 2011), suggesting ubiquitin (Ub) conjugation could play a role in this traf-

ficking pathway.

Here we provide evidence that polyubiquitin (polyUb) chains are indeed a sorting signal that

drives recycling of Snc1, and surprisingly find that COPI mediates this sorting event by direct binding
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to K63-linked polyUb chains. COPI was observed to localize to early endosomes in mammalian cells

more than two decades ago (Aniento et al., 1996; Whitney et al., 1995), and was initially thought

to mediate transport of proteins from early endosomes to late endosomes in animal cells

(Aniento et al., 1996). However, as models for early to late endosome maturation emerged

(Scott et al., 2014; Zerial and McBride, 2001), this proposed role for endosomal COPI was aban-

doned and there remains no clearly defined role for COPI in protein trafficking through the endoso-

mal system. A major impediment to deciphering a function for endosomal COPI is that mutations or

knockdown approaches that inactivate COPI grossly disrupt Golgi function. Thus, any endosomal

defects observed in COPI-deficient cells could be attributed to an indirect downstream effect of per-

turbing the Golgi complex. We describe here a set of COPI separation-of-function mutations and

fusion proteins that indicate a direct role of this coat in selecting Snc1 bearing K63-linked Ub chains

for recycling.

Results

Snc1 ubiquitination is required for recycling
In wild-type (WT) cells, nearly half of GFP-Snc1 localizes to the plasma membrane (preferentially at

the buds relative to the mother cell) and the remainder is observed in cytoplasmic punctae

(Figure 1A,B). As previously shown (Lewis et al., 2000), deletion of RCY1 (rcy1D) caused GFP-Snc1

accumulation in punctae and a loss from the plasma membrane (Figure 1A,B). Snc1 is ubiquitinated

and a lysine mutation that reduces ubiquitination also caused GFP-Snc1 accumulation in punctae

marked by the endocytic tracer FM4-64 (Chen et al., 2011), suggesting that Ub could be a retrieval

signal. However, lysines are commonly found in protein sorting signals, undergo a variety of other

post-translational modifications, and serve structural roles, so it was unclear whether it was the loss

of lysine or ubiquitination per se that caused the Snc1 recycling defect.

To address whether ubiquitination is required for Snc1 recycling, we fused the UL36 deubiquiti-

nase (DUB) from Herpes simplex virus (Stringer and Piper, 2011), as well as a catalytically inert

mutant (DUB*), to GFP-Snc1. This DUB can effectively strip Ub from a fusion partner without altering

the amino acid sequences targeted for ubiquitination (Stringer and Piper, 2011). In contrast to

GFP-Snc1, DUB-GFP-Snc1 localized to punctae marked by Tlg1. In addition, DUB-GFP-Snc1 mislo-

calized to punctae in WT cells to the same extent as GFP-Snc1 mislocalized to punctae in rcy1D cells

(Figure 1A–D). Deubiquitinase activity was required to block recycling as DUB*-GFP-Snc1 localized

normally to the plasma membrane (Figure 1A–D). To determine if localization of DUB-GFP-Snc1 to

internal punctae required endocytosis, we mutated the Snc1 endocytic internalization signal in the

context of the DUB and DUB* fusion proteins (Lewis et al., 2000). The endocytosis-defective var-

iants (e.g. DUB-GFP-Snc1-PM) accumulated at the plasma membrane (Figure 1A–D), suggesting

that the DUB delayed movement from endosomes to the TGN rather than TGN to plasma mem-

brane transport when attached to WT Snc1.

It was possible that the DUB interfered with Snc1 trafficking by deubiquitinating the trafficking

machinery required for recycling rather than solely deubiquitinating Snc1 itself. As a further test for

the specificity of the DUB block in Snc1 recycling, we also attached DUB and DUB* to Drs2, an inte-

gral membrane phosphatidylserine flippase that localizes to the TGN and early endosomes, and is

part of the machinery required for recycling of GFP-Snc1(Chen et al., 1999; Hua et al., 2002).

Whereas GFP-Snc1 accumulated in punctae within drs2D cells, recycling to the plasma membrane

was fully restored in drs2D cells expressing Drs2-DUB or Drs2-DUB* (Figure 1E–F). Thus, attaching

DUB to a component of the trafficking machinery in this pathway had no effect on Snc1 recycling,

suggesting that the DUB is not significantly acting on neighboring proteins within this pathway.

Snc1 is extensively modified with polyUb chains
A prior study identified a mono-ubiquitinated form of Snc1 (Chen et al., 2011), which we confirmed,

but we also found evidence for Snc1 forms heavily modified with polyUb (Figure 2A–B). The obser-

vation that Snc1 ubiquitination is significantly reduced in yeast strains expressing K63R ubiquitin as

the sole source of Ub, and thus cannot generate K63-linked polyUb chains (Silva et al., 2015) sup-

ports this conclusion. Rcy1 is required for Snc1 recycling and was implicated in Snc1 ubiquitination.

Therefore, we tested whether DUB fusion to this F-box protein would perturb GFP-Snc1 recycling.
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Attachment of DUB to the N-terminus of Rcy1 (as the sole source of this protein) did cause a partial

defect in GFP-Snc1 recycling; however, the DUB* fusion protein caused the same partial defect.

Therefore, the DUB-Rcy1 fusions partially disrupted Rcy1 function by a mechanism that is indepen-

dent of deubiquitinase activity (Figure 2C,D), which further emphasizes the specificity of the effect

of DUB when fused to GFP-Snc1.

To identify other ligases potentially acting on Snc1, we screened through a collection of E3

ligase-DUB fusion proteins (MacDonald et al., 2017) to see if any disrupted GFP-Snc1 recycling.

DUB fusions with two endosome-localized E3 Ub ligases, Pib1 and Tul1, strongly perturbed GFP-

Snc1 recycling (Figure 2E), while DUB fusion with the Rsp5 and Vps11 E3 ligases were without

effect. Moreover, we immunoprecipitated untagged Snc1 from cells expressing Pib1-DUB and found

that ubiquitination of Snc1 was reduced relative to Snc1 from the control strain (Figure 2F). We then
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Figure 1. Ubiquitination is required for Snc1 recycling. (A) Fusion of catalytically active deubiquitinase (DUB), but not the inactive form (DUB*) to GFP-

Snc1 blocks its recycling comparably to rcy1D. Mutation of an endocytic signal (PM) in Snc1 prevents accumulation of DUB-GFP-Snc1-PM in cytosolic

punctae. (B) Quantification of GFP intensity at the plasma membrane. At least 50 cells for three biological replicates of each genotype were analyzed,

and the value and mean for each biological replicate were plotted. (C) DUB-GFP-Snc1 accumulates in punctae marked by mCherry-Tlg1. The

arrowheads highlighted the punctae showing colocalized GFP-Snc1 with mCherry-Tlg1. (D) Pearson correlation coefficient (PCC) GFP-Snc1 with

mCherry-Tlg1. Each biological replicate plotted includes at least 20 cells. (E) Fusion of DUB to Drs2 does not disrupt the ability of Drs2 to support Snc1

recycling. (F) Quantification of GFP intensity at the plasma membrane for the cells in (E). Each biological replicate includes at least 50 cells. Statistical

differences in (B), (D) and (E) were determined using a one-way ANOVA on the means of three biological replicates (***p<0.001; NS, p>0.05). Scale bar

in (A), (C) and (E) represents 5 mm.

DOI: https://doi.org/10.7554/eLife.28342.002

The following source data is available for figure 1:

Source data 1. This spreadsheet contains the three means of GFP intensity at the plasma membrane data used to generate the dot plots shown in

Figure 1B and F, and the three means of Pearson correlation coefficient data used to generate the dot plots shown in Figure 1D.

DOI: https://doi.org/10.7554/eLife.28342.003
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Figure 2. Snc1 is extensively modified with polyUb chains. (A) Proteins were immunoprecipitated from strains expression an empty vector, a lysineless

3XHA-Snc1-8KR, or WT 3XHA-Snc1 with anti-HA beads, and then immunoblotted using the anti-HA antibody. Monoubiquitinated and

polyubiquitinated Snc1 forms are indicated (based on predicted mobilities). (B) Ubiquitinated proteins were immunoprecipitated using anti-FLAG

antibodies from strains expressing 3X-FLAG-Ub and either an empty vector, a lysineless 3XHA-Snc1-8KR, or WT 3XHA-Snc1, and then immunoblotted

for HA-Snc1 or FLAG-Ub. Monoubiquitinated and polyubiquitinated Snc1 forms are indicated (based on predicted mobilities). The lysine-less 3XHA-

Figure 2 continued on next page

Xu et al. eLife 2017;6:e28342. DOI: https://doi.org/10.7554/eLife.28342 5 of 22

Research article Cell Biology

https://doi.org/10.7554/eLife.28342


tested the pib1D and tul1D single mutants, which were without phenotype, but the pib1D tul1D dou-

ble mutant displayed a GFP-Snc1 recycling defect (Figure 2G,H). The localization of two other

plasma membrane proteins examined, Tat1 and Ina1, were unaffected in the pib1D tul1D mutant

(Figure 2—figure supplement 2). These results suggest that Pib1 and Tul1, rather than Rcy1, are

primarily responsible for Snc1 ubiquitination.

COPI binds K63-linked polyUb directly and this interaction is required
for GFP-Snc1 recycling
Given that Snc1 ubiquitination is critical for its recycling, we hypothesized that Ub conjugated to

Snc1 may function as a sorting signal in the recycling pathway and we asked what trafficking machin-

ery might recognize Ub as a sorting determinant. Inactivation of COPI using a temperature condi-

tional allele (ret1-1) blocked GFP-Snc1 recycling, whereas clathrin adaptor mutants and retromer

mutants had no effect (Figure 2—figure supplement 1) (Lewis et al., 2000; Robinson et al., 2006).

However, the Golgi is markedly perturbed when COPI is inactivated, undermining clear interpreta-

tion of this result due to possible indirect effects of disrupting the Golgi. If COPI plays a direct role

in Ub-dependent Snc1 recycling, we reasoned it might bind the Ub sorting signal and the endosomal

Snc1 recycling function should be independent of established COPI functions at the Golgi complex.

COPI is a heptamer composed of a B-subcomplex (a/b’/e-COP subunits) structurally similar to cla-

thrin heavy chains (Figure 3A), and an F-subcomplex similar to tetrameric clathrin adaptors (not

shown) (Dodonova et al., 2015; Faini et al., 2013; Fiedler et al., 1996). The a and b’-COP subunits

in the B-subcomplex each have two WD40 repeat propeller domains at their N-termini that bind dily-

sine sorting motifs. All well-characterized sorting signals recognized by COPI are near the C-termi-

nus of the cargo and the N-terminal propellers of a and b’-COP use a basic patch to coordinate the

carboxyl group (Jackson, 2014). However, many WD40 repeat domains also bind Ub

(Pashkova et al., 2010). Therefore, we examined COPI WD40 propeller domains for interaction with

Ub and found that they bound to K63-linked tetraUb (K63 Ub4) (Figure 3B). The N-terminal propel-

ler of b’-COP (1-304) bound slightly better to Ub4 than the first propeller of a-COP (1-327), and a

fragment of b’ carrying both propellers (1-604) bound most efficiently.

Binding of b’-COP propellers to Ub was remarkably specific for linkage and chain-length. Poly-

mers containing 5 or more K63-linked Ubs were required for the most robust and specific binding

(Figure 3C). In contrast, b’-COP (1-304) did not bind significantly to K48-linked Ub chains or mono-

Ub (Figure 3C and Figure 3—figure supplement 1). For the latter experiment, we incubated 15N-

Figure 2 continued

Snc1-8KR is a specificity control and the asterisk indicates background bands. (C) Rcy1 appears to play a role in Snc1 recycling that is independent of

Ub ligase activity. A fusion of DUB or DUB* to the amino terminus of Rcy1 caused a partial defect in Snc1 recycling when expressed in rcy1D cells

(BY4742 YJL204C). However, there was no significant difference between DUB and DUB*, indicating that the effect of the DUB is unrelated to its

deubiquitinase activity. (D) Quantification of GFP intensity at the plasma membrane. (E) WT cells (BY4742) overexpressing GFP-Snc1 and DUB fusions

with several candidate E3 Ub ligases. PIB1-DUB and TUL1-DUB were the only ligase-DUB fusions that caused a GFP-Snc1 recycling defect. (F) DUB

tagged Pib1 significantly reduced endogenous polyubiquitinated Snc1. Ubiquitinated proteins (Ubiquitome) were recovered from cells expressing His-

tagged Ub with or without Pib1-DUB and probed for endogenous, untagged Snc1 and His-Ub. Much less polyubiquitinated Snc1 was recovered from

the ubiquitome in cells expressing DUB-Pib1. DUB-Pib1-HA expression was confirmed by immunoblot with anti-HA antibody. (G) The pib1D (PLY5293)

and tul1D (PLY5294) single mutants recycled GFP-Snc1 normally, but the pib1D tul1D (PXY64) double mutant displayed a recycling defect. (H)

Quantification of GFP intensity at the plasma membrane for cells shown in (G). Each biological replicate includes at least 50 cells for data plotted in (D)

and (H). Statistical differences were determined using a one-way ANOVA on the means of three biological replicates. (***p<0.001; NS, p>0.05). Scale

bar in (C) and (G) represents 5 mm.

DOI: https://doi.org/10.7554/eLife.28342.004

The following source data and figure supplements are available for figure 2:

Source data 1. This spreadsheet contains the three means of GFP intensity at the plasma membrane of Rcy1 mutant cells and pib1, tul1 mutant cells

used to generate the dot plots shown in Figure 1D and H.

DOI: https://doi.org/10.7554/eLife.28342.007

Figure supplement 1. Inactivation of a COPI temperature-sensitive allele (ret1-1) at the non-permissive temperature (37˚C) blocked GFP-Snc1 recycling.

DOI: https://doi.org/10.7554/eLife.28342.005

Figure supplement 2. Plasma membrane proteins Ina1 and Tat1 were tagged with mNeonGreen and visualized in WT (wild-type) and pib1D tul1D

double mutant cells by fluorescence microscopy.

DOI: https://doi.org/10.7554/eLife.28342.006
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Figure 3. WD40 repeat propeller domains of COPI bind K63-linked polyubiquitin. (A) Structures of a- and b’-COP from the COPI B-subcomplex shown

binding dilysine cargo in the membrane. (B) GST-b’COP (1-604), GST-b’COP (1-304) and GST-aCOP (1-327) bind K63-linked tetraUb relative to the GST

only control. 0.5 mM of GST and GST tagged WD40 proteins immobilized glutathione beads were incubated 125 nM, 250 nM or 500 nM of K63-Ub4.

Values are tetraUb band intensities from this experiment. (C) Both GST-b’COP (1-604) and GST-b’COP (1-304) preferentially binds long K63-linked

chains of Ub. Quantification of K63 binding relative to input (100*(band signal intensity – corresponding GST lane)/input band intensity). The values

represent mean ± SEM from three independent binding experiments. (D) COPI isolated from yeast on anti-HA beads also preferentially binds long K63-

linked polyUb, but not K48-linked Ub. (E) Quantification of K63-linked Ub polymers binding relative to input. The values represent mean ± SEM from

three independent binding experiments (100*band signal intensity/input band intensity).

DOI: https://doi.org/10.7554/eLife.28342.008

The following figure supplement is available for figure 3:

Figure supplement 1. The N-terminal propeller of b’-COP (1-304) does not bind significantly to monoUb.

Figure 3 continued on next page
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ubiquitin with or without a 10-fold molar excess of b’-COP (1-304) and observed no difference in the

HSQC NMR spectra, indicating no measurable interaction under these conditions (Figure 3—figure

supplement 1). Moreover, short K63-linked polymers bound poorly to b’-COP (1-304) in the GST-

pulldown, competitive binding experiments (Ub2–Ub4) (Figure 3C,D). b’-COP (1-604), with both pro-

pellers, retained the same specificity but recovered greater amounts of polyUb in these assays

(Figure 3C,D). These results demonstrate that the b’-COP and a-COP propeller domains can directly

and specifically bind K63-linked poly-Ub.

To be certain that these Ub interactions were not an artifact of the recombinant GST fusion pro-

tein fragments assayed, we tested if the COPI complex isolated from yeast could bind polyUb.

Extracts from yeast cells expressing HA-tagged or untagged (control) b’-COP as the sole source of

this subunit were incubated with anti-HA beads to recover COPI. The majority of b’-COP in yeast is

assembled into the heptameric COPI complex and these methods have been used previously to

purify the full complex (Yip and Walz, 2011). The beads carrying COPI bound K63-linked polyUb,

but not K48-linked polyUb, with the same chain length specificity as the individual propeller domains

(Figure 3D–E). In contrast, the beads incubated with control lysate with untagged COPI did not

bind any of the polyUb chains. These data indicate the full-length b’-COP binds K63-polyUb and sug-

gests the full COPI complex binds as well.

We then tested if COPI propeller domains are required for recycling of GFP-Snc1. Cells express-

ing b’-COP harboring a deletion of the N-terminal propeller (D2–304) as the sole source of this sub-

unit were viable but mislocalized GFP-Snc1 to Tlg1-marked compartments (Figure 4A–C). Deletion

of the a-COP N-terminal propeller also disrupted Snc1 recycling, although not as severely

(Figure 4A–C). The b’-COP N-terminal propeller contains a basic patch that binds to the C-terminus

of cargos bearing specific variants of di-lysine sorting signals (e.g KxKxx-COO-), such as Emp47

(Eugster et al., 2004; Schröder-Köhne et al., 1998). Therefore, it was possible that the GFP-Snc1

recycling defect caused by b’-COP (D2–304) was a secondary effect of mislocalizing a subset of di-

lysine cargos recognized preferentially by this propeller. Mutation of the di-lysine binding site (b’-

COP RKR mutant: R15A K17A R59A) disrupts the di-lysine interaction and causes myc-Emp47 misloc-

alization to the vacuole where it is degraded (Eugster et al., 2004). By contrast, the b’-COP RKR

mutant localized GFP-Snc1 normally to the plasma membrane (Figure 4A–C). Therefore, the GFP-

Snc1 recycling defect of b’-COP (D2–304) did not correlate with the loss of the di-lysine binding site.

Importantly, these separation-of-function mutations show that the role of b’-COP at the Golgi in rec-

ognizing certain di-lysine signals can be unlinked from its role in recycling GFP-Snc1.

Replacement of the b’-COP N-terminal WD40 domain with unrelated
Ub-binding domains restores Snc1 recycling
To test if recognition of Ub is the critical function of b’-COP in Snc1 recycling, we replaced the N-ter-

minal propeller domain with three different Ub-binding domains. The first is a b-propeller Ub-bind-

ing domain from Doa1 (UBDDoa1) that has no significant sequence similarity to b’-COP, but is known

to bind Ub without linkage or chain-length specificity (b’-COP UBDDoa1) (Pashkova et al., 2010).

The second is the Npl4 Zinc Finger (NZF) domain from Tab2, which binds specifically to K63-linked

polyUb (Sato et al., 2009). The third is the K48-linkage specific UBA domain from Mud1

(Trempe et al., 2005). Strikingly, the UBDDoa1 and NZFTab2 domains fully restored b’-COP function

in GFP-Snc1 recycling (Figure 4A–C), but the UBAMud1 domain failed to support this trafficking path-

way. Importantly, COPI Ub binding appears to be conserved because human b’-COP (1-303) bound

K63-linked polyUb comparably to the orthologous yeast domain (Figure 4—figure supplement 1),

and yeast cells expressing a chimeric yeast b’-COP with a human N-terminal propeller fully sup-

ported GFP-Snc1 trafficking (Figure 4A–D).

b’-COP is encoded by the SEC27 gene, which is essential for yeast viability. All of the b’-COP chi-

meras and mutants described above supported the viability of yeast as the sole source of this sub-

unit (Figure 4E). Therefore, all must be sufficiently well folded and functional to assemble into the

heptameric complex. Interestingly, deletion of the b’-COP N-terminal propeller caused a slow

Figure 3 continued

DOI: https://doi.org/10.7554/eLife.28342.009
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Figure 4. Ub binding by b’-COP is required to sort GFP-Snc1 to the plasma membrane. (A and B) Deletion of the N-terminal WD40 propeller from b’-

COP (D2–304) disrupts recycling of GFP-Snc1 but mutation of residues within this propeller required for dilysine motif binding (RKR) have no effect.

Replacement of the N-terminal propeller with a linkage independent ubiquitin-binding domain (UBD) from Doa1, a K63-specific Npl4 Zinc Finger (NZF)

domain from Tab2, or the N-terminal propeller from human b’-COP restored Snc1 recycling. In contrast, the K48-linkage specific ubiquitin pathway

associated (UBA) domain from Mud1 failed to restore GFP-Snc1 recycling. Deletion of N-terminal WD40 propeller of a-COP caused a partial Snc1

Figure 4 continued on next page
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growth phenotype that was fully rescued by its replacement with the general Ub-binding domain

from Doa1 (UBD Doa1), or the human b’-COP N-terminal propeller. The b’-COP (RKR) di-lysine bind-

ing mutant also supports WT growth. These results suggest that the slow growth phenotype caused

by b’-COP (D2–304) was due to loss of Ub binding but not di-lysine binding. In contrast, b’-COP

NZFTab2, which binds K63-linked Ub, failed to correct the growth defect even though it fully restored

GFP-Snc1 recycling (Figure 4A–E). The b’-COP UBAMud1 chimera failed to correct the growth defect

or Snc1 trafficking phenotypes exhibited by b’-COP (D2–304). The reason b’-COP NZFTab2 and b’-

COP UBDDoa1 influence growth differently is currently unclear, but suggest some COPI cargos may

be modified with polyUb bearing linkages other than K63 or K48. These results also indicate that the

growth and Snc1 trafficking defects can be uncoupled using different b’-COP variants.

It was possible that b’-COP (D2–304) destabilized the COPI coat and generally disrupted COPI

function at the Golgi complex, thereby causing Snc1 recycling defects as a secondary consequence

of perturbing the Golgi. Therefore, we examined the influence of these COPI variants on GFP-Rer1

cycling between the ER and Golgi complex. Rer1 is transported to the Golgi in COPII-coated vesicles

and returned to the ER in COPI-coated vesicles, but displays a steady-state localization to early

Golgi cisternae. Mutations that generally perturb COPI function, such as the temperature-sensitive

ret1-1 mutation in a-COP (Letourneur et al., 1994; Sato et al., 2001), mislocalize GFP-Rer1 to the

vacuole (Figure 5A,B). Even at a permissive growth temperature of 27 ˚C, the ret1-1 mutant displays

significant mislocalization of Rer1-GFP to the vacuole (Figure 5A,B). By contrast, the b’-COP (D2–

304), RKR and UBDDoa1 mutants all localized GFP-Rer1 to the Golgi as efficiently as WT cells

(Figure 5A,B). The b’-COP N-terminal di-lysine binding site has a specific role in sorting Emp47

within the Golgi. As previously reported, b’-COP (D2–304) and the RKR mutant mislocalizes Emp47

to the vacuole where it is degraded (Eugster et al., 2004). Replacement of the N-terminal propeller

of b’-COP with the NZFTab1 or UBDDoa1 domains predictably failed to stabilize Myc-Emp47 because

these domains lack the di-lysine binding site (Figure 5C). We conclude the ability of b’-COP to bind

ubiquitin is crucial for Snc1 recycling, but appears to have no role in the COPI-dependent trafficking

of Rer1 or Emp47 at the Golgi complex. This collection of b’-COP fusion proteins provide an addi-

tional set of separation-of-function alleles that demonstrate the importance of the COPI-Ub interac-

tion in vivo for GFP-Snc1 recycling.

COPI localizes to Tlg1-marked membranes in budding yeast
Our data imply that COPI has a distinct function in Snc1 recycling that is independent of its role at

early Golgi compartments, where most COPI is localized. To test whether COPI also localizes to

compartments in the recycling pathway we quantified the colocalization of Cop1(a-COP)-mKate with

GFP-Rer1 (early Golgi marker), GFP-Tlg1, and GFP-Sec7 (Figure 6A,B). While most COPI punctae

colocalized with the early Golgi (61.3 ± 6.3%), we found 18.4 ± 3.6% of COPI co-localized with Tlg1,

and only 2.5 ± 1.4% colocalized with Sec7 (Figure 6A,B). We also considered the possibility that

Tlg1 was partially present in the early Golgi, which could provide an alternative explanation for the

Figure 4 continued

recycling defect. Scale bar, 5 mm. (C) Quantification of GFP intensity at the plasma membrane. Each biological replicate includes at least 50 cells and

individual biological replicates value and mean are shown. Statistical differences were determined using a one-way ANOVA on the means of the three

biological replicates (***p<0.001; NS, p>0.05). (D) Quantification analysis of colocalization between GFP-Snc1 and mCherry-Tlg1 in WT and b’-COP

mutant cells using Pearson correlation coefficient. Each replicate includes at least 20 cells and individual biological replicates value and mean were

shown. (E) Serial dilution growth assay of b’-COP mutants. The b’-COP dilysine motif binding mutant (RKR) had no effect on growth, but deletion of the

first propeller (D2–304) caused slow growth. Replacement of the first propeller with the UBD or the human N-terminal propeller, but not NZF or UBA

domains, restored WT growth. One of four replicates is shown.

DOI: https://doi.org/10.7554/eLife.28342.010

The following source data and figure supplement are available for figure 4:

Source data 1. This spreadsheet contains the GFP intensity at the plasma membrane of COPI mutants used to generate the dot plots shown in

Figure 4C, and the means of Pearson correlation coefficient data of COPI mutants used to generate the dot plots shown in Figure 4D.

DOI: https://doi.org/10.7554/eLife.28342.012

Figure supplement 1. GST tagged human b’-COP (1-303) preferentially binds long K63-linked (upper panel) but not K48-linked (middle panel) chains of

Ub.

DOI: https://doi.org/10.7554/eLife.28342.011
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Figure 5. b’-COP interaction with ubiquitin has no role in the COPI-dependent trafficking of Rer1 or Emp47 at the Golgi complex. (A) Deletion of

N-terminal WD40 propeller of b’-COP does not alter the retrograde trafficking of Rer1 from cis-Golgi to endoplasmic reticulum. The indicated b’ COP

mutant cells expressing GFP-Rer1 were labeled with 2 nM FM4-64 for 20 min at 30 ˚C then chased for 2 hr to label vacuole membranes. An a-COP

temperature-sensitive mutant (ret1-1) expressing GFP-Rer1 was labeled with 2 nM FM4-64 at 27 ˚C for 20 min, then chased at 27 ˚C or 37 ˚C for 2 hr. (B)

Quantification of GFP-Rer1 in the vacuole. The percentage values of GFP intensity in the vacuole for 20 cells were plotted. The mean and standard

deviation were shown. Statistical differences were determined using a one-way ANOVA on the means of three biological replicates. (***p<0.001; NS,

p>0.05). (C) Immunoblot showing that Myc-Emp47, an early Golgi COPI cargo, is missorted into the vacuole and degraded in strains expressing b’-COP

RKR or D2–304, but stability is not restored when the N-terminal propeller is replaced with Ub binding domains. Immunoblot using anti-Arf1 is used as

the loading control.

DOI: https://doi.org/10.7554/eLife.28342.013

The following source data is available for figure 5:

Source data 1. This spreadsheet contains the percentage of GFP intensity at the vacuole labeled with FM4-64 for individual b’-COPI mutants cells and

ret1-1 mutants cells used to generate the dot plots shown in Figure 5B.

DOI: https://doi.org/10.7554/eLife.28342.014
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co-localization with COPI. However, colocalization between mCherry-Tlg1 and GFP-Rer1 was negligi-

ble (2.4 ± 1.4%) (Figure 6A,B). Together, these observations suggest that COPI is recruited to com-

partments of the recycling pathway where it could play direct role in trafficking of ubiquitinated

GFP-Snc1.

Discussion
Here we report that the COPI vesicle coat protein recognizes K63-linked polyubiquitin and this inter-

action is necessary for recycling an exocytic v-SNARE Snc1 through the endocytic pathway back to

the TGN. The significance of these observations to the protein trafficking field is that they (1) con-

trast with prevailing views on the role of ubiquitin in the endocytic pathway, (2) define a new and

A B

Cop1-mKate GFP-Rer1 Merge DIC overlay

Cop1-GFP Sec7-mKate Merge DIC overlay

Cop1-mKate GFP-Tlg1 Merge DIC overlay

Tlg1-mCherry GFP-Rer1 Merge DIC overlay

Figure 6. A small pool of COPI co-localizes with Tlg1 in yeast. (A and B) Co-localization of Cop1 (a-COP) with markers for the early endosome/TGN

(Tlg1), early Golgi (Rer1), or TGN (Sec7). Tlg1 was also co-localized relative to Rer1 to make sure there was no significant overlap between these early

Golgi and early endosome/TGN markers. Scale bar, 5 mm. Statistical differences were determined using a one-way ANOVA on the means of three

biological replicates (***p<0.001; **p<0.01; NS, p>0.05).

DOI: https://doi.org/10.7554/eLife.28342.015

The following source data is available for figure 6:

Source data 1. This spreadsheet contains three means of percentage for Cop1 with Rer1, Tlg1 or Sec7 and Tlg1 with Sec7 data used to generate the

dot plots shown in Figure 6B.

DOI: https://doi.org/10.7554/eLife.28342.016
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unexpected sorting signal recognized by the COPI coat, and (3) define a novel mechanism for

v-SNARE recycling.

The multifaceted roles of Ub in protein trafficking
This study challenges the assumption that ubiquitination of membrane proteins in the secretory or

endocytic pathways will target the modified protein solely to the vacuole for degradation. Ub is well

known to be a sorting signal recognized by clathrin adaptor proteins at the TGN and plasma mem-

brane, and by the ESCRT complexes in the endosomal system. The clathrin adaptor interactions ini-

tially sort the ubiquitinated cargo into the endosomal system, while the ESCRTs mediate sorting into

intraluminal vesicles of multivesicular bodies for eventual delivery to vacuole (or lysosome) lumen

where the cargo is typically degraded (MacGurn et al., 2012). In the yeast system, mono-ubiquitina-

tion of cargo appears to be sufficient to drive these sorting events (Stringer and Piper, 2011) and it

is thought that Ub would have to be removed from cargo by a deubiquitinase in order to rescue the

protein from vacuolar delivery. In contrast, we show a physiologically relevant example for how addi-

tion of a K63-linked polyUb chain onto a SNARE serves as a COPI-dependent sorting signal that

diverts this cargo away from the endocytic pathway and mediates its retrieval from the endocytic

pathway back to the TGN. A prior study had demonstrated that mutation of a conserved lysine in

Snc1 (coincidentally K63) reduced its ubiquitination and perturbed recycling. However, it was possi-

ble that K63 in Snc1 was part of a more traditional lysine-based sorting signal in addition to being

the primary target of ubiquitination. We rule out this possibility by the observation that fusion of a

deubiquitinase (DUB) to GFP-Snc1 also disrupts its recycling without altering the Snc1 amino acid

sequence. It is likely that DUB-GFP-Snc1 perturbs recycling by deubiquitinating Snc1 rather than the

trafficking machinery because DUB fusion to Drs2 or Rcy1 did not cause the same Snc1 trafficking

defect as observed with DUB-GFP-Snc1. However, we cannot rule out the possibility that deubiquiti-

nation of other components of the trafficking machinery contributes to this trafficking defect. Our

observation that COPI binds directly to K63-linked poly-Ub chains and this interaction is necessary

for Snc1 recycling strongly supports the idea that polyUb is the sorting signal in this pathway.

Our results provide a remarkable example of how the Ub code can be written and/or read in a

spatiotemporally defined manner to control protein sorting decision points in the endocytic path-

way. The Ub code is written by Ub ligases that determine the specific linkage and length of the Ub

chains in competition with endogenous DUBs (Komander et al., 2009; MacGurn et al., 2012). The

F-box protein Rcy1 has been implicated in Snc1 ubiquitination (Chen et al., 2011), but other SCF

subunits are not required for Snc1 trafficking (Galan et al., 2001) and we find fusion of a DUB

directly to Rcy1 does not perturb its function in this pathway relative to DUB*. However, DUB fusion

with endosomal E3 ligases Pib1 and Tul1 does disrupt Snc1 recycling, as does combined deletion of

the PIB1 and TUL1 genes. Thus, Pib1 and Tul1 are good candidates for the E3 ligases that modify

Snc1. Mutations in both the membrane domain and membrane proximal cytosolic region of Snc1

perturb its recycling (Lewis et al., 2000), suggesting primary sorting information resides in these

regions of the molecule. Tul1 is a candidate for recognizing a signal within the membrane domain

because this E3 ligase is an integral membrane protein. However, it is also possible that a combina-

tion of a sorting receptor (unknown at this point) and ubiquitination drives Snc1 recycling. In addi-

tion, the regulation of ubiquitination/deubiquitination cycles for a substrate can be quite complex

and more work is needed to clarify how the steady-state pools of Snc1-Ub are produced. With these

caveats in mind, we speculate that Snc1 ubiquitination occurs at an early endosome population that

lacks the ESCRT machinery so Snc1-Ub can be recycled by COPI rather than sorted into intraluminal

vesicles. Conversely, it is possible that ESCRTs and COPI can compete for this cargo at the same

compartment, but the length of the K63-linked polyUb chain on Snc1 determines whether COPI

binds (long chains) or ESCRTs bind (mono or short chains). These events appear to be regulated

because WT yeast harvested at a late phase of logarithmic growth display a substantial amount of

GFP-Snc1 in the vacuole lumen (MacDonald et al., 2015). It will be interesting to determine if it is a

regulated change in the trafficking machinery, or extent of Snc1 ubiquitination that elicits this switch

in the Snc1 destination.
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K63-linked polyUb is a sorting signal that binds directly to COPI
COPI plays a major role in organelle biogenesis by helping establish the specific protein composition

of the ER, Golgi complex, and endosomal membranes. This is accomplished by the recognition of

sorting signals within the cytosolic tails of cargo proteins, such as the C-terminal di-lysine motif

required for COPI-dependent Golgi to ER transport (Cosson and Letourneur, 1994;

Letourneur et al., 1994). However, there is a paucity of information on other types of sorting signals

potentially recognized by COPI. Here we show that the WD40 repeat domains of a- and b’-COP sur-

prisingly bind to polyUb with specificity for the linkage type and length of the Ub chain. A chain of

at least three K63-linked Ubs is required for productive interaction with the WD40 b-propeller

domains. Indeed, it is tempting to speculate that the twin propeller domains of COPI evolved in

order to bind long chains of Ub that could wrap around the two propeller domains. Moreover, we

demonstrate the significance of the Ub interaction in vivo. Deletion of the ubiquitin-binding, N-ter-

minal WD40 repeat domain of b’-COP disrupts endosome to TGN transport of Snc1, but this traffick-

ing step can be restored when we replace the WD repeat domain with a 30-residue Tab2 NZF

domain, which specifically binds K63-linked polyUb. By contrast, replacement of this b’-COP domain

with a K48-linkage specific binding domain (Mud1 UBA domain) failed to restore Snc1 trafficking. Ub

binding appears to be a conserved function for COPI as the human b’-COP N-terminal propeller also

binds K63-linked ubiquitin and functionally replaces its yeast counterpart in the Snc1 recycling path-

way. Importantly, ubiquitin binding by b’-COP has no discernable influence on COPI’s role in Rer1

transport between the Golgi and ER, or the localization of Emp47. While it is possible that other

COPI cargos may use ubiquitin signals early in the secretory pathway, we demonstrate a specific role

for COPI in recycling through the endosomal system that is independent of its known functions in

Golgi to ER transport.

Exocytic v-SNARE recycling - will the circle be unbroken
The recycling of exocytic v-SNAREs is a multi-step process that begins with the fusion of these

vesicles with the plasma membrane. For Snc1 and related mammalian v-SNAREs (e.g. VAMP2), the

clathrin adaptor proteins AP180 and CALM recognize conserved Val and Met residues within the

SNARE motif, which prevents re-association with the t-SNAREs and promotes endocytosis into cla-

thrin coated vesicles (Burston et al., 2009; Miller et al., 2011). These exocytic v-SNAREs are not

simply passive cargos in the subsequent steps as they mediate fusion of the endocytic vesicle with

early endosomes (Antonin et al., 2000; Holthuis et al., 1998b; McNew et al., 2000). Snc1 is ubiqui-

tinated on Lys49, Lys63 and Lys75 within the SNARE motif (Swaney et al., 2013) and these modifica-

tions likely inactivate Snc1 and prevent re-association with the endosomal t-SNAREs (Tlg1, Tlg2, and

Vti1) after dissociation by Sec18/NSF. For example, monoubiquitination of Golgi SNAREs during

mitosis is thought to inhibit their function as fusogens and facilitate Golgi fragmentation

(Huang et al., 2016). We propose the polyUb chains on Snc1 also form the sorting signal that allows

efficient departure from the Tlg1-marked compartment in COPI-coated vesicles. The ubiquitin signal

appears to be a transient modification because only a small percentage of Snc1 is modified at

steady-state, and it is likely that the ubiquitin is removed by an endogenous DUB to allow Snc1 to

mediate fusion of recycling vesicles with their target.

Because the TGN and early endosomes in yeast are not well differentiated by existing markers, it

is formally possible that the COPI and Ub influence we observe on Snc1 recycling reflects a defect in

packaging Snc1 into exocytic vesicles rather than a defect in early endosome to TGN transport.

However, most of the mutants that perturb Snc1 recycling (rcy1D, drs2D, cdc50D, tlg1D, tlg2D) have

no measurable influence on the kinetics of secretion for other proteins (Furuta et al., 2007;

Holthuis et al., 1998a; Hua et al., 2002; Prescianotto-Baschong and Riezman, 2002). Similarly,

mutations that appear to fully inactivate COPI cause a cargo-selective defect in ER to Golgi trans-

port, but cargos that do leave the ER normally are secreted with near normal kinetics (Gaynor and

Emr, 1997). Moreover, a Snc1 mutation that disrupts its endocytosis is epistatic to mutations in the

recycling machinery or the addition of the DUB (DUB-GFP-Snc1), which implies that the recycling

defect caused by rcy1D (for example) or DUB fusion occurs after delivery to the plasma membrane

and endocytosis, but prior to arrival back in the Golgi (Figure 1A–B) (Chen et al., 2011;

Mioka et al., 2014). These observations argue against a role for COPI and the Rcy1/Drs2 machinery

Xu et al. eLife 2017;6:e28342. DOI: https://doi.org/10.7554/eLife.28342 14 of 22

Research article Cell Biology

https://doi.org/10.7554/eLife.28342


in packaging Snc1 into exocytic vesicles at the TGN, and support a role for these factors in early

endosome to TGN transport.

Relationship of COPI to other factors mediating Snc1 recycling
A direct role for COPI in Snc1 recycling can illuminate the potential functions of the other trafficking

components in this pathway. COPI is recruited to membranes by the small GTP binding protein Arf,

which is regulated by multiple ArfGEFs and ArfGAPs (Jackson and Casanova, 2000). We have previ-

ously shown that the ArfGAP Gcs1 is specifically recruited to Tlg1-marked compartments by its abil-

ity to sense the curvature and charge imparted to the membrane by the Drs2 phosphatidylserine

flippase (Xu et al., 2013). Gcs1 binds directly to Snc1 and COPI (Robinson et al., 2006;

Suckling et al., 2015), and these interactions likely stabilize the COPI-Ub interactions to productively

recruit Snc1 into the COPI-coated vesicles. Deletion of GCS1 has a modest influence on Snc1 recy-

cling relative to b’-COP (D2–304) or drs2D (Xu et al., 2013) and so we expect there are other effec-

tors of Drs2 acting in the pathway and that the COPI interaction with Ub-Snc1 is primarily

responsible for the sorting reaction. The F-box protein Rcy1 binds directly to a regulatory domain in

the C-terminus of Drs2 (Hanamatsu et al., 2014), and binding of an ArfGEF (Gea2) to this Drs2 reg-

ulatory domain stimulates phosphatidylserine flippase activity (Hsu et al., 2014; Natarajan et al.,

2004). Thus, the function of Rcy1 in this pathway may be activation of Drs2. The relationship of the

Snx4/41/42 complex to the COPI-Gcs1-Drs2-Rcy1 network is less clear, but a recent study suggests

this sorting nexin complex may be localized to a different endosome population and could represent

a distinct pathway for retrieval of Snc1 (Hettema et al., 2003; Ma et al., 2017). Further work will be

needed to determine precisely how these components work together with COPI to drive Snc1 trans-

port from endosomes to the TGN.

In summary, our studies identify a new function for an old coat and define a specific trafficking

function for COPI in recycling an exocytic SNARE. Further work is required to determine if mamma-

lian exocytic SNAREs are recycled by this same mechanism and to identify other cargos that use a

ubiquitin signal for sorting by COPI.

Materials and methods

Reagents
EZview Red ANTI-FLAG M2 Affinity Gel (F2426), EZview Red ANTI-HA Affinity Gel (E6779), 3xFLAG

Peptide (F4799), HA Peptide (I2149), Glutathione�Agarose (G4510), N-Ethylmaleimide (S1638),

Iodoacetamide (GERPN6302), aprotinin (A1153), pepstatin (P5318) and Phenylmethanesulfonyl fluo-

ride (P7626) were purchased from Sigma-Aldrich (St Louis, MO). K48-, and K63-linked poly-ubiquitin

chains (Ub2-7) were purchased from Boston Biochem (Cambridge, MA) and K63-linked tetra-ubiqui-

tin was purchased from UBPBio (Aurora, CO). Protease inhibitor tablet (PI88665), Coomassie Brilliant

Blue R-250 Dye (20278), and FM4-64 dye (T-3166) were purchased from ThermoFisher Scientific (San

Jose, CA). ECL Prime Western Blotting Detection Reagent (RPN2236) was purchased from GE

healthcare Life Sciences (Marlborough, MA).

Antibodies
The rabbit anti-Arf1 (1:10,000) and rabbit anti-Drs2 (1:2000) antibodies have been described previ-

ously (Chen et al., 1999). Mouse anti-GFP (1C9A5, 1:2000) and mouse anti-Myc (9E10, 1:2000) anti-

bodies were purchased from the Vanderbilt Antibody and Protein Repository (Nashville, TN). Mouse

anti-FLAG M2 (Sigma-Aldrich Cat# F3165, RRID:AB_259529, 1:5000) and mouse anti-HA 12CA5

(Sigma-Aldrich Cat# 11583816001, RRID:AB_514505,1:2500) were purchased from Sigma-Aldrich.

Mouse anti-Ubiquitin Ubi-1 antibody (Millipore Cat# MAB1510, RRID:AB_2180556, 1:1000) was pur-

chased from EMD Millipore (Billerica, MA). Mouse anti-Ubiquitin VU1 (LifeSensors Cat# VU101,

1:1000) was purchased from LifeSensors (Malvern, PA). All secondary antibodies, including IRDye

680LT Goat anti-Mouse (LI-COR Biosciences Cat# 827–11080, RRID:AB_10795014, 1:20,000), IRDye

800CW Goat anti-Mouse (LI-COR Biosciences Cat# 827–08364, RRID:AB_10793856, 1:20,000), and

IRDye 680LT Goat anti-Rabbit (LI-COR Biosciences Cat# 827–11081, RRID:AB_10795015, 1:20,000),

were purchased from LI-COR Biosciences (Lincoln, NE).
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Strains and plasmids
Standard media and techniques for growing and transforming yeast were used. Epitope tagging of

yeast genes was performed using a PCR toolbox (Janke et al., 2004). COPI mutant strains were con-

structed by plasmid shuffling (PXY51) on 5’-fluoro-orotic acid (5-FOA) plates. Plasmid constructions

were performed using standard molecular manipulation. Mutations were introduced using a Q5 Site-

Directed Mutagenesis Kit or Gibson Assembly Master Mix (New England BioLabs, Beverly, MA).

Supplementary file 1. List of plasmids used in this study; Supplementary file 2. List of yeast strains

used in this study.

DUB comes from herpes simplex virus UL36 and DUB* was constructed by point mutation C56S

and deletion of ubiquitin binding b-hairpin (130-147) on DUB.

Imaging and image analysis
To visualize GFP- or mCherry-tagged proteins, cells were grown to early-to-mid-logarithmic phase,

harvested, and resuspended in imaging buffer (10 mM Na2PHO4, 156 mM NaCl, 2 mM KH2PO4,

and 2% glucose). Cells were then mounted on glass slides and observed immediately at room tem-

perature. Most images were acquired using a DeltaVision Elite Imaging System (GE Healthcare Life

Sciences, Pittsburgh, PA) equipped with a 63 � objective lens followed by deconvolution using soft-

WoRx software (GE Healthcare Life Science). All other images were acquired using an Axioplan

microscope (Carl Zeiss,Thornwood, NY) equipped with a 63 � objective lens with an sCMOS camera

(Zyla ANDOR, Belfast, United Kingdom) and Micro-Manager software. Overlay images were created

using the merge channels function of ImageJ software (National Institutes of Health). GFP-Snc1 at

the plasma membrane is quantified as previously described (Hankins et al., 2015). Briefly, concentric

circles were drawn just inside and outside the plasma membrane using Image J to quantify the inter-

nal fluorescence and total fluorescence, respectively. The internal fluorescence was subtracted from

the total to give the GFP intensity at the plasma membrane. At least 50 randomly chosen cells from

three biological replicates (independently isolated strains with the same genotype) were used to cal-

culate the mean and standard deviation. To quantify GFP-Snc1 colocalization with Tlg1, a Pearson’s

Correlation Coefficient (PCC) for the two markers in each cell (n = 3, 20 cells each) was calculated

using the ImageJ plugin Just Another Colocalization Plugin with Costes Automatic Thresholding

(Bolte and Cordelières, 2006). The percentage of COPI colocalization with the different organelle

markers was calculated by counting how many COPI punctae (n = 3,>100 punctae each) colocalized

with the markers.

Purified recombinant proteins
GST-tagged recombinant proteins were expressed and purified as previously described

(Jackson et al., 2012). Briefly, BL21(DE3)-pLysS (Agilent Technologies) Escherichia coli cells contain-

ing plasmids encoding each fusion protein were grown in 6 L of YT medium (16 g Tryptone, 10 g

Yeast Extract and 5 g NaCl) containing 100 mg/ml ampicillin at 240 rpm at 37˚C to an OD600 of 0.8.

The expression was induced with 0.2 mM IPTG overnight at 22˚C. Cells were harvested by centrifu-

gation at 5,000 g for 10 min and stored at �80˚C. Cells expressing b’-COP constructs were lysed in

20 mM Tris pH 7.4, 200 mM NaCl, 2 mM DTT, 2 mg/ml aprotinin, 0.7 mg/ml pepstatin. a-COP GST

fusion proteins were purified in 20 mM Tris, pH 7.4, 500 mM NaCl, 2 mM DTT, 2 mg/ml aprotinin, 0.7

mg/ml pepstatin. Cells were lysed by a disruptor (Constant Systems Limited, Daventry, UK), and the

lysates were centrifuged at 30,000 rpm for 1 hr. The supernatant was incubated with 5 ml of glutathi-

one-agarose beads 1 hr at 4˚C. The beads were washed in a column with 200 ml of washing buffer

(20 mM Tris-HCl and 200 mM NaCl, pH 7.5), then eluted in 1 ml fractions with GST elution buffer (50

mM Tris-HCl and 20 mM reduced glutathione, pH 9.5). The protein was equilibrated to neutral

buffer (20 mM Tris-HCl and 100 mM NaCl, pH 6.8) using dialysis. All proteins were further purified

by gel filtration on a Superdex S200 preparative or analytical column (GE Healthcare Life Sciences,

Pittsburgh, PA). Protein concentrations were measured by BCA assay (Sigma-Aldrich).

In vitro binding assays
GST recombinant proteins were incubated with glutathione agarose beads in PBS at 25˚C for 30

min. GST fusions on beads were then incubated with 10x molecular amount of Ub4 at 25˚C for 1 hr

in incubation buffer (10 mM Na2PHO4, 156 mM NaCl, 2 mM KH2PO4, 0.1 mg/ml BSA, and 0.01%
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Triton-X 100). Beads were then washed three times with wash buffer (10 mM Na2PHO4, 156 mM

NaCl, 2 mM KH2PO4, and 0.01% Triton) and eluted with 50 mM reduced Glutathione in PBS on ice

for 10 min. The elution was then mixed with SDS-Urea sample buffer at 60˚C for 10 min.

For the ubiquitin chain binding, 0.5 mM of GST or GST tagged b-Prop was incubated with 9 mg of

K63 or K48-linked ubiquitin chains in binding buffer (20 mM HEPES pH 7.5, 100 mM NaCl, 20% Glyc-

erol, 0.1 % NP-40, 200 mg/ml BSA) at 4˚C overnight. The GST beads were then added for 30 min.

After three washes, the bound proteins were eluted with 50 mM reduced glutathione in PBS on ice

for 10 min (Sobhian et al., 2007). The elution was then mixed with SDS-Urea sample buffer at 60˚C
for 10 min. The protein samples were analyzed by SDS–PAGE followed by immunoblotting using pri-

mary antibody and IRDye 680LT Goat anti-Mouse. The membrane was imaged with Licor Odyssey

CLx (Licor, Lincoln, NE). The band intensities were quantified by Image Studio (Version 5.2). The rela-

tive binding was calculated as 100*(band signal intensity – corresponding GST lane)/input band

intensity.

NMR titration experiments
Uniformly enriched 15N-labeled ubiquitin prepared in 50 mM sodium phosphate pH 7.0, 1 mM DTT

was diluted to 30 mM with 10% (v/v) D2O. A sample of 15N-labeled ubiquitin with 10:1 molar excess

of b’-COP residues 1–304 was prepared in the same way. Standard two-dimensional 15N-1H HSQC

spectra were collected at 25 ˚C on an 800 MHz Bruker Avance III spectrometer with a TCI triple reso-

nance cryoprobe (Bruker BioSpin, Billerica, MA). Data were processed in Topspin 3.2 (Bruker Bio-

Spin), with zero filling in the indirect dimension and squared sine bell apodization in both

dimensions.

Construction of HA tagged b’-COP
b’-COP was C-terminally tagged with 6xHA by integration of a PCR product amplified from pYM15

into the SEC27 locus (Janke et al., 2004). Properly integrated clones were confirmed by genotyping

PCR and immunoblot using anti-HA antibody.

Purification of yeast coatomer for in vitro Ub binding assays
Affinity isolation of COPI was performed as previously described (Yip and Walz, 2011) with the fol-

lowing modifications. 2 L of wild type (BY4742) and C-terminal tagged 6xHA b’-COP (PXY57) yeast

cells grown in YPD were pelleted when the OD600 reached ~4. After washing with cold water, the

pellets were frozen. 5,000 OD of cells were resuspended in lysis buffer (10 mM Tris pH 7.4, 150 mM

NaCl, 0.1% NP40, 2 mM EDTA, 50 mM NaF, 0.1 mM Na3VO4, 10 mM b-mercaptoethanol, 1 mM

PMSF, and complete protease inhibitor tablet). Cells were broken using a Disruptor Genie (Scientific

Industries, Bohemia, NY) at 4˚C for 10 min at 3000 setting with 0.5 mm diameter of glass beads. The

lysates were centrifuged at 13,000 rpm for 20 min at 4˚C and the supernatant was incubated with

anti-HA agarose beads for 1 hr at 4˚C. The anti-HA agarose beads were washed with 1 ml of lysis

buffer three times.

Yeast coatomer binding assay
The anti-HA beads with bound coatomer were incubated with 4 mg of ubiquitin ladder mixtures in

500 ml of binding buffer (20 mM HEPES pH 7.5, 100 mM NaCl, 20% Glycerol, 0.1 % NP-40, 200 mg/

ml BSA) at 4˚C for 2 hr. After the beads were washed three times, the specifically bound polyubiqui-

tin was eluted from the beads by 3xHA peptide (100 mg/ml). The eluate was added to SDS-Urea

sample buffer and heated at 60˚C for 10 min. The protein samples were analyzed by SDS–PAGE fol-

lowed by immunoblotting using primary anti-Ub antibody and anti–mouse IgG-HRP (1: 50,000 in

TBST +5% non-fat milk). The membrane was developed by enhanced chemiluminescence (Amer-

sham) and imaged with ImageQuant LAS 4000 (GE Healthcare Life Sciences, Pittsburgh, PA). The

band intensity was quantified by ImageQuant TL (GE Life Sciences). The relative binding was calcu-

lated as 100* (pulldown band intensity/the input band intensity).

HA-Snc1 immunoprecipitation
Wild-type yeast cells (BY4742) expressing empty vector (pRS416), lysineless Snc1 (pRS416-3HA-Snc1

8KR) and wildtype Snc1 (pRS416-3HA-Snc1) were inoculated followed by the subculture till OD600
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reaches to 0.6. ~ 100 OD of cells were collected and washed with cold double-distilled water. The

cell pellets were treated with 0.2M NaOH at room temperature for 2 min. The re-pelleted cells were

suspended with 200 ml of Urea-SDS buffer (50 mM Tris, pH 6.8, 8 M urea, 5% SDS, 10% glycerol, 10

mM N-ethylmaleimide, and 10 mM iodoacetamide) and heated at 70˚C for 10 min. The cell lysates

were diluted with 10-fold volumes of buffer (0.1 M Tris, pH 7.5, 0.4% Triton X-100, 10 mM N-ethyl-

maleimide and 10 mM iodoacetamide) and incubated on ice for 10 min. After centrifugation at

13,000 rpm for 30 min, the supernatant was incubated with anti-HA agarose beads overnight while

50 ml of supernatant was taken as the loading control. Beads were subject to three 10 min washes

with washing buffer (0.1 M Tris, pH 7.5, 0.4% Triton X-100). The HA tagged proteins were eluted

with 25 ml of HA peptides (100 ng/ml in PBS) at 4˚C for 30 min. The eluate was mixed with 2x SDS-

Urea sample buffer (40 mM Tris-HCl, pH 6.8, 8 M urea, 0.1 mM EDTA, 1% b-mercaptoethanol, and

5% SDS) and was heated at 70˚C for 10 min. The samples were run in 4–20% gradient SDS-PAGE

and then transferred onto PVDF membrane. The PVDF membrane was blocked in Odyssey Blocking

Buffer in TBS for 1 hr at room temperature then incubated with anti-HA antibodies (1:2500) in block-

ing buffer overnight. After washing with TBST, the membrane is incubated with anti-mouse IgG-HRP

(1: 50,000 in TBST +5% non-fat milk) for 1 hr at room temperature. The membrane was washed by

TBST and then detected with ECL Prime Western Blotting (Amersham). The membrane was imaged

with ChemiDoc MP (Bio-Rad, Hercules, CA).

Enrichment of ubiquitinated proteins by Anti-FLAG
immunoprecipitation
Immunoprecipitation was performed as described previously (Stringer and Piper, 2011) with the fol-

lowing modifications. 50 OD of cells at mid-log phase were pelleted and resuspended in 0.2 M

NaOH for 2 min. The cells were pelleted and resuspended in Urea-SDS buffer (50 mM Tris, pH 6.8, 8

M urea, 5% SDS, 10% glycerol, 10 mM N-ethylmaleimide, and 10 mM iodoacetamide) and boiled at

70˚C for 10 min. The cell lysates were diluted with 10 volumes of 0.1 M Tris, pH 7.5, 0.4% Triton

X-100, 10 mM N-ethylmaleimide and 10 mM iodoacetamide and placed on ice for 10 min. After cen-

trifugation at 13,000 rpm for 30 min, the supernatant was incubated with anti-FLAG agarose beads

overnight. Beads were washed three times in 0.1 M Tris, pH 7.5, 0.4% Triton X-100. Anti-FLAG

beads were eluted with 20 ml 3xFLAG peptide (150 ng/ml in PBS) at 4˚C for 30 min. The Supernatant

mixed with 2x SDS-Urea sample buffer (40 mM Tris-HCl, pH 6.8, 8 M urea, 0.1 mM EDTA, 1% b-mer-

captoethanol, and 5% SDS) was heated at 70˚C for 10 min. The samples were then separated by 4–

20% gradient SDS-PAGE followed by immunoblotting using the manufacturer’s protocol (LI-COR

Biosciences). PVDF membranes were scanned by an Odyssey CLx scanner and quantified using

Image Studio Software (LI-COR Biosciences). To detect ubiquitinated proteins from yeast, the PVDF

membrane was incubated anti-FLAG antibody (1:2500) followed by the incubation with anti-mouse

IgG-HRP (1: 50,000 in TBST + 5% non-fat milk) for 1 hr at room temperature. After three washes in

TBST, membranes were incubated with enhanced chemiluminescence (Amersham). The membrane

was imaged with ImageQuant LAS 4000.

Quantification of GFP-Rer1 in the vacuole
To label the vacuole of yeast cells, the cells expressing GFP-Rer1 were pulsed with 2 nM of FM4-64

at 30˚C for 20 min. Then the cells were chased in YPD for 2 hr (Vida and Emr, 1995) before the

images were acquired using an Axioplan microscope (Carl Zeiss) equipped with a 63 � objective

lens with an sCMOS camera (Zyla ANDOR) and Micro-Manager software. Overlay images were cre-

ated using the merge channels function of ImageJ software (National Institutes of Health). In ImageJ,

the vacuole of a cell stained with FM4-64 was selected using the freehand draw tool and the same

area was copied into the green (GFP) channel. The whole cell area was also defined using the free-

hand draw tool and the GFP in the vacuole is defined as Intensityvacuole/Intensity whole cell. 20 cells

were selected and quantified ± SD.

Statistical analysis
Statistical differences were determined using a one-way ANOVA on the means of at least three inde-

pendent experiments using GraphPad Prism (GraphPad Software Inc.). Probability values of less than

Xu et al. eLife 2017;6:e28342. DOI: https://doi.org/10.7554/eLife.28342 18 of 22

Research article Cell Biology

https://doi.org/10.7554/eLife.28342


0.05, 0.01 and 0.001 were used to show statistically significant differences and are represented with

*, ** or *** respectively.
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Burston HE, Maldonado-Báez L, Davey M, Montpetit B, Schluter C, Wendland B, Conibear E. 2009. Regulators
of yeast endocytosis identified by systematic quantitative analysis. The Journal of Cell Biology 185:1097–1110.
DOI: https://doi.org/10.1083/jcb.200811116, PMID: 19506040

Chen CY, Ingram MF, Rosal PH, Graham TR. 1999. Role for Drs2p, a P-type ATPase and potential
aminophospholipid translocase, in yeast late golgi function. The Journal of Cell Biology 147:1223–1236.
DOI: https://doi.org/10.1083/jcb.147.6.1223, PMID: 10601336

Chen SH, Shah AH, Segev N. 2011. Ypt31/32 GTPases and their F-Box effector Rcy1 regulate ubiquitination of
recycling proteins. Cellular Logistics 1:21–31. DOI: https://doi.org/10.4161/cl.1.1.14695, PMID: 21686101

Cosson P, Letourneur F. 1994. Coatomer interaction with di-lysine endoplasmic reticulum retention motifs.
Science 263:1629–1631. DOI: https://doi.org/10.1126/science.8128252, PMID: 8128252

Dodonova SO, Diestelkoetter-Bachert P, von Appen A, Hagen WJ, Beck R, Beck M, Wieland F, Briggs JA. 2015.
Vesicular transport. a structure of the COPI coat and the role of coat proteins in membrane vesicle assembly.
Science 349:195–198. DOI: https://doi.org/10.1126/science.aab1121, PMID: 26160949

Eugster A, Frigerio G, Dale M, Duden R. 2004. The alpha- and beta’-COP WD40 domains mediate cargo-
selective interactions with distinct di-lysine motifs. Molecular Biology of the Cell 15:1011–1023. DOI: https://
doi.org/10.1091/mbc.E03-10-0724, PMID: 14699056

Faini M, Beck R, Wieland FT, Briggs JA. 2013. Vesicle coats: structure, function, and general principles of
assembly. Trends in Cell Biology 23:279–288. DOI: https://doi.org/10.1016/j.tcb.2013.01.005, PMID: 23414967

Fiedler K, Veit M, Stamnes MA, Rothman JE. 1996. Bimodal interaction of coatomer with the p24 family of
putative cargo receptors. Science 273:1396–1399. DOI: https://doi.org/10.1126/science.273.5280.1396, PMID:
8703076

Furuta N, Fujimura-Kamada K, Saito K, Yamamoto T, Tanaka K. 2007. Endocytic recycling in yeast is regulated by
putative phospholipid translocases and the Ypt31p/32p-Rcy1p pathway. Molecular Biology of the Cell 18:295–
312. DOI: https://doi.org/10.1091/mbc.E06-05-0461, PMID: 17093059

Galan JM, Wiederkehr A, Seol JH, Haguenauer-Tsapis R, Deshaies RJ, Riezman H, Peter M. 2001. Skp1p and the
F-box protein Rcy1p form a non-SCF complex involved in recycling of the SNARE Snc1p in yeast. Molecular
and Cellular Biology 21:3105–3117. DOI: https://doi.org/10.1128/MCB.21.9.3105-3117.2001, PMID: 11287615

Gaynor EC, Emr SD. 1997. COPI-independent anterograde transport: cargo-selective ER to golgi protein
transport in yeast COPI mutants. The Journal of Cell Biology 136:789–802. DOI: https://doi.org/10.1083/jcb.
136.4.789, PMID: 9049245

Hanamatsu H, Fujimura-Kamada K, Yamamoto T, Furuta N, Tanaka K. 2014. Interaction of the phospholipid
flippase Drs2p with the F-box protein Rcy1p plays an important role in early endosome to trans-Golgi network
vesicle transport in yeast. The Journal of Biochemistry 155:51–62. DOI: https://doi.org/10.1093/jb/mvt094,
PMID: 24272750

Hankins HM, Sere YY, Diab NS, Menon AK, Graham TR. 2015. Phosphatidylserine translocation at the yeast
trans-Golgi network regulates protein sorting into exocytic vesicles. Molecular Biology of the Cell 26:4674–
4685. DOI: https://doi.org/10.1091/mbc.E15-07-0487, PMID: 26466678

Hettema EH, Lewis MJ, Black MW, Pelham HR. 2003. Retromer and the sorting nexins Snx4/41/42 mediate
distinct retrieval pathways from yeast endosomes. The EMBO Journal 22:548–557. DOI: https://doi.org/10.
1093/emboj/cdg062, PMID: 12554655

Xu et al. eLife 2017;6:e28342. DOI: https://doi.org/10.7554/eLife.28342 20 of 22

Research article Cell Biology

1

https://doi.org/10.7554/eLife.28342.021
https://doi.org/10.7554/eLife.28342.017
https://doi.org/10.7554/eLife.28342.018
https://doi.org/10.7554/eLife.28342.019
https://doi.org/10.1083/jcb.133.1.29
http://www.ncbi.nlm.nih.gov/pubmed/8601610
https://doi.org/10.1091/mbc.11.10.3289
http://www.ncbi.nlm.nih.gov/pubmed/11029036
https://doi.org/10.1111/j.1365-2818.2006.01706.x
http://www.ncbi.nlm.nih.gov/pubmed/17210054
https://doi.org/10.1083/jcb.200811116
http://www.ncbi.nlm.nih.gov/pubmed/19506040
https://doi.org/10.1083/jcb.147.6.1223
http://www.ncbi.nlm.nih.gov/pubmed/10601336
https://doi.org/10.4161/cl.1.1.14695
http://www.ncbi.nlm.nih.gov/pubmed/21686101
https://doi.org/10.1126/science.8128252
http://www.ncbi.nlm.nih.gov/pubmed/8128252
https://doi.org/10.1126/science.aab1121
http://www.ncbi.nlm.nih.gov/pubmed/26160949
https://doi.org/10.1091/mbc.E03-10-0724
https://doi.org/10.1091/mbc.E03-10-0724
http://www.ncbi.nlm.nih.gov/pubmed/14699056
https://doi.org/10.1016/j.tcb.2013.01.005
http://www.ncbi.nlm.nih.gov/pubmed/23414967
https://doi.org/10.1126/science.273.5280.1396
http://www.ncbi.nlm.nih.gov/pubmed/8703076
https://doi.org/10.1091/mbc.E06-05-0461
http://www.ncbi.nlm.nih.gov/pubmed/17093059
https://doi.org/10.1128/MCB.21.9.3105-3117.2001
http://www.ncbi.nlm.nih.gov/pubmed/11287615
https://doi.org/10.1083/jcb.136.4.789
https://doi.org/10.1083/jcb.136.4.789
http://www.ncbi.nlm.nih.gov/pubmed/9049245
https://doi.org/10.1093/jb/mvt094
http://www.ncbi.nlm.nih.gov/pubmed/24272750
https://doi.org/10.1091/mbc.E15-07-0487
http://www.ncbi.nlm.nih.gov/pubmed/26466678
https://doi.org/10.1093/emboj/cdg062
https://doi.org/10.1093/emboj/cdg062
http://www.ncbi.nlm.nih.gov/pubmed/12554655
https://doi.org/10.7554/eLife.28342


Holthuis JC, Nichols BJ, Dhruvakumar S, Pelham HR. 1998a. Two syntaxin homologues in the TGN/endosomal
system of yeast. The EMBO Journal 17:113–126. DOI: https://doi.org/10.1093/emboj/17.1.113, PMID: 9427746

Holthuis JC, Nichols BJ, Pelham HR. 1998b. The syntaxin Tlg1p mediates trafficking of chitin synthase III to
polarized growth sites in yeast. Molecular Biology of the Cell 9:3383–3397. DOI: https://doi.org/10.1091/mbc.
9.12.3383, PMID: 9843576

Hsu JW, Chen ZJ, Liu YW, Lee FJ. 2014. Mechanism of action of the flippase Drs2p in modulating GTP hydrolysis
of Arl1p. Journal of Cell Science 127:2615–2620. DOI: https://doi.org/10.1242/jcs.143057, PMID: 24706946

Hua Z, Fatheddin P, Graham TR. 2002. An essential subfamily of Drs2p-related P-type ATPases is required for
protein trafficking between Golgi complex and endosomal/vacuolar system. Molecular Biology of the Cell 13:
3162–3177. DOI: https://doi.org/10.1091/mbc.E02-03-0172, PMID: 12221123

Huang S, Tang D, Wang Y. 2016. Monoubiquitination of syntaxin 5 regulates golgi membrane dynamics during
the cell cycle. Developmental Cell 38:73–85. DOI: https://doi.org/10.1016/j.devcel.2016.06.001,
PMID: 27404360

Jackson CL, Casanova JE. 2000. Turning on ARF: the Sec7 family of guanine-nucleotide-exchange factors. Trends
in Cell Biology 10:60–67. DOI: https://doi.org/10.1016/S0962-8924(99)01699-2, PMID: 10652516

Jackson LP, Lewis M, Kent HM, Edeling MA, Evans PR, Duden R, Owen DJ. 2012. Molecular basis for recognition
of dilysine trafficking motifs by COPI. Developmental Cell 23:1255–1262. DOI: https://doi.org/10.1016/j.devcel.
2012.10.017, PMID: 23177648

Jackson LP. 2014. Structure and mechanism of COPI vesicle biogenesis. Current Opinion in Cell Biology 29:67–
73. DOI: https://doi.org/10.1016/j.ceb.2014.04.009, PMID: 24840894

Janke C, Magiera MM, Rathfelder N, Taxis C, Reber S, Maekawa H, Moreno-Borchart A, Doenges G, Schwob E,
Schiebel E, Knop M. 2004. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins,
more markers and promoter substitution cassettes. Yeast 21:947–962. DOI: https://doi.org/10.1002/yea.1142,
PMID: 15334558
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